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It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early
design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down
states. To solve these problems, a practical availability allocationmethod is proposed. Network reliability algebraicmethods are used
to derive the availability expression of the networked topology on the system level, and Markov model is introduced to determine
that on the component level. A heuristic algorithm is proposed to obtain the reliability and maintainability allocation values of
components. The principles applied in the AGREE reliability allocation method, proposed by the Advisory Group on Reliability of
Electronic Equipment, and failure rate-based maintainability allocation method persist in our allocation method. A series system
is used to verify the new algorithm, and the result shows that the allocation based on the heuristic algorithm is quite accurate
compared to the traditional one. Moreover, our case study of a signaling system number 7 shows that the proposed allocation
method is quite efficient for networked systems.

1. Introduction

Availability is the probability that a system or a component is
performing its required function at a given point in time or
over a stated period of time when operated and maintained
in a prescribed manner [1]. If the system or component
repair can be viewed as a renewal process, the steady-state
availability exists. One type of the steady-state availability,
inherent availability, is based solely on the failure distribution
and repair-time distribution as a design parameter and is
defined as follows

𝐴 = lim
𝑡→∞

𝐴 (𝑡) =
MTBF

MTBF +MTTR
, (1)

where 𝑡 is the operating time,MTBF is themean timebetween
failures, and MTTR is the mean time to repair.

In the early design phase, the system availability goal is
specified and should be allocated to reliability requirements
(e.g., failure rate, MTBF) and maintainability requirements
(e.g., repair rate, MTTR) of components for further design
and verification.The reliability andmaintainability allocation

results provide meaningful inputs to design (i.e., establish-
ment of the right input design criteria at the proper level) and
criterions for verification.

As Messer stated [2], availability allocation is extended
from reliability allocation. Bouissou and Brizec summarized
more than 20 availability allocation methods and general-
ized them into two categories: one is optimal availability
allocation which aims at finding the minimum cost under
availability goal or themaximal system availability under cost
constraints, and the other is based on weighing factors which
considers the system structure [3]. However, these availability
allocation methods are only suitable for simple structured
systems. In the recent years, researchers made a great effort
improving the availability allocation methods. For example,
Elegbede and Adjallah applied the genetic algorithms to
solve the NP-hard multiobjective optimal availability allo-
cation problem for series-parallel systems [4]; Chiang and
Chen proposed a simulated annealing based multiobjective
genetic algorithm (saMOGA) to solve the optimal availability
allocation problem for series-parallel systems [5]; Barabady
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and Kumar used the availability importance measure based
on MTBF and MTTR to find optimal allocation results
with the minimum cost based on genetic algorithm for
series, parallel, and series-parallel systems [6]; Juang et al.
proposed a genetic algorithm based on a knowledge-based
interactive decision support system to improve the avail-
ability allocation for series-parallel systems [7]; Liu studied
the availability optimization problem for 𝑛-stage standby
system under different resource and design configuration
constraints by applying Tabu-genetic algorithm combination
method [8]; Xie et al. extended the optimal availability
allocation to consider redundancy allocation and spare parts
provisioning simultaneously for 𝑘-out-of-𝑛: G systems [9].
However, the systemsmentioned above are simple structured
ones.Mayer considered the availability allocation problem for
multipath networks, but the system availability was modeled
using series-parallel relationships, while networked structure
was not included [10]. Nowadays, networked systems are
common across natural and man-made world, for exam-
ple, networked communication systems, networked control
systems, and networked power systems. For these systems,
the system availability goal cannot be allocated using the
methods above due to the networked structure. To the best
of our knowledge, the availability allocation is still not well
studied for networked systems.

Moreover, there are multiple down states for some com-
plex components of networked systems. As Ali stated in [11],
several types of complex failures, for example, detection fail-
ure, coverage failure, diagnostic failure, and recovery failure,
are common for digital switched systems. The availability of
such components cannot be directly expressed by (1).Markov
model is widely used in complex system availability analy-
sis. For example, Lazaroiu and Staicut applied the Markov
model to derive availability expression for telecommunica-
tion switching systems [12]; Lai et al. used the Markov model
for hardware/software systems to cover both hardware and
software failures [13]; Liu and Trivedi introduced the Markov
model to drive availability expression of telecommunications
switching systems and combined it to the performancemodel
[14]. Further, Hu et al. applied the Markov model to optimal
allocation problem for series-parallel systems [15].

