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This paper studies the discrete-time stochastic linear quadratic (LQ) problem with a second moment constraint on the terminal
state, where the weighting matrices in the cost functional are allowed to be indefinite. By means of the matrix Lagrange theorem,
a new class of generalized difference Riccati equations (GDREs) is introduced. It is shown that the well-posedness, and the
attainability of the LQ problem and the solvability of the GDREs are equivalent to each other.

1. Introduction

LQcontrol, initiated byKalman [1] and extended to stochastic
systems byWonham [2], is one of the most important classes
of optimal control issues from both theory and application
point of view; we refer the reader to [2–8] for representative
work in this area. Different from the classical LQ in modern
control theory, it was found in [9, 10] that a stochastic
LQ problem with indefinite control weighting matrices can
still be well-posed, which evoked a series of subsequent
researches; see, for example, [11, 12].

It is well known that in practical engineering, the sys-
tem state and control input are always subject to various
constraints, so how to solve the constrained stochastic LQ
issue is a more attractive topic; we refer the reader to [13–
19]. Reference [14] presented a tractable approach for LQ
controller design of the systemwith additive noise. Reference
[16] was about the constrained LQ of deterministic systems
with state equality constraints. Reference [13] studied the
parametrization of the solutions of finite-horizon constrained
LQ control. Reference [15] was devoted to a stochastic LQ
optimal control and an application to portfolio selection,
where the control variable is confined to a cone, and all
the coefficients of the state equation are random processes.
Reference [19] studied the indefinite stochastic LQ control
problem of continuous-time Itô systemswith a linear equality

constraint 𝑀𝑥(𝑇) = 𝜉 on the terminal state and gave a
necessary condition for the existence of an optimal controller.
Reference [20] generalized the results of [19] to discrete-time
stochastic systems.

In this paper, different from [19, 20] on the constraint
conditions, we would like to deal with stochastic LQ control
of discrete-time multiplicative noise systems with a second
moment constraint 𝐸[𝑥(𝑇)

𝑇
𝑥(𝑇)] = 𝑐 and such constraints

are often encountered in 𝐻
∞

filtering design; see [21, 22].
By means of Lagrange theorem, we present a necessary
condition for the existence of an optimal linear state feedback
control with the second moment constraint on the terminal
states. It is proved that the solvability of GDRE is necessary
and sufficient for the existence of an optimal control under
either of the state feedback case or of the open-loop forms.
Moreover, we show that the well-posedness and the attain-
ability of the constrained LQ problem, the feasibility of the
LMI, and the solvability of the GDRE are equivalent to each
other. The novel contribution of this paper is to consider
a constrained discrete-time LQ optimal stochastic control,
which includes some results of [23] as special cases. A new
class of generalized difference Riccati equations (GDREs) is
first introduced.

The remainder of the paper is organized as follows.
Section 2 gives some definitions and preliminaries. In
Section 3, the optimal state feedback control is studied using
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the matrix Lagrange theorem. We give a necessary and
sufficient condition for the well-posedness of the constrained
LQ control in Section 4. Section 5 shows the equivalence
among the well-posedness and the attainability of the LQ
problem, the feasibility of the LMI, and the solvability of
the GDRE. The set of all optimal controls is determined. We
conclude the paper in Section 6.

Throughout the paper, the following notations are
adopted: 𝑀𝑇 denotes the transpose of 𝑀. 𝑀 > 0 (𝑀 ≥ 0):
𝑀 is a positive definite (positive semidefinite) symmetric
matrix. tr(𝑀): the trace of a squarematrix𝑀.𝑅𝑚×𝑛: the space
of all 𝑚 × 𝑛 matrices. 𝑆𝑛: the space of all 𝑛 × 𝑛 symmetric
matrices.

2. Problem Setting

Consider the following constrained discrete-time stochastic
LQ control problem.

Problem 1. Consider

min
𝑢(𝑡0),...,𝑢(𝑇−1)

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

s.t. 𝑥 (𝑡 + 1) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)]

+ [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] 𝑤 (𝑡) ,

𝑥 (𝑡
0
) = 𝑥
0
,

𝐸 {𝑥(𝑇)
𝑇
𝑥 (𝑇)} = 𝑐,

𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} ,

(1)

where the state 𝑥(𝑡) ∈ 𝑅
𝑛, the control input 𝑢(𝑡) ∈ 𝑅

𝑚, and
the noise 𝑤(𝑡) ∈ 𝑅

1, 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1},

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

:= 𝐸{𝑥(𝑇)
𝑇
𝑄 (𝑇) 𝑥 (𝑇)

+

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)]} .

(2)

The process {𝑤(𝑡
0
), 𝑤(𝑡
0
+ 1), . . . , 𝑤(𝑇 − 1)} is a sequence

of second-order stationary random variables defined on
a complete probability space (Ω,F,P). Without loss of
generality, we assume that

𝐸 {𝑤 (𝑠)} = 0, 𝐸 {𝑤 (𝑠) 𝑤 (𝑡)} = 𝛿
𝑠𝑡
, (3)

where 𝛿
𝑠𝑡
is the Kronecker delta, 𝑠, 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}.

