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Multiplicative relations are one of most powerful techniques to express the preferences over alternatives (or criteria). In this paper,
we propose a wide range of hesitant multiplicative fuzzy power aggregation geometric operators on multiattribute group decision
making (MAGDM) problems for hesitant multiplicative information. In this paper, we first develop some compatibility measures
for hesitant multiplicative fuzzy numbers, based on which the corresponding support measures can be obtained. Then we propose
several aggregation techniques, and investigate their properties. In the end, we develop two approaches for multiple attribute group
decision making with hesitant multiplicative fuzzy information and illustrate a real world example to show the behavior of the
proposed operators.

1. Introduction

In decision making, uncertainty and hesitancy are usually
unavoidable problems. Preference relations are the most
common techniques to express the preference information
about a set of alternatives or criteria and can be roughly classi-
fied into two types: the fuzzy preference relations (Orlovsky)
[1] (also called the reciprocal preference relations [2]) and the
multiplicative preference relations (Saaty’s 1–9 scale) [3]. The
former is based on the 0.1–0.9 scale, which is a symmetrical
distribution around 0.5, while the latter is based on Saaty’s
1–9 scale which is a nonsymmetrical distribution around
1. With multiplicative preference representation, an expert’s
preferences on 𝑋 are described by a positive preference
relation, 𝐴𝑘 ⊂ 𝑋 × 𝑋, 𝐴𝑘 = [𝑎𝑘

𝑖𝑗
], where 𝑎𝑘

𝑖𝑗
indicates a ratio

of preference intensity for alternative 𝑥𝑖 to that of 𝑥𝑗; that
is, it is interpreted as 𝑥𝑖 is 𝑎

𝑘

𝑖𝑗
times as good as 𝑥𝑗. Saaty [3]

suggests measuring 𝑎𝑘
𝑖𝑗
using a ratio scale, and precisely the

1–9 scale: 𝑎𝑘
𝑖𝑗
= 1 indicates indifference between 𝑥𝑖 and 𝑥𝑗,

𝑎
𝑘

𝑖𝑗
= 9 indicates that 𝑥𝑖 is absolutely preferred to 𝑥𝑗, and

𝑎
𝑘

𝑖𝑗
∈ 2, 3, . . . , 8 indicates intermediate evaluations.

In real life, the information is usually distributed asym-
metrically; the well-known law of diminishing marginal
utility is the common phenomenon in economics, cluster
problems in data mining [4]. It is known that the fuzzy
rule-based control system is always established by designers
with trial and error and based on their experience or some
experiments [5]. We often encounter situations in which
experts hesitate and irresolute between several values when
providing the degree that an alternative is prior to another,
owing to a lack of expertise or insufficient knowledge. The
evaluation of the alternative is represented by several possible
values rather than by a margin of error or a possibility
distribution. For example, suppose that an organization that
contains many decision makers is authorized to give a
ranking a pair of alternatives (alternatives 𝐴 and 𝐵). Some of
the decision makers provide an evaluation of 1 (𝐴 is equally
preferred to 𝐵), some provide an evaluation of 5 or 7 (𝐴 is
strongly preferred to 𝐵, but they are not sure the degree that
the alternative 𝐴 is preferred to 𝐵), and the others provide
an evaluation of 7 (𝐴 is very strongly preferred to 𝐵); the
three groups of decisionmakers cannot persuade one another
to change their opinions. In such cases, the evaluation
cannot be represented by interval numbers, intuitionistic
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fuzzy numbers, interval-valued intuitionistic fuzzy numbers,
linguistic variables, uncertain linguistic variables, or 2-tuples
because the evaluation is not a convex combination or the
interval between 1 and 7; instead, it consists simply of three
possible values. Based on the above analysis, we can find that
it is better to use the asymmetrical distributed scale to express
the information in the hesitant fuzzy preference relation.