In this paper, we study the availability allocation based
on weighing factors for networked systems. Traditionally, the
system inherent availability goal is broken down to reliability
and maintainability goals on the system level, and those
system goals are allocated to subsystems or components using
reliability allocation method and maintainability allocation
method, respectively. However, as mentioned earlier, the
traditional availability allocationmethods are not so practical
for networked systems due to their complex structures and
multiple down states. To solve these problems, we propose an
availability allocation method based on the Markov model
and heuristics algorithm, in which the principles of both
AGREE reliability allocation method and failure rate-based
maintainability allocation method persist.

The remainder of the paper is organized as follows.
Section 2 introduces the availability models for networked
systems based on network reliability algebraic method and
Markov model. Section 3 proposes our availability allocation
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Figure 1: The topology of a simple networked system.

method, including goals, assumptions, principles, and pro-
cedures. In Section 4, a series system is allocated to verify
our heuristic algorithm compared to the traditional one. A
case study of a signaling system number 7 (SS7) is presented
in Section 5 to validate our availability allocation method on
networked systems. Finally, concluding remarks are provided
in Section 6.

2. Availability Models for Networked System

A simple structure of a networked system is illustrated in
Figure 1.

Since availability is a probability, the network reliability
algebraic methods, for example, inclusion-exclusionmethod,
sum of disjoint method, and factoring method as Shier
summarized in [16], can be applied to compute the availability
of a networked system, and the system availability can be
calculated from knowledge of node and link availability.
Furthermore, the availability of links and nodes can be
modeled using the reliability block diagrams (RBD) and
expressed as a function of the availability of components that
make them up.Therefore, the availability of such a networked
system is given by

𝐴
𝑠
= 𝑓 (𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) , (2)

where 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
are the availability of the 𝑛 types of

components.
According to Ali [11], several fault tolerance techniques

are applied to the component design in the networked system,
and some complex failures are introduced. For example, (1)
detection failure occurs when a component fails to detect
failure when it is supposed to; (2) coverage failure occurs
when a component fails during a switchover between active
and standbymodel; (3) diagnostic failure occurs when a com-
ponent’s diagnostic cannot correctly identify failed units; and
(4) recovery failure occurs when a component’s emergency
recovery program cannot bring the component back to an
operational mode.

For components with such complex failures, their avail-
ability cannot be calculated through (1). Markov model is
capable of solving this problem. After creating a state tran-
sition diagram for the component, its steady-state probability
can be solved through the flow rate equations, and the com-
ponent availability can be obtained by adding all the avail-
able states together. Therefore, in addition to reliability and
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maintainability parameters, there are other variables in the
component availability expressions, for example, detection
frequency, coverage probability, diagnostic frequency, and
recovery rate. The component availability can be expressed
as

𝐴
𝑖
= 𝑓 (𝜆

𝑖
, 𝜇
𝑖
; 𝜂
𝑖1
, . . . 𝜂
𝑖𝑘
) , (3)

where 𝜆
𝑖
and 𝜇

𝑖
are the failure rate and repair rate of

component 𝑖, and 𝜂
𝑖1
, . . . , 𝜂

𝑖𝑘
, represent other 𝑘 variables in

the availability expression of component 𝑖.

3. Availability Allocation Method

The system inherent availability goal, 𝐴∗
𝑠
, needs to be

allocated to reliability and maintainability requirements of
components in a manner that will support the specific goal.
In general, the following inequality must hold

𝑓 (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) ≥ 𝐴
∗

𝑠
. (4)

By combining (3) and (4), the availability allocation
actually aims at searching an optimal solution for

𝑓 (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
; 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
;

𝜂
11
, 𝜂
21
, . . . , 𝜂

𝑛1
; . . . ; 𝜂

1𝑘
, 𝜂
2𝑘
, . . . , 𝜂

𝑛𝑘
)

≥ 𝐴
∗

𝑠
.

(5)

3.1. Assumptions. In this paper, we study the availability
allocation problem based on the following assumptions.

(1) The nodes and links of the networked system only
have two states, perfect functioning and complete
failure.

(2) All nodes and links are independent physically and
statistically.

(3) Upon completion of a maintenance function, a
repaired unit is as good as a new one.

(4) All failure time and repair time of components in
the lowest allocation level follow exponential distri-
butions.

(5) The system maintainability goal is already specified
as MTTR∗

𝑠
, and other variables in the component

availability expression (see (3)) are also given.
(6) The operating time for all the components is the same.

3.2. Principles. AGREE and failure rate-based method are
two of the most widely used reliability and maintainability
allocation methods. However, these two methods cannot be
applied for networked system directly according to its com-
plex topology and multiple down states. The ideas of these
allocation methods, such as allocating reliability according
to component importance and complexity and allocating
maintainability considering component failure rate, can still
be used as our allocation principles.