𝑐 ≥ 0 is a constant, 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡), 𝑄(𝑡), and 𝑅(𝑡) are
matrices having appropriate dimensions determined from
context, and 𝑄(𝑡) and 𝑅(𝑡) are real symmetric indefinite
matrices. 𝑥

0
is a given deterministic vector.

Definition 2. Problem 1 is called well-posed, if ∀𝑥
0
∈ 𝑅
𝑛,

𝑉 (𝑥
0
) = inf
𝑢(𝑡0),𝑢(𝑡0+1),...,𝑢(𝑇−1)

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , . . . , 𝑢 (𝑇 − 1))

> −∞.

(4)

Definition 3. Problem 1 is called attainable, if ∀𝑥
0
∈ 𝑅
𝑛, there

exists a sequence {𝑢∗(𝑡
0
), 𝑢
∗
(𝑡
0
+ 1), . . . , 𝑢

∗
(𝑇 − 1)}, such that

𝑉(𝑥
0
) = 𝐽(𝑡

0
, 𝑥
0
; 𝑢
∗
(𝑡
0
), 𝑢
∗
(𝑡
0
+1), . . . , 𝑢

∗
(𝑇−1)). In this case,

{𝑢
∗

0
, 𝑢
∗

1
, . . . , 𝑢

∗

𝑁−1
} is called an optimal control sequence.

Now, let us consider a mathematical programming (MP)
problem in a matrix space:

min 𝑓 (𝑋)

s.t. h (𝑋) = 0.
(5)

Definition 4. Let𝑋∗ be a point satisfying

h (𝑋
∗
) = (ℎ

1
(𝑋
∗
) , . . . , ℎ

𝑝
(𝑋
∗
))
𝑇

= 0, (6)

and then 𝑋
∗ is said to be a constraint regular point if

the gradient vectors ∇ℎ
𝑗
(𝑋
∗
), 𝑗 = 1, . . . , 𝑝, are linearly

independent.

Lemma 5 (Lagrange theorem [24]). Assume that the func-
tions 𝑓, ℎ

1
, . . . , ℎ

𝑝
, are twice continuously differentiable. If a

regular point 𝑋
∗ is also a relative minimum point for the

original MP, then there exists a vector 𝜆 ∈ 𝑅
𝑝 such that

∇
𝑋
𝐿 (𝑋
∗
, 𝜆
∗
) = 0, (7)

where the Lagrangian function 𝐿(𝑋, 𝜆) := 𝑓(𝑋) + 𝜆
𝑇h(𝑋).

3. A Necessary Condition for State
Feedback Control

In this section, by the matrix Lagrange theorem, we present
a necessary condition for Problem 1 based on a new type of
GDREs.

Let 𝑋(𝑡) = 𝐸[𝑥(𝑡)𝑥(𝑡)
𝑇
]. Through a simple calculation,

the following deterministic optimal control Problem 6 is
equivalent to the original Problem 1 under the state feedback
𝑢(𝑡) = 𝐾(𝑡)𝑥(𝑡) for 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}.
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Problem 6. Consider
min

𝐾(𝑡0),...,𝐾(𝑇−1)

𝐽 (𝑡
0
, 𝑥
0
; 𝐾 (𝑡
0
) 𝑥
0
, . . . , 𝐾 (𝑇 − 1) 𝑥 (𝑇 − 1))

s.t. 𝑋 (𝑡 + 1) = (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡))

× 𝑋 (𝑡) (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡))
𝑇

+ (𝐶 (𝑡) + 𝐷 (𝑡)𝐾 (𝑡))

× 𝑋 (𝑡) (𝐶 (𝑡) + 𝐷 (𝑡)𝐾 (𝑡))
𝑇
,

𝑡 = 𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1,

𝑋 (𝑡
0
) = 𝑋

0
= 𝑥
0
𝑥
𝑇

0
,

tr [𝑋 (𝑇)] = 𝑐

(8)
with

𝐽 (𝑡
0
, 𝑥
0
; 𝐾 (𝑡
0
) 𝑥
0
, . . . , 𝐾 (𝑇 − 1) 𝑥 (𝑇 − 1))

=

𝑇−1

∑

𝑡=𝑡0

tr {[𝑄 (𝑡) + 𝐾(𝑡)
𝑇
𝑅 (𝑡)𝐾 (𝑡)]𝑋 (𝑡)}

+ tr [𝑄 (𝑇)𝑋 (𝑇)] .

(9)

Remark 7. If Problem 1 has a linear feedback optimal control
solution 𝑢

∗
(𝑡) = 𝐾

∗
(𝑡)𝑥(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, then

𝐾
∗
(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, are the optimal solution of

Problem 6.