The objective inmultiple attribute group decisionmaking
(MAGDM) problems is to find the most desirable alterna-
tive(s) among a set of feasible alternatives, based on the pref-
erences provided by a group of experts [6]. The fundamental
prerequisite of decisionmaking is how to aggregate individual
experts’ preference information on alternatives. Information
aggregation is a process that combines individual experts’
preferences into an overall one by using a proper aggregation
technique [7]. Aggregation operators are the most widely
used tool for combining individual preference information
into overall preference information and deriving collective
preference values for each alternative. The investigation on
information aggregation has received surprisingly extensive
attention from practitioners and researchers due to its prac-
tical and academic significance. Yager proposed the ordered
weighted averaging (OWA) operator [8] and developed the
generalized OWA (GOWA) operator [9]. Li [10–12] proposed
the generalized OWA operator with IFSs. Xu and Yager [13],
Xu [14], and Wei [15] developed some geometric aggregation
operators based on IFSs, such as the IF weighted geometric
operator, the IF ordered weighted geometric operator, and
the IF hybrid geometric (IFHG) operator. Xu and Wang [16]
developed the induced generalized aggregation operators for
IFSs. Wei and Zhao [17] researched some induced correlated
aggregating operators with IF information. Su et al. [18]
proposed the induced generalized intuitionistic fuzzy OWA
operator. Xu [19] proposed some operational laws for IFNs
based on algebraic 𝑡-conorm and 𝑡-norm and developed the
intuitionistic fuzzy weighed averaging operator, the intu-
itionistic fuzzy ordered weighted averaging based on which
Xu and Yager [9] gave some other aggregation operators
combining the geometricmean. Xia andXu [20] introduced a
series of aggregation operators for hesitant fuzzy information
and discussed the relationships among them. Then, Xu et
al. [21] developed several series of aggregation operators for
hesitant fuzzy information with the aid of quasi-arithmetic
means. Qian et al. [22] extended HFSs by IFSs and referred to
them as generalized HFSs (GHFSs) and redefined some basic
operations of GHFSs.

In contrast with above aggregation, Yager [23] developed
a power average (PA) operator and a power ordered weighted
average (POWA) operator to provide aggregation tools for
which the weight vectors depend on the input arguments
and that allow the values being aggregated to support and
reinforce one another. Motivated by Yager, Xu and Yager
[24] proposed a power geometric (PG) operator and a
power ordered weighted (POWG) operator. However, the
arguments of these power aggregation operators are exact
numerical values. In practice, we often encounter situations
in which the input arguments cannot be expressed as exact
numerical values. Zhou and Chen [25] presented the gen-
eralized power average (GPA) operator and the generalized

power ordered weighted average (GPOWA) operator. Xu
[26] and Zhou et al. [7] extended the PA, POWA, PG,
and POWG operators to intuitionistic fuzzy environments
and developed some intuitionistic fuzzy power aggregation
operators. Zhang [27] developed a series of generalized
intuitionistic fuzzy power geometric operators to aggregate
input arguments that are intuitionistic fuzzy numbers and
studied some desired properties of these aggregation opera-
tors and investigate the relationships among these operators.
Xu and Cai [28] proposed the uncertain power average
operators for aggregating interval fuzzy preference relations.
Xu andWang [29] developed 2-tuple linguistic power average
(2TLPA) operator, 2-tuple linguistic weighted PA operator
(2TLWPA), and 2TLPOWA operator. Wan [30] proposed
PA operators of trapezoidal intuitionistic fuzzy numbers
(TrIFNs) involving the power average operator of TrIFNs,
the weighted power average operator of TrIFNs, the power
ordered weighted average operator of TrIFNs, and the power
hybrid average operator of TrIFNs. Zhang [31] developed a
wide range of hesitant fuzzy power aggregation operators
for hesitant fuzzy information, such as the hesitant fuzzy
power average (HFPA) operators, the hesitant fuzzy power
geometric (HFPG) operators, the generalized hesitant fuzzy
power average (GHFPA) operators, the generalized hesitant
fuzzy power geometric (GHFPG) operators, the weighted
generalized hesitant fuzzy power average (WGHFPA) opera-
tors, theweighted generalized hesitant fuzzy power geometric
(WGHFPG) operators, the hesitant fuzzy power ordered
weighted average (HFPOWA) operators, the hesitant fuzzy
power ordered weighted geometric (HFPOWG) operators,
the generalized hesitant fuzzy power ordered weighted aver-
age (GHFPOWA) operators, and the generalized hesitant
fuzzy power orderedweighted geometric (GHFPOWG)oper-
ators.

Up to now, a lot of work has been done about other
preference relations, but little has been done about the
hesitant multiplicative preference relations. Now, Xia and
Xu [32] define the concept of hesitant fuzzy preference
relation and introduce the hesitant multiplicative set. It is,
therefore, necessary to extend the existing power aggregation
operators to hesitant multiplicative fuzzy environments and
to develop new power aggregation operators for aggregating
hesitant multiplicative fuzzy information. The aim of this
paper is to extend the power aggregation operators to hes-
itant multiplicative fuzzy environments. In this paper, we
first review hesitant multiplicative fuzzy sets and hesitant
multiplicative fuzzy numbers and then give some hesitant
fuzzy multiplicative operations, such as union, intersection,
and some arithmetic operation on their elements. We also
introduce compatibility measures for HMFNs, which the
corresponding supportmeasures can be obtained.We further
propose some hesitant multiplicative fuzzy power geometric
aggregation operators and obtain some important conclu-
sions.