In AGREEmethod, the reliability allocation is applied for
the series system which is constituted by components with

exponential lifetime. It is realized by allocating the following
failure rate to component 𝑖:

𝜆
𝑖
= −

𝑛
𝑖
ln [𝑅∗
𝑠
(𝑡)]

𝑁𝜔
𝑖
𝑡
𝑖

, (6)

where 𝑅∗
𝑠
(𝑡) is the system reliability goal at system operating

time 𝑡, 𝑛
𝑖
is the complexity number, for example, the number

of modules within component 𝑖,𝑁 = ∑𝑛
𝑖
is total number of

modules in the system, 𝜔
𝑖
is the probability that the system

will fail if component 𝑖 fails, and 𝑡
𝑖
is the operating time of

the component 𝑖 (𝑡
𝑖
≤ 𝑡).

In the failure rate-based method, for a system whose
repair follows renewal process, the maintainability allocation
is implemented by allocating the following repair rate to
component type 𝑖 [17]:

𝜇
𝑖
=

1

MTTR
𝑖

=
𝑛𝑞
𝑖
𝜆
𝑖

MTTR∗
𝑠
∑
𝑛

𝑖=1
(𝑞
𝑖
𝜆
𝑖
)
, (7)

where 𝑛 is the number of component types and 𝑞
𝑖
is the

number of identical components of type 𝑖.
As the structure and failures of a networked system are

complex, the availability goal cannot be allocated through
reliability allocation and maintainability allocation sepa-
rately. Moreover, (6) cannot be applied directly to nonseries
system. Generally, the AGREE method and failure rate-
based method set up four basic principles of our availability
allocation:

(1) assign higher reliability goals for less complex com-
ponents;

(2) assign higher reliability goals for more important
components;

(3) assign higher reliability goals for components which
operate longer;

(4) assign higher maintainability goals for components
with higher failure frequency.

As (6) and (7), the four basic availability allocation
principles above persist with

𝜆
𝑖
∝

𝑛
𝑖

𝜔
𝑖
𝑡
𝑖

, (8)

𝜇
𝑖
∝ 𝑞
𝑖
𝜆
𝑖
. (9)

3.3. Procedures. Let 𝜀 be the availability allocation accuracy
requirement, and allocate the system availability goal 𝐴∗

𝑠
to

its component reliability and maintainability requirements
using the following procedures.

Step 1. Determine the system reliability expression using
network reliability algebraicmethod on the network level and
RBD on the lower level as

𝑅
𝑠
(𝑡) = 𝑓 (𝑅

1
(𝑡) , 𝑅
2
(𝑡) , . . . , 𝑅

𝑛
(𝑡)) , (10)
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where 𝑅
𝑠
(𝑡) is the system reliability at time 𝑡 and 𝑅

𝑖
(𝑡) is the

reliability of identical component type 𝑖.

Step 2. Obtain the system availability expression by combin-
ing with Markov method as

𝐴
𝑠
= 𝑓 (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
; 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
; . . .) . (11)

Step 3. Let the initial reliability importance of each compo-
nent type be equal to 1; that is,

𝜔


𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛. (12)

Step 4. Calculate the failure rate coefficient for component
type 𝑖 as

𝑎
𝑖
=
𝑛
𝑖

𝜔


𝑖
𝑡
𝑖

, (13)

where 𝑡
𝑖
is its longest operating time. To persist the allocation

principle in (8), let the allocated failure rate for component
type 𝑖 be

𝜆
𝑖
= 𝑎
𝑖
𝛽, (14)

where 𝛽 is a positive variable waiting to be solved.

Step 5. Obtain the allocated repair rate expression of compo-
nent type 𝑖 from (7) and (14) as

𝜇
𝑖
=

𝑛𝑞
𝑖
𝑎
𝑖
𝛽

MTTR∗
𝑠
∑
𝑛

𝑖=1
(𝑞
𝑖
𝑎
𝑖
𝛽)
. (15)

Step 6. By substituting (14) and (15) into (11), the system
availability is a function with the variable 𝛽. Solve the
following optimization problem using the bisection search
method:

max 𝛽

s.t. 𝐴
∗

𝑠
≤ 𝐴
𝑠

𝛽 > 0,

(16)

where 𝛽 is the decision variable, and the maximum allowable
failure rate can be obtained under the constraint of the system
availability goal.