Theorem 8. If Problem 1 is attainable by 𝑢(𝑡) = 𝐾
∗
(𝑡)𝑥(𝑡),

and the regular point (𝐾
∗
(𝑡), 𝑋
∗
(𝑡)) is a locally optimal

solution of Problem 6, then there exist symmetric matrices
𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+1, . . . , 𝑇−1}, and 𝜆 ∈ 𝑅

1 solving the following
GDRE:

𝑃 (𝑡) = 𝐴(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐶(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡)

+ 𝑄 (𝑡) − 𝐻(𝑡)
𝑇
𝐺(𝑡)
†
𝐻(𝑡) ,

𝐻 (𝑡) = 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡) ,

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐷(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡) ≥ 0,

𝐺 (𝑡) 𝐺(𝑡)
†
𝐻(𝑡) = 𝐻 (𝑡) , 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} ,

𝑃 (𝑇) = 𝑄 (𝑇) + 𝜆𝐼,

(10)

where 𝐺
† is the Moore-Penrose generalized inverse of 𝐺.

Moreover,
𝐾
∗
(𝑡) = −𝐺(𝑡)

†
𝐻(𝑡) + 𝑌 (𝑡) − 𝐺(𝑡)

†
𝐺 (𝑡) 𝑌 (𝑡) (11)

with 𝑌(𝑡) ∈ 𝑅
𝑚×𝑛, 𝑡 = 𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1, being any given real

matrices:
𝑉 (𝑥
0
) = 𝐽 (𝑡

0
, 𝑥
0
; 𝑢
∗
(𝑡
0
) , 𝑢
∗
(𝑡
0
+ 1) , . . . , 𝑢

∗
(𝑇 − 1))

= 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆.

(12)

To proveTheorem 8, we mainly use Lemma 5 to Problem
6 together with the following lemma to obtainGDRE (10) and
then apply the technique of completing squares to show (12).

Lemma 9 (see [12]). Let 𝐴, 𝐵, 𝐶 be given matrices with
appropriate sizes; then the matrix equation

𝐴𝑋𝐵 = 𝐶 (13)

has a solution 𝑋 if and only if

𝐴𝐴
†
𝐶𝐵
†
𝐵 = 𝐶. (14)

Moreover, any solution to 𝐴𝑋𝐵 = 𝐶 can be represented by

𝑋 = 𝐴
†
𝐶𝐵
†
+ 𝑌 − 𝐴

†
𝐴𝑌𝐵𝐵

†
, (15)

where 𝑌 is any matrix with appropriate size.

Proof. According to Remark 7, 𝐾
∗
(𝑡) is also the optimal

solution of Problem 6. Problem 6 is a typical MP problem
about𝑋(𝑡) and𝐾(𝑡) as follows:

min 𝑓 [𝑋 (𝑡) , 𝐾 (𝑡)]

s.t. ℎ
𝑡+1 [𝑋 (𝑡) , 𝐾 (𝑡)] = 0, 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} ,

ℎ [𝑋 (𝑇)] = 0,

(16)

where

𝑓 [𝑋 (𝑡) , 𝐾 (𝑡)] =

𝑇−1

∑

𝑡=𝑡0

tr {[𝑄 (𝑡) + 𝐾(𝑡)
𝑇
𝑅 (𝑡)𝐾 (𝑡)]𝑋 (𝑡)}

+ tr [𝑄 (𝑇)𝑋 (𝑇)] ,

ℎ
𝑡+1 [𝑋 (𝑡) , 𝐾 (𝑡)] = 𝐴 (𝑡)𝑋 (𝑡) 𝐴(𝑡)

𝑇

+ 𝐴 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐵(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐴(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐵(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐷(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐷(𝑡)
𝑇

− 𝑋 (𝑡 + 1) ,

ℎ [𝑋 (𝑇)] = tr [𝑋 (𝑇)] − 𝑐.

(17)

Let matrices 𝑃(𝑡 + 1), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, be the

Lagrangian multipliers of

ℎ
𝑡+1 [𝑋 (𝑡) , 𝐾 (𝑡)] = 0, 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} , (18)
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and let 𝜆 ∈ 𝑅
1 be the Lagrangian multiplier of ℎ[𝑋(𝑇)] = 0;

then the Lagrangian function

L = 𝑓 [𝑋 (𝑡) , 𝐾 (𝑡)]

+

𝑇−1

∑

𝑡=𝑡0

tr {𝑃 (𝑡 + 1) ℎ𝑡+1 [𝑋 (𝑡) , 𝐾 (𝑡)]} + 𝜆ℎ [𝑋 (𝑇)] .

(19)

According to the the matrix Lagrange theorem, we obtain

𝜕L

𝜕 (𝐾
𝑡
)
= 0, 𝑡 = 𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1, (20)

𝜕L

𝜕 (𝑋
𝑡
)
= 0 𝑡 = 𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇. (21)

Based on the partial rule of gradient matrices, (20) can be
transformed into

[𝑅 (𝑡) + 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡)]𝐾 (𝑡)

+ 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡) = 0.

(22)

Let

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡) ,

𝐻 (𝑡) = 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡) .

(23)

Then we obtain

𝐺 (𝑡) 𝐺(𝑡)
†
𝐻(𝑡) = 𝐻 (𝑡) ,

𝐺 (𝑡)𝐾 (𝑡) + 𝐻 (𝑡) = 0.

(24)

Applying Lemma 9, we have

𝐾
∗
(𝑡) = −𝐺(𝑡)

†
𝐻(𝑡) + 𝑌 (𝑡) − 𝐺(𝑡)

†
𝐺 (𝑡) 𝑌 (𝑡) ,

𝑌 (𝑡) ∈ 𝑅
𝑚×𝑛

, 𝑡 = 𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1.

(25)

Equation (21) yields

𝑃 (𝑇) = 𝑄 (𝑇) + 𝜆𝐼,

𝑃 (𝑡) = 𝑄 (𝑡) + 𝐴(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐶(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡)

+ 𝐾(𝑡)
𝑇
[𝑅 (𝑡) + 𝐵(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐷(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡)]𝐾 (𝑡)

+ 𝐾(𝑡)
𝑇
[𝐷(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡)

+𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡)]

+ [𝐴(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐶(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡)]𝐾 (𝑡) .

(26)

Substituting𝐾
∗
(𝑡) = −𝐺(𝑡)

†
𝐻(𝑡) + 𝑌(𝑡) − 𝐺(𝑡)

†
𝐺(𝑡)𝑌(𝑡) into

(26), it follows

𝑃 (𝑡) = 𝐴(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐶(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡)

+ 𝑄 (𝑡) − 𝐻(𝑡)
𝑇
𝐺(𝑡)
†
𝐻(𝑡) .

(27)

Without loss of generality, we can assume that𝑃 is symmetric.
Otherwise, we can take 𝑃 = (𝑃

𝑇
+ 𝑃)/2. The objective

functional

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)]}

+ tr [𝑋 (𝑇)𝑄 (𝑇)]

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)

+ 𝑥(𝑡 + 1)
𝑇
𝑃 (𝑡 + 1) 𝑥 (𝑡 + 1)

−𝑥(𝑡)
𝑇
𝑃 (𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)

−𝑥(𝑡)
𝑇
𝑃 (𝑡) 𝑥 (𝑡)]

+ [𝑥(𝑡)
𝑇
𝐴(𝑡)
𝑇
+ 𝑢(𝑡)

𝑇
𝐵(𝑡)
𝑇
]

× 𝑃 (𝑡 + 1) [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)]

+ [𝑥(𝑡)
𝑇
𝐶(𝑡)
𝑇
+ 𝑢(𝑡)

𝑇
𝐷(𝑡)
𝑇
]

×𝑃 (𝑡 + 1) [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(28)

A completion of square implies

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑢 (𝑡) + 𝐺(𝑡)
†
𝐻(𝑡) 𝑥 (𝑡)]

𝑇

×𝐺 (𝑡) [𝑢 (𝑡) + 𝐺(𝑡)
†
𝐻(𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(29)
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We assert that 𝑃(𝑡 + 1)must satisfy

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡)

+ 𝐷(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡) ≥ 0.

(30)

If it is not so, there is𝐺(𝑙) for 𝑙 ∈ {𝑡
0
, . . . , 𝑇−1}with a negative

eigenvalue𝜆 < 0. Denote the unitary eigenvectorwith respect
to 𝜆 by V

𝜆
. Let 𝛿 ̸= 0 be an arbitrary scalar; we construct a

control sequence as follows:

�̃� (𝑡) = {
−𝐺(𝑡)

†
𝐻(𝑡) 𝑥 (𝑡) , 𝑡 ̸= 𝑙,

𝛿|𝜆|
−1/2V
𝜆
− 𝐺(𝑡)

†
𝐻(𝑡) 𝑥 (𝑡) , 𝑡 = 𝑙.

(31)

The associated cost functional becomes
𝐽 (𝑡
0
, 𝑥
0
; �̃� (𝑡
0
) , �̃� (𝑡

0
+ 1) , . . . , �̃� (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[�̃� (𝑡) + 𝐺(𝑡)
†
𝐻(𝑡) 𝑥 (𝑡)]

𝑇

× 𝐺 (𝑡) [�̃� (𝑡) + 𝐺(𝑡)
†
𝐻(𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= [𝛿|𝜆|
−1/2V
𝜆
]
𝑇

𝐺 (𝑙) [𝛿|𝜆|
−1/2V
𝜆
]

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= −𝛿
2
+ 𝐸 {𝑥(𝑇)

𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(32)
Let 𝛿 → ∞; then 𝐽(𝑡

0
, 𝑥
0
; �̃�(𝑡
0
), �̃�(𝑡
0
+ 1), . . . , �̃�(𝑇 − 1)) →

−∞, which contradicts the attainability of Problem 1. So (30)
holds.