To do this, the remainder of the paper is organized as
follows. Section 2 presents some basic concepts related to
HMFSs, HMFNs, and PG operator. In Section 3, we first give
the compatibility measures for HMFNs. Then, we present
a variety of hesitant multiplicative fuzzy power geometric
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operators, investigate some of their basic properties, and
discuss the relationships between the various operators. In
Section 4, we develop two approaches to multiple attribute
group decision making in uncertain environments based
on the proposed operators and in Section 5 we use a real
world example to illustrate our algorithm. Finally, Section 6
concludes the paper with some remarks.

2. Preliminaries

2.1. Hesitant Fuzzy Sets and Fuzzy Multisets. Sometimes, it
is difficult to determine the membership of an element into
a fixed set and which may be caused by a doubt among a
set of different values. For the sake of a better description
of this situation, Torra introduced the concept of HFSs as a
generalization of fuzzy sets [33].

Definition 1 (see [33]). Let 𝑋 be a fixed set, then we define
hesitant fuzzy set (HFS) on 𝑋 is in terms of a function ℎ
applied to 𝑋 returns a subset of [0, 1], and ℎ(𝑥) a hesitant
fuzzy element HFE.

Additionally, Torra considered the relationships between
HFSs and fuzzy multisets. He proved that a HFS can be
represented by a FMS and also proved that the union and the
intersection of two corresponding FMSs do not correspond
to the union and the intersection of two HFSs.

Multisets [33–36] are a generalization of crisp sets where
multiple occurrences of an element are permitted and cor-
respond to the case where the membership degrees to the
multisets are not Boolean but fuzzy. Given 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑},
𝑀 = {𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑏, 𝑐, 𝑐} is a multiset. The function count is
defined over the elements of the reference set. It corresponds
to the number of occurrences of the element; for example,
count𝑀(𝑎) = 3 and count𝑀(𝑐) = 2. A fuzzy multiset is a
multiset in which all the elements have a membership value.
Formally, a fuzzymultiset on𝑋 can be seen as a crispmultiset
on𝑋 × [0, 1]. For example, given the𝑋 above,
𝑀 = {(𝑎, 0.3), (𝑎, 0.3), (𝑎, 0.4), (𝑏, 0.7), (𝑏, 0.8), (𝑏,0.9), (𝑎,

0.4), (𝑎, 0.5)} is a fuzzy multiset. Fuzzy multisets have been
studied by Yager and Miyamoto. They have defined several
operations. Yager has defined several basic operations [36].

Definition 2 (see [33, 36]). Let 𝐴 and 𝐵 be two multisets and
𝑎 the element in the reference set, then

(1) addition, ⊕: count𝐴⊕𝐵(𝑎) = count𝐴(𝑎) + count𝐵(𝑏);
(2) union, ∪: count𝐴∪𝐵(𝑎) = max(count𝐴(𝑎), count𝐵(𝑏));
(3) intersection, ∩: count𝐴∩𝐵(𝑎) = min(count𝐴(𝑎),

count𝐵(𝑏)).

However, this definition comes into conflict with FSs.
Miyamoto gave the corresponding solutions. His alternative
definitions for fuzzy multisets rely on these membership
sequences. Union and intersection are defined, respectively,
as the pointwise maximum and minimum of the sequence;
for example, given two sequences 𝑠1 = ⟨𝑥1, . . . , 𝑥𝑛⟩ and 𝑠2 =
⟨𝑦1, . . . , 𝑦𝑛⟩, 𝑠1 ∨ 𝑠2 = ⟨𝑥1 ∨ 𝑦1, . . . , 𝑥𝑛 ∨ 𝑦𝑛⟩. To operate
correctly, the shorter sequence is extended by adding zeroes

until the number of elements is equal in both sequences.This
definition satisfies [𝐴 ∪ 𝐵]𝛼 = [𝐴]𝛼 ∪ [𝐵]𝛼 for all 𝛼, where
[𝐴]𝛼 is the 𝛼-cut of 𝐴.

Definition 3 (see [33]). Given a HFS 𝐴 on 𝑋, and ℎ(𝑥) for
all 𝑥 in 𝑋, then the HFS can be defined as a FMS: FMS𝐴 =
⨁

𝑥∈𝑋
⨁

𝛾∈ℎ(𝑥)
{(𝑥, 𝛾)}.