Step 7. From the optimal 𝛽, compute the allocated 𝜆 and 𝜇
for component type 𝑖 using (14) and (15). Then, calculate the
allocated reliability as

𝑅
𝑖
(𝑡) = exp (−𝜆

𝑖
𝑡) , (17)

compute the probability of completing a repair in less than 𝑇
hours as

𝐻
𝑖
(𝑇) = 1 − exp (−𝜇

𝑖
𝑇) , (18)

and obtain the allocated availability as (3).

Component 1 Component 2 Component 3 Component 4

Figure 2: The reliability block diagram of a series system.

Step 8. Calculate the new reliability importance of compo-
nents according to the Birnbaum importance from (10) and
(17) as

𝜔
𝑖
=
𝜕𝑅
𝑠
(𝑡)

𝜕𝑅
𝑖
(𝑡)
. (19)

Step 9. Compare the allocation results 𝑅
𝑖
(𝑡), 𝐻

𝑖
(𝑇), and 𝐴

𝑖

with the last allocation results 𝑅
𝑖
(𝑡)
, 𝐻
𝑖
(𝑇)
, and 𝐴

𝑖
. If any

|𝑅
𝑖
(𝑡) −𝑅

𝑖
(𝑡)

| ≥ 𝜀, |𝐻

𝑖
(𝑇) −𝐻

𝑖
(𝑇)

| ≥ 𝜀 or |𝐴

𝑖
−𝐴


𝑖
| ≥ 𝜀, then

let

𝜔


𝑖
= 𝜔
𝑖
,

𝑅
𝑖
(𝑡)

= 𝑅
𝑖
(𝑡) ,

𝐻
𝑖
(𝑇)

= 𝐻
𝑖
(𝑇) ,

𝐴


𝑖
= 𝐴
𝑖

(20)

and go to Step 4; otherwise, stop and let𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be

the final allocation result.

As (16) expresses, the requirement of (4) will always be
followed, and we do not have to verify whether the allocation
results satisfy the system availability goal.

4. Verification

Consider a series system with four components, as Figure 2
shows. This system is analyzed to verify the heuristic algo-
rithm in Section 3.3.

Under the assumptions described in Section 2, the relia-
bility and availability of component 𝑖 can be expressed as

𝑅
𝑖
(𝑡) = exp (−𝜆

𝑖
𝑡) , (21)

𝐴
𝑖
=

𝜇
𝑖

𝜇
𝑖
+ 𝜆
𝑖

, (22)

respectively. The system reliability and availability can be
obtained from RBD as

𝑅
𝑠
(𝑡) = 𝑅

1
(𝑡) 𝑅
2
(𝑡) 𝑅
3
(𝑡) 𝑅
4
(𝑡) ,

𝐴
𝑠
= 𝐴
1
𝐴
2
𝐴
3
𝐴
4
.

(23)

Suppose that the system availability goal is 𝐴∗
𝑠
= 0.99,

the system maintainability goal is MTTR∗
𝑠
= 20 hours, the

allocation accuracy requirement is 𝜀 = 0.000001, and the
module number of components 1, 2, 3, and 4 are 10, 30, 20,
and 10, respectively. Using the procedures in Section 3.3, the
accuracy requirement was achieved after 4 iterations. The
iteration process is illustrated in Table 1. The bold numbers
indicate the allocation results that could not satisfy the
accuracy requirement and needed more iteration. The data
in the last 3 rows are the final allocation results.
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Table 1: Availability allocation process for a series system (new method).

Number Metric C1 C2 C3 C4

1
𝑅
𝑖
(100) 0.9928379 0.9786673 0.9857272 0.9928379
𝐻
𝑖
(20) 0.4352819 0.8199077 0.6810934 0.4352819
𝐴
𝑖

0.9974906 0.9974906 0.9974906 0.9974906

2
𝑅
𝑖
(100) 0.9927792 0.9787973 0.9857129 0.9927792
𝐻
𝑖
(20) 0.4379316 0.8179959 0.6814611 0.4379316
𝐴
𝑖

0.9974906 0.9974906 0.9974906 0.9974906

3
𝑅
𝑖
(100) 0.9927799 0.9787953 0.9857136 0.9927799
𝐻
𝑖
(20) 0.4379009 0.8180261 0.6814429 0.4379009
𝐴
𝑖

0.9974906 0.9974906 0.9974906 0.9974906

4
𝑅
𝑖
(100) 0.9927799 0.9787953 0.9857136 0.9927799
𝐻
𝑖
(20) 0.4379013 0.8180256 0.6814434 0.4379013
𝐴
𝑖

0.9974906 0.9974906 0.9974906 0.9974906

0.5

0.4

0.3

0.2

0.1

0.0

1 2 3 4

Iteration number

RM
SE

Reliability
Maintainability

Availability

Figure 3: RMSE of the availability allocation iteration.