In view of (29) and (30), (11) and (12) are easily derived.
The proof is completed.

Remark 10. InTheorem 8, in order to apply matrix Lagrange
theorem, we assume the optimal solution (𝐾

∗
(𝑡), 𝑋
∗
(𝑡))
𝑇 is a

regular point. Generally speaking, for a given LQ control, it
is easy to examine the regular condition.

Below, we present a numerical example to illustrate the
effectiveness of Theorem 8.

Example 11. In Problem 1, we set

𝐸 {𝑥(2)
𝑇
𝑥 (2)} = 𝑐 = 73, 𝑥

0
= [

0

1
] ,

𝐴
0
= [

1 0

0 0
] , 𝐴

1
= [

1 0

1 0
] ,

𝐵
0
= [

1

0
] , 𝐵

1
= [

1

1
] ,

𝐶
0
= [

−1 1

0 0
] , 𝐶

1
= [

0 1

1 1
] ,

𝐷
0
= [

1

−1
] , 𝐷

1
= [

1

−1
] .

(33)

The state and control weighting matrices are as

𝑄
0
= [

−1 0

0 −1
] , 𝑄

1
= [

−1 0

0 0
] ,

𝑄
2
= [

0 0

0 0
] , 𝑅

0
= −1, 𝑅

1
= −7.

(34)

By the relationship between Problems 1 and 6, we know

𝑋
0
= [

0 0

0 1
] , tr [𝑋 (2)] = 73. (35)

ApplyingTheorem 8, we obtain

𝑋(0) = [
0 0

0 1
] , 𝑋 (1) = [

5 −2

−2 1
] ,

𝑋 (2) = [
34 −26

−26 39
] ,

𝑃 (2) = 𝜆𝐼 = [
2 0

0 2
] , 𝜆 = 2.

(36)

Stage 2. Consider

𝐺 (1) = 1 > 0, 𝐻 (1) = (2, 0) ,

𝑃 (1) = [
1 2

2 4
] , 𝐾 (1) = (−2, 0) .

(37)

Stage 1. Consider

𝐺 (0) = 1 > 0, 𝐻 (0) = (2, −1) ,

𝐾 (0) = (−2, 1) , 𝑃 (0) = [
5 −3

−3 0
] .

(38)

The optimal cost value of Problem 1 is

𝑉 (𝑥
0
) = 𝐸 [𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆] = −146. (39)

We are able to test the regular condition of (𝐾∗(𝑡), 𝑋∗(𝑡))𝑇 as
follows. In Problem 6,

ℎ
(𝑡+1) (𝑋 (𝑡) , 𝐾 (𝑡)) = 𝐴 (𝑡)𝑋 (𝑡) 𝐴(𝑡)

𝑇

+ 𝐴 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐵(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐴(𝑡)
𝑇

+ 𝐵 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐵(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐶 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐷(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡) 𝐶(𝑡)
𝑇

+ 𝐷 (𝑡)𝐾 (𝑡)𝑋 (𝑡)𝐾(𝑡)
𝑇
𝐷(𝑡)
𝑇

− 𝑋 (𝑡 + 1) , 𝑡 = 0, 1,

(40)
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which is linear about 𝑋(𝑡) and quadratic about 𝐾(𝑡), while
ℎ(𝑋(𝑇)) = tr[𝑋(𝑇)] − 𝑐 is linear about 𝑋(𝑇). By sim-
ple calculations, ∇ℎ

1
(𝐾
∗
(0), 𝑋

∗
(0)), ∇ℎ

2
(𝐾
∗
(1), 𝑋

∗
(1)), and

∇ℎ(𝑋
∗
(𝑇)) are all nonzero vectors and hence are linearly

independent.

4. Well-Posedness

In this section, we first establish the link between the well-
posedness of Problem 1 and the feasibility of some LMIs
and then prove that the solvability of GDRE (10) is not
only necessary but also sufficient to the well-posedness of
Problem 1.Moreover, the well-posedness and the attainability
of Problem 1, the feasibility of some LMIs, and the solvability
of GDRE (10) are equivalent to each other.

Theorem 12. Problem 1 is well-posed if there exist symmetric
matrices 𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 ∈ 𝑅

1 solving the
following LMIs:

𝑀
𝑡

:= [

𝐴(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴(𝑡) − 𝑃 (𝑡) + 𝐶(𝑡)

𝑇
𝑃 (𝑡 + 1)𝐶(𝑡) + 𝑄(𝑡) 𝐻(𝑡)

𝑇

𝐻(𝑡) 𝐺(𝑡) ]

≥ 0,

(41)

𝑃 (𝑇) ≤ 𝑄 (𝑇) + 𝜆𝐼, (42)

where

𝐻(𝑡) = 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡) ,

𝐺 (𝑡) = 𝑅 (𝑡) + 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡) .

(43)

Proof. Note that

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)]

+ 𝑥(𝑇)
𝑇
𝑄 (𝑇) 𝑥 (𝑇)}

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)

+ 𝑥(𝑡 + 1)
𝑇
𝑃 (𝑡 + 1) 𝑥 (𝑡 + 1)

− 𝑥(𝑡)
𝑇
𝑃 (𝑡) 𝑥 (𝑡)]

+𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[
𝑥 (𝑡)

𝑢 (𝑡)
]

𝑇

𝑀
𝑡
[
𝑥 (𝑡)

𝑢 (𝑡)
]

+𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} .

(44)

By (41), it is easy to deduce that the cost functional is bounded
from below by

𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
}

≥ 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆.

(45)

Hence, Problem 1 is well-posed.

Remark 13. Theorem 12 tells us that any symmetric matrices
𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 ∈ 𝑅

1 satisfying LMIs
(41)-(42) provide a lower bound

𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆 (46)

for the cost function. In what follows, we will show that this
lower bound is an exact optimal cost value if 𝑃(𝑡) and 𝜆 ∈ 𝑅

1

solve GDRE (10).
We have shown that if the LMIs (41)-(42) are satisfied,

then the constrained LQ Problem 1 is well-posed. Below, we
further show some other equivalent conditions.

Lemma 14 (extended Schur’s lemma [25]). Let the matrices
𝑀 = 𝑀

𝑇, 𝐻, 𝐺 = 𝐺
𝑇 be given with appropriate sizes. Then,

the following three conditions are equivalent:

(1) 𝑀 − 𝐻𝐺
†
𝐻
𝑇
≥ 0, 𝐺 ≥ 0, 𝐻 (𝐼 − 𝐺𝐺

†
) = 0.

(2) [
𝑀 𝐻

𝐻
𝑇

𝐺
] ≥ 0.

(3) [
𝐺 𝐻
𝑇

𝐻 𝑀
] ≥ 0.

(47)

Theorem 15. Problem 1 is well-posed if and only if there exist
symmetric matrices 𝑃(𝑡), 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 ∈ 𝑅

1

satisfying GDRE (10). Furthermore, the optimal cost is

𝑉 (𝑥
0
) = 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝐸 {𝑥(𝑇)

𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆.

(48)

A key to prove Theorem 15 is the necessity part, where the
stochastic optimization principle is used.
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Proof. Necessity. For 𝑡
0
≤ 𝑙 ≤ 𝑇 − 1, define

𝑉
𝑙
[𝑥 (𝑙)]

= inf
𝑢(𝑙),...,𝑢(𝑇−1)

𝐸{

𝑇−1

∑

𝑡=𝑙

[𝑥(𝑡)
𝑇
𝑄 (𝑡) 𝑥 (𝑡) + 𝑢(𝑡)

𝑇
𝑅 (𝑡) 𝑢 (𝑡)]

+𝑥(𝑇)
𝑇
𝑄 (𝑇) 𝑥 (𝑇)} .

(49)

By the stochastic optimization principle, when 𝑉
𝑙1[𝑥(𝑙
1
)] is

finite, then so is 𝑉𝑙2[𝑥(𝑙
2
)] for any 𝑙

1
≤ 𝑙
2
. Since Problem 1 is

assumed to be well-posed at 𝑡
0
, 𝑉𝑙[𝑥(𝑙)] is finite at any stage

0 ≤ 𝑙 ≤ 𝑇 − 1. Now let us start with 𝑙 = 𝑇 − 1, and let 𝑃(𝑇) =

𝑄(𝑇) − 𝜆𝐼, and we have

𝑉
𝑇−1

[𝑥 (𝑇 − 1)] − 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= inf
𝑢(𝑇−1)

{𝐸 [𝑥(𝑇 − 1)
𝑇
𝑄 (𝑇 − 1) 𝑥 (𝑇 − 1)

+ 𝑢(𝑇 − 1)
𝑇
𝑅 (𝑇 − 1) 𝑢 (𝑇 − 1)]}

+ 𝐸 [𝑥(𝑇)
𝑇
𝑃 (𝑇) 𝑥 (𝑇)]

= inf
𝑢(𝑇−1)

𝐸 {𝑥(𝑇 − 1)
𝑇

× [𝑄 (𝑇 − 1) + 𝐴(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐴 (𝑇 − 1)

+𝐶(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐶 (𝑇 − 1)] 𝑥 (𝑇 − 1)

× 2𝑥(𝑇 − 1)
𝑇

× [𝐵(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐴 (𝑇 − 1)

+𝐷(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐶 (𝑇 − 1)] 𝑢 (𝑇 − 1)

+ 𝑢(𝑇 − 1)
𝑇

× [𝑅 (𝑇 − 1) + 𝐵(𝑇 − 1)
𝑇
𝑃 (𝑇) 𝐵 (𝑇 − 1)

+𝐷(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐷 (𝑇 − 1)] 𝑢 (𝑇 − 1)} .