The root mean square error (RMSE) between the allo-
cation results in each iteration and the final results can be
calculated as

𝐸
𝑋
=
√
∑
𝑛

𝑖=1
[𝑋
𝑖,𝑚
− 𝑋
𝑖,𝑗
]
2

𝑛
, for 𝑗 = 1, 2, . . . , 𝑚 − 1, (24)

where 𝑋 represents 𝑅, 𝐻, or 𝐴 in (20), 𝑛 is the number of
component types, and 𝑚 is the number of iterations. RMSE
decreases after each iteration as Figure 3 illustrates. One can
see that our new allocation algorithmhas a good convergence
behavior.

If the traditional availability allocation method is used,
the system reliability goal is firstly obtained as

MTBF∗
𝑠
=
𝐴
∗

𝑠
MTTR∗

𝑠

1 − 𝐴∗
𝑠

= 1980 hours. (25)

Then, the reliability andmaintainability goals are allocated to
components using the AGREE reliability allocation method

Table 2: Availability allocation for a series system (traditional
method).

Metric C1 C2 C3 C3
𝑅
𝑖
(100) 0.9928110 0.9785876 0.9856736 0.9928110

𝐻
𝑖
(20) 0.4352819 0.8199077 0.6810934 0.4352819

𝐴
𝑖

0.9974811 0.9974811 0.9974811 0.9974811

and failure rate-based maintainability allocation method
described in Section 3.2. The allocation results are illustrated
in Table 2.

By comparing the allocation results obtained from our
method and the traditional method, one can see that the
RMSE is only 0.00121 and this error is mainly caused by dif-
ferent importance calculation methods. In AGREE method,
the reliability importance is the probability that the system
will fail given component has failed, while the Birnbaum
importance in our new method is about the maximum loss
in system reliability when component switches from normal
state to failed state. This case shows that the new heuristic
algorithm in our availability allocation method is suitable for
series systems and the allocation difference is very low.

5. Case Study

In this Section, a SS7 system is used to illustrate the effective-
ness of our allocation method. The topology of the system is
shown in Figure 4, where we have the following.

(i) Service switching point (SSP): it is an end-point used
as switches that originate, terminate or tandem calls.
It sends signaling messages to other SSP to setup,
manage and release voice circuits required, or sends a
querymessage to service control point to seek routing
information.

(ii) Signaling transfer point (STP): it is a packet switch
used to transfer traffic between signaling points based
on routing information contained in the SS7message.
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STP STP

STP

B link

C link

SSP

A link
SCP

SCP

SSP

STP

Figure 4: The topology of a SS7 system.

(iii) Service control point (SCP): it is an end-point used as
a specialized database. It can accept queries from SSP
and retrieves routing information to support services.

(iv) A link, access link, connects a signaling end point
(e.g., an SCP or SSP) to an STP.

(v) B link, bridge link, connects one STP to another.
Typically, a quad of B links interconnects primary
STP.

(vi) C link, cross link, connects STP performing identical
functions into a mated pair. A C link is used only
when an STP has no other route available to a
destination signaling point due to link failures.

The data transmission process works as follows. When
a customer dials the telephone number, this number is
forwarded to SSP, and then SSP recognizes it as a call
requiring special handling and queries SCP database through
STP. The response containing routing information is passed
via the STP switching system back to SSP. Finally, the virtual
link is constructed and the source and the destination are
connected together through the rout given by SCP.

5.1. Availability Model. To successfully build a connection
between the two telephones, at least one path needs to exist
from the source telephone and one of the SCP, and at least
one path should exist between the two telephones. The RBD
of the SS7 system is shown in Figure 5. One can see that it
is a type of networked structure. It is assumed that links are
perfect and the system availability goal is only allocated to the
components that make up the nodes.

From Figure 5, we can find 8 minimal paths, and the ana-
lytic expressions of the SS7 system reliability and availability
can be obtained using inclusion-exclusion method as

𝑅
𝑠
(𝑡) = 𝑅

2

𝑝
(𝑡) 𝑅
2

𝑠𝑠𝑝
(𝑡) 𝑅
2

𝑡
(𝑡) 𝑅
𝑐
(𝑡)

× [8 − 4 𝑅
𝑐
(𝑡) − 8𝑅

𝑡
(𝑡) + 4𝑅

𝑡
(𝑡) 𝑅
𝑐
(𝑡)

+2𝑅
2

𝑡
(𝑡) − 𝑅

2

𝑡
(𝑡) 𝑅
𝑐
(𝑡)] ,

𝐴
𝑠
= 𝐴
2

𝑝
𝐴
2

𝑠𝑠𝑝
𝐴
2

𝑡
𝐴
𝑐
(8 − 4𝐴

𝑐
− 8𝐴
𝑡
+ 4𝐴
𝑡
𝐴
𝑐

+ 2𝐴
2

𝑡
− 𝐴
2

𝑡
𝐴
𝑐
) ,

(26)
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Figure 5: The schematic diagram of the SS7 system.
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Figure 6: The RBD of the STP.

where 𝑅
𝑝
(𝑡), 𝑅
𝑠𝑠𝑝
(𝑡), 𝑅
𝑡
(𝑡), and 𝑅

𝑐
(𝑡) are the reliability of the

telephone, SSP, STP, and SCP, and 𝐴
𝑝
, 𝐴
𝑠𝑠𝑝
, 𝐴
𝑡
, and 𝐴

𝑐
are

the availability of the corresponding nodes.
For the SS7 system, due to the multiple down states,

the component availability cannot be directly modeled only
using RBD. Take the STP as an example. Its RBD is illus-
trated in Figure 6. One can find that it is a series system,
and the STP reliability and availability can be calculated
by

𝑅
𝑡
(𝑡) =

3

∏

𝑖=1

𝑅
𝑡𝑖
(𝑡) = 𝑅

𝑡1
(𝑡) 𝑅
𝑡2
(𝑡) 𝑅
𝑡3
(𝑡) ,

𝐴
𝑡
=

3

∏

𝑖=1

𝐴
𝑡𝑖
= 𝐴
𝑡1
𝐴
𝑡2
𝐴
𝑡3
,

(27)

where 𝑅
𝑡1
(𝑡) 𝑅
𝑡2
(𝑡), 𝑅
𝑡3
(𝑡),𝐴

𝑡1
,𝐴
𝑡2
, and𝐴

𝑡3
are the reliability

and availability of the STP processor, packet switcher, and
power supply, respectively.

The Markov models of the STP signal processor, packet
switcher, and power supply are shown in Figure 7. The
states in one circle are the available states, and the states in
two circles are down states. The STP signal processor has
diagnostic and recovery function, and the packet switcher
has failure detection function. From these Markov models,
the steady-state probabilities can be calculated from the flow
rate equations, and the availability for 𝐴

𝑡1
, 𝐴
𝑡2
, and 𝐴

𝑡3
are

expressed as follows:

𝐴
𝑡1
= (𝜇
𝑡1
[𝑟
𝑟
+ (1 − 𝑝

𝑟
) 𝜆
𝑡1
] (𝜇
𝑡1
𝐴 + 𝐵))

× ([𝑟
𝑟
+ (1 − 𝑝

𝑟
) 𝜆
𝑡1
] [𝜇
2

𝑡1
𝐴 + (𝜇

𝑡1
+ 𝜆
𝑡1
) 𝐵]

+ 𝜇
𝑡1
𝜆
𝑡1
𝑓
𝑑𝑔
𝑝
𝑟
[(1 − 𝑝

𝑟
) 𝜆
𝑡1
+ 𝜇
𝑡1
])
−1

,

𝐴
𝑡2
= ((𝜇

2

𝑡2
+ 2𝜇
𝑡2
𝜆
𝑡2
) (𝑓
𝑑𝑡
+ 𝜆
𝑡2
) + 𝜇
2

𝑡2
𝜆
𝑡2
(1 − 𝑝

𝑑𝑡
))

× ((𝜇
2

𝑡2
+ 2𝜇
𝑡2
𝜆
𝑡2
+ 2𝜆
2

𝑡2
) (𝑓
𝑑𝑡
+ 𝜆
𝑡2
)

+𝜇
𝑡2
𝜆
𝑡2
(𝜇
𝑡2
+ 𝜆
𝑡2
) (1 − 𝑝

𝑑𝑡
))
−1

,

𝐴
𝑡3
=

𝜇
2

𝑡3
+ 3𝜆
𝑡3
𝜇
𝑡3

𝜇
2

𝑡3
+ 6𝜆
2

𝑡3
+ 3𝜆
𝑡3
𝜇
𝑡3

,

(28)

where 𝐴 = 𝑟
𝑑𝑔
+ 𝑓
𝑑𝑔
+ (1 + 𝑝

𝑟
)𝜆
𝑡1
and 𝐵 = (2𝜆

𝑡1
+ 𝑓
𝑑𝑔
)[𝑟
𝑑𝑔
+

(1+𝑝
𝑟
)𝜆
𝑡1
]−𝑟
𝑑𝑔
𝑓
𝑑𝑔
; 𝜆
𝑡1
, 𝜆
𝑡2
, and 𝜆

𝑡3
are the failure rates of the
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Figure 7: The Markov models of the STP components.