(50)

Since 𝑉
𝑇−1

[𝑥(𝑇 − 1)] is finite, using Lemma 4.3 of [23], there
exists a symmetric matrix 𝑃(𝑇 − 1) such that

𝑉
𝑇−1

[𝑥 (𝑇 − 1)] − 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝐸 [𝑥(𝑇 − 1)
𝑇
𝑃 (𝑇 − 1) 𝑥 (𝑇 − 1)] ,

𝑃 (𝑇 − 1) = 𝐴(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐴 (𝑇 − 1)

+ 𝐶(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐶 (𝑇 − 1)

+ 𝑄 (𝑇 − 1) − 𝐻(𝑇 − 1)
𝑇

× 𝐺(𝑇 − 1)
†
𝐻(𝑇 − 1) ,

𝐻 (𝑇 − 1) = 𝐵(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐴 (𝑇 − 1)

+ 𝐷(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐶 (𝑇 − 1) ,

𝐺 (𝑇 − 1) = 𝑅 (𝑇 − 1) + 𝐵(𝑇 − 1)
𝑇
𝑃 (𝑇) 𝐵 (𝑇 − 1)

+ 𝐷(𝑇 − 1)
𝑇
𝑃 (𝑇)𝐷 (𝑇 − 1) ≥ 0.

(51)

The obtained solution sequence of symmetric matrices 𝑃(𝑡),
𝑡 = 𝑙, 𝑙 + 1, . . . , 𝑇 − 1, and 𝜆 ∈ 𝑅

1 to GDRE (10) satisfy

𝑉
𝑙
[𝑥 (𝑙)] − 𝐸 {𝑥(𝑇)

𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝐸 [𝑥(𝑙)
𝑇
𝑃 (𝑙) 𝑥 (𝑙)] .

(52)

Then by the stochastic optimality principle, the following
holds:

𝑉
𝑙−1

[𝑥 (𝑙 − 1)]

= inf
𝑢(𝑙−1)

𝐸 {𝑥(𝑙 − 1)
𝑇
𝑄 (𝑙 − 1) 𝑥 (𝑙 − 1)

+ 𝑢(𝑙 − 1)
𝑇
𝑅 (𝑙 − 1) 𝑢 (𝑙 − 1)

+ 𝑉
𝑙
[𝑥 (𝑙)]}

= inf
𝑢(𝑙−1)

𝐸 [𝑥(𝑙 − 1)
𝑇
𝑄 (𝑙 − 1) 𝑥 (𝑙 − 1)

+ 𝑢(𝑙 − 1)
𝑇
𝑅 (𝑙 − 1) 𝑢 (𝑙 − 1)

+𝑥(𝑙)
𝑇
𝑃 (𝑙) 𝑥 (𝑙)]

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= inf
𝑢(𝑙−1)

𝐸 {𝑥(𝑙 − 1)
𝑇

× [𝑄 (𝑙 − 1) + 𝐴(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐴 (𝑙 − 1)

+𝐶(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐶 (𝑙 − 1)] 𝑥 (𝑙 − 1)

+ 2𝑥(𝑙 − 1)
𝑇

× [𝐵(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐴 (𝑙 − 1)

+𝐷(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐶 (𝑙 − 1)] 𝑢 (𝑙 − 1)

+ 𝑢(𝑙 − 1)
𝑇

× [𝑅 (𝑙 − 1) + 𝐵(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐵 (𝑙 − 1)

+𝐷(𝑙 − 1)
𝑇
𝑃 (𝑙)𝐷 (𝑙 − 1)] 𝑢 (𝑙 − 1)} .

(53)
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Lemma 4.3 of [23] provides necessary and sufficient condi-
tions for the finiteness of 𝑉𝑙−1[𝑥(𝑙 − 1)]:

𝑃 (𝑙 − 1) = 𝐴(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐴 (𝑙 − 1) + 𝐶(𝑙 − 1)

𝑇
𝑃 (𝑙) 𝐶 (𝑙 − 1)

+ 𝑄 (𝑙 − 1) − 𝐻(𝑙 − 1)
𝑇
𝐺(𝑙 − 1)

†
𝐻(𝑙 − 1) ,

𝐻 (𝑙 − 1) = 𝐵(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐴 (𝑙 − 1)

+ 𝐷(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐶 (𝑙 − 1) ,

𝐺 (𝑙 − 1) = 𝑅 (𝑙 − 1) + 𝐵(𝑙 − 1)
𝑇
𝑃 (𝑙) 𝐵 (𝑙 − 1)

+ 𝐷(𝑙 − 1)
𝑇
𝑃 (𝑙)𝐷 (𝑙 − 1) ≥ 0,

𝐺 (𝑙 − 1) 𝐺(𝑙 − 1)
†
𝐻(𝑙 − 1) − 𝐻 (𝑙 − 1) = 0.

(54)

Moreover,

𝑉
𝑙−1

[𝑥 (𝑙 − 1)] − 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇)}

= 𝑥(𝑙)
𝑇
𝑃 (𝑙) 𝑥 (𝑙) .