STP signal processor, packet switcher, and power supply; 𝜇
𝑡1
,

𝜇
𝑡2
, and 𝜇

𝑡3
are the repair rates of the three components; 𝑟

𝑟
,

𝑝
𝑟
, 𝑟
𝑑𝑔

and 𝑓
𝑑𝑔

are recovery rate, recovery failure probability,
diagnostic return rate, and diagnostic frequency of the STP
signal processor; and 𝑓

𝑑𝑡
and 𝑝

𝑑𝑡
are detection frequency and

detection probability of the STP packet switcher, respectively.
In this case, we assume that availability of other compo-

nents are expressed as

𝐴
𝑖
=

𝜇
𝑖

𝜇
𝑖
+ 𝜆
𝑖

. (29)

By combining above availability and reliability expres-
sions together, we have

𝐴
𝑠
= (

𝜇
𝑝

𝜇
𝑝
+ 𝜆
𝑝

)

2

(
𝜇
𝑠

𝜇
𝑠
+ 𝜆
𝑠

)

2

(𝐴
𝑡1
𝐴
𝑡2
𝐴
𝑡3
)
2

(
𝜇
𝑐

𝜇
𝑐
+ 𝜆
𝑐

)

× (8 − 4(
𝜇
𝑐

𝜇
𝑐
+ 𝜆
𝑐

) − 8𝐴
𝑡1
𝐴
𝑡2
𝐴
𝑡3

+ 4𝐴
𝑡1
𝐴
𝑡2
𝐴
𝑡3
(

𝜇
𝑐

𝜇
𝑐
+ 𝜆
𝑐

) + 2(𝐴
𝑡1
𝐴
𝑡2
𝐴
𝑡3
)
2

− (𝐴
𝑡1
𝐴
𝑡2
𝐴
𝑡3
)
2

(
𝜇
𝑐

𝜇
𝑐
+ 𝜆
𝑐

)) ,

(30)

Table 3: Parameters in the case.

Metric Value Description
𝐴
∗

𝑠
0.99999 System availability goal

MTTR∗
𝑠

3 hours System maintainability goal
𝑟
𝑟

60/3 Automatic recovery is average 3min
𝑝
𝑟

0.8 Independent recovery probability is 0.8

𝑟dg 60/5
Diagnostic return rate is average 5min
to complete the diagnostics

𝑓dg 1/24
Diagnostic frequency is once in 24
hours

𝑓dt 2/24
Detection frequency is twice in 24
hours

𝑝dt 0.5 Detection probability is 0.5

𝑅
𝑠
(𝑡) = 𝑅

2

𝑝
(𝑡) 𝑅
2

𝑠𝑠𝑝
(𝑡) (𝑅

𝑡1
(𝑡) 𝑅
𝑡2
(𝑡) 𝑅
𝑡3
(𝑡))
2

𝑅
𝑐
(𝑡)

× [8 − 4𝑅
𝑐
(𝑡) − 8𝑅

𝑡1
(𝑡) 𝑅
𝑡2
(𝑡) 𝑅
𝑡3
(𝑡)

+ 4𝑅
𝑡1
(𝑡) 𝑅
𝑡2
(𝑡) 𝑅
𝑡3
(𝑡) 𝑅
𝑐
(𝑡)

+ 2(𝑅
𝑡1
(𝑡) 𝑅
𝑡2
(𝑡) 𝑅
𝑡3
(𝑡))
2

−(𝑅
𝑡1
(𝑡) 𝑅
𝑡2
(𝑡) 𝑅
𝑡3
(𝑡))
2

𝑅
𝑐
(𝑡)] ,

(31)

The parameters are illustrated in Table 3.

5.2. Availability Allocation. Assume that the accuracy
requirement is 𝜀 = 0.000001, and the module number of
phone, SSP, STP signal processor, STP packet switcher, STP
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Table 4: Availability allocation process.

No. Metric Phone SSP STP1 STP2 STP3 SCP

1
𝑅
𝑖
(43800) 0.9872002 0.9497754 0.9795991 0.9770784 0.9923003 0.9497754
𝐻
𝑖
(3) 0.2973815 0.7562872 0.6767767 0.7193335 0.3452681 0.7562872
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

2
𝑅
𝑖
(43800) 0.9987002 0.9950073 0.9786417 0.9760652 0.9918324 0.9006289
𝐻
𝑖
(3) 0.0350056 0.1281418 0.6936387 0.7348446 0.3619721 0.9431555
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

3
𝑅
𝑖
(43800) 0.9982271 0.9929534 0.9725391 0.9692399 0.9894732 0.9316353
𝐻
𝑖
(3) 0.0474519 0.1761278 0.7825407 0.8194852 0.4400265 0.8563094
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

4
𝑅
𝑖
(43800) 0.9982004 0.9928532 0.9753953 0.9724459 0.9905563 0.9181965
𝐻
𝑖
(3) 0.0481498 0.1784022 0.7446343 0.7836799 0.4054317 0.9034963
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

5
𝑅
𝑖
(43800) 0.9982107 0.9928999 0.9757348 0.9728247 0.9906888 0.9165455
𝐻
𝑖
(3) 0.0478822 0.1773421 0.7397175 0.7790143 0.4010582 0.9081394
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

6
𝑅
𝑖
(43800) 0.9982107 0.9928999 0.9755769 0.9726475 0.9906287 0.9173563
𝐻
𝑖
(3) 0.0478976 0.1773978 0.7421356 0.7813225 0.4031506 0.9059628
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

7
𝑅
𝑖
(43800) 0.9982104 0.9928987 0.9755621 0.9726309 0.9906230 0.9173587
𝐻
𝑖
(3) 0.0478888 0.1773705 0.7422309 0.7814134 0.4032326 0.9058801
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

8
𝑅
𝑖
(43800) 0.9982101 0.9928976 0.9755652 0.9726345 0.9906242 0.9173451
𝐻
𝑖
(3) 0.0478961 0.1773956 0.7421850 0.7813694 0.4031936 0.9059183
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

9
𝑅
𝑖
(43800) 0.9982098 0.9928965 0.9755654 0.9726346 0.9906242 0.9173444
𝐻
𝑖
(3) 0.0479033 0.1774200 0.7421808 0.7813653 0.4031907 0.9059185
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

10
𝑅
𝑖
(43800) 0.9982098 0.9928965 0.9755652 0.9726344 0.9906242 0.9173448
𝐻
𝑖
(3) 0.0479033 0.1774199 0.7421827 0.7813670 0.4031923 0.9059169
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

11
𝑅
𝑖
(43800) 0.9982098 0.9928965 0.9755653 0.9726345 0.9906242 0.9173446
𝐻
𝑖
(3) 0.0479033 0.1774200 0.7421818 0.7813662 0.4031915 0.9059177
𝐴
𝑖

0.9999975 0.9999975 1.0000000 1.0000000 1.0000000 0.9999975

power supply, and SCP are 50, 200, 80, 90, 30, and 200,
respectively.

Allocate the system availability goal down to the reliabil-
ity and maintainability requirements using our procedures
in Section 3.3, and the accuracy requirement was achieved
after 11 iterations. Table 4 shows the iteration process, and the
bold numbers indicate the allocation results that need more
iteration. The final results were obtained in the 11th iteration.
When component importance shifts between two adjacent
iterations, their mean can be used to accelerate the iteration
process.

According to (24), the RMSE between the allocation
results in each iteration and the final result decreases sharply
as Figure 8 shows.

6. Conclusion

In this paper, an availability allocation method is proposed
for networked systems. This method has three advantages:
(1) a heuristic algorithm is proposed to solve the problem
with the networked structure, whereas the traditional
availability allocation methods can only be used for
simple structures; (2) Birnbaum importance is applied
to calculate the component importance, where the
component importance is not easy to be obtained based
on the networked structure; and (3) Markov method
is introduced into the availability modeling process in
order to model the component with multiple down
states.
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Figure 8: RMSE of the availability allocation iteration.

Our availability allocation method is suitable for net-
worked systems which have analytic availability expression
based on network reliability algebraic method and Markov
model.The numerical results show that the allocation process
is efficient, and the allocation results satisfy the specific
availability goal of the networked system.

In this method, as Markov model is applied to compute
system availability, all the failure time or the repair time of
the components in the lowest allocation level need to follow
exponential distribution. For those with nonexponential dis-
tributions, the system availability calculation requires more
advanced models, such as semi-Markov model. The related
topics will be studied in our future research.
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