(55)

The above proves the necessity part via mathematical induc-
tion.
Sufficiency.From the proof ofTheorem 8, ifGDRE (10) admits
a solution 𝑃(𝑡) and 𝜆, Problem 1 is not only well-posed, but
also attainable. The proof of this theorem is complete.

5. Other Equivalent Conditions

In this section, we present some other equivalent conditions
for Problem 1.

Theorem 16. For the constrained LQ Problem 1, the following
are equivalent:

(i) Problem 1 is well-posed.

(ii) Problem 1 is attainable.

(iii) The LMIs (41)-(42) are feasible.

(iv) The GDRE (10) is solvable.

Furthermore, when any one of the above conditions is satisfied,
Problem 1 is attainable by

𝑢 (𝑡) = [𝑅 (𝑡) + 𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1) 𝐵 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1)𝐷 (𝑡)]

†

⋅ [𝐵(𝑡)
𝑇
𝑃 (𝑡 + 1)𝐴 (𝑡) + 𝐷(𝑡)

𝑇
𝑃 (𝑡 + 1) 𝐶 (𝑡)] 𝑥 (𝑡) ,

(56)

where 𝑃(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+1, . . . , 𝑇−1}, are solutions to the GDRE

(10).

Proof. Applying Theorems 12–15, (i) ⇔ (iii) ⇔ (iv). (ii) ⇒

(iv) is shown by Theorem 8. The rest is to prove (iv) ⇒ (ii)

and (56). Let 𝑃(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, solve the GDRE

(10). In view of
𝑇−1

∑

𝑡=𝑡0

[𝑥(𝑡 + 1)
𝑇
𝑃 (𝑡 + 1) 𝑥 (𝑡 + 1) − 𝑥(𝑡)

𝑇
𝑃 (𝑡) 𝑥 (𝑡)]

= 𝐸 [𝑥(𝑇)
𝑇
𝑃 (𝑇) 𝑥 (𝑇) − 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
] ,

(57)

a completion of squares yields

𝐽 (𝑡
0
, 𝑥
0
; 𝑢 (𝑡
0
) , 𝑢 (𝑡

0
+ 1) , . . . , 𝑢 (𝑇 − 1))

= 𝐸{

𝑇−1

∑

𝑡=𝑡0

[𝑢 (𝑡) + 𝐺(𝑡)
†
𝐻(𝑡) 𝑥 (𝑡)]

𝑇

× 𝐺 (𝑡) [𝑢 (𝑡) + 𝐺(𝑡)
−1
𝐻(𝑡) 𝑥 (𝑡)] }

+ 𝐸 {𝑥(𝑇)
𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} ,

(58)

which shows

𝑉 (𝑥
0
) = 𝐸 {𝑥(𝑇)

𝑇
[𝑄 (𝑇) − 𝑃 (𝑇)] 𝑥 (𝑇) + 𝑥

𝑇

0
𝑃 (𝑡
0
) 𝑥
0
} ,

𝑢
∗
(𝑡) = −𝐺(𝑡)

†
𝐻(𝑡) 𝑥 (𝑡) , 𝑡 ∈ {𝑡

0
, 𝑡
0
+ 1, . . . , 𝑇 − 1} .

(59)

Finally, we present a general expression for the optimal
control set based on the solution to GDRE (10).

Theorem 17. Assume that the GDRE (10) admits a solution.
Then the set of all optimal controls is determined by

𝑢(𝑡)
[𝑌(𝑡),𝑍(𝑡)]

= − [𝐺(𝑡)
†
𝐻(𝑡) + 𝑌 (𝑡) − 𝐺(𝑡)

†
𝐺 (𝑡) 𝑌 (𝑡)] 𝑥 (𝑡)

+ 𝑍 (𝑡) − 𝐺(𝑡)
†
𝐺 (𝑡) 𝑍 (𝑡) ,

(60)

where 𝑌(𝑡) ∈ 𝑅
𝑚×𝑛 and 𝑍(𝑡) ∈ 𝑅

𝑚 are arbitrary random
variables defined on the probability space (Ω,F,P).Moreover,
the optimal cost value is uniquely given by

𝑉 (𝑥
0
) = 𝑥
𝑇

0
𝑃 (𝑡
0
) 𝑥
0
− 𝑐𝜆, (61)

where 𝑃(𝑡), 𝑡 ∈ {𝑡
0
, 𝑡
0
+ 1, . . . , 𝑇 − 1}, and 𝜆 are the solution to

the GDRE (10).

Proof. This theorem can be proved by repeating the same
procedure as in Theorem 5.1 of [23].

6. Conclusion

In this paper, we have investigated a class of indefinite
stochastic LQ control problems with second moment con-
straints on the terminal state. By the matrix Lagrange
theorem, we have established a new GDRE (10) associated
with the constrained optimization Problem 1. In addition, by
introducing LMIs (41)-(42), we show that the well-posedness
and the attainability of Problem 1, the feasibility of the LMIs
(41)-(42), and the solvability of GDRE (10) are equivalent to
each other.
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