2.2. Hesitant Multiplicative Sets and Multiplicative Multisets

Definition 4 (see [32]). Let 𝑋 be a fixed set, then a hesitant
multiplicative set (HMS)𝐷 on𝑋 is described as

𝐷 = {⟨𝑥, ℎ (𝑥)⟩ | 𝑥 ∈ 𝑋} (1)

in which ℎ(𝑥) is a set of some values in [1/9, 9], denoting the
possible membership degrees of the element 𝑥 ∈ 𝑋 to the set
𝐷, where 𝜌 ∈ ℎ(𝑥), 1/9 ≤ 𝜌 ≤ 9. For convenience, ℎ(𝑥) is
called hesitant multiplicative numbers (HMNs), and𝑀 is the
set of all HMNs.

Definition 5 (see [32]). Given a HMN ℎ, its lower and upper
bounds are defined as below:

lowerbound: 𝜌− ∈ ℎ−(𝑥) = min{𝜌 | 𝜌 ∈ ℎ(𝑥)};
upperbound: 𝜌+ ∈ ℎ+(𝑥) = max{𝜌 | 𝜌 ∈ ℎ(𝑥)}.

Definition 6. Given aHMS ℎ,𝐴env(ℎ) is called the envelope of
ℎ which is represented by (ℎ−, 1/ℎ+), with ℎ− and 1/ℎ+ being
its lower and upper bounds, respectively.

Obviously, the pair of functions ℎ− and 1/ℎ+ define an
IMS {⟨𝑥, 𝜌𝐴(ℎ), 𝛾𝐴(ℎ)⟩}, where 𝜌𝐴(ℎ) = ℎ

−, 𝛾𝐴(ℎ) = ℎ
+.

Definition 7 (see [32]). Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be 𝑛
alternatives, then a hesitant multiplicative preference relation
is expressed as 𝐴 = (ℎ𝑖𝑗)𝑛×𝑛, where ℎ𝑖𝑗 = {𝜌ℎ𝑖𝑗} is a HMN, and
𝜌ℎ𝑖𝑗

indicates the intensity degree to which the alternative 𝑥𝑖
is preferred to 𝑥𝑗, which should satisfy the condition that

𝜌ℎ𝑖𝑗
= 𝜌ℎ𝑗𝑖

, 𝜌ℎ𝑖𝑖
= 1,

1

9
≤ 𝜌ℎ𝑖𝑗

≤ 9. (2)

It is noted that the fundamental element of a hesitant
multiplicative preference relation is the HMFN. To compare
two HMFNs, Xia and Xu [30] define a score value as follows.

Definition 8 (see [32]). Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2) be any two
HMNs, the score function of ℎ is defined as

𝑠 (ℎ) =
1

|ℎ|
(∑

𝜌∈ℎ

𝜌) , (3)

where |ℎ| is the cardinalities of ℎ, then

(i) if 𝑠(ℎ1) > 𝑠(ℎ2), then ℎ1 is superior to ℎ2, denoted by
ℎ1 ≻ ℎ2;

(ii) if 𝑠(ℎ1) = 𝑠(ℎ2), then then ℎ1 is equivalent to ℎ2,
denoted by ℎ1 ∼ ℎ2.

In this paper, we give another definition of the score value.
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Definition 9. Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2) be any two HMFNs, a
geometric score function of ℎ is defined as

𝑠
𝑔
(ℎ) = (∏

𝜌∈ℎ

𝜌)

1/|ℎ|

, (4)

where |ℎ| is the cardinalities of ℎ, then

(i) if 𝑠(ℎ1) > 𝑠(ℎ2), then ℎ1 is superior to ℎ2, denoted by
ℎ1 ≻ ℎ2;

(ii) if 𝑠(ℎ1) = 𝑠(ℎ2), then then ℎ1 is equivalent to ℎ2,
denoted by ℎ1 ∼ ℎ2.

Example 10. Given three HMNs: ℎ1 = {1/3, 1/2}, ℎ2 = {1/2,
6}, and ℎ3 = {1, 4}, then

𝑠 (ℎ1) = 0.4167, 𝑠 (ℎ2) = 3.25, 𝑠 (ℎ3) = 2,

𝑠
𝑔
(ℎ1) = 0.4082, 𝑠

𝑔
(ℎ2) = 1.7321, 𝑠

𝑔
(ℎ3) = 2.

(5)

If we use Xia’ score function, ℎ2 ≻ ℎ3 ≻ ℎ1, and use our
geometric score function, ℎ3 ≻ ℎ2 ≻ ℎ1, then we can get the
following operational laws for HMFNs.

Definition 11 (see [32]). Given three HMSs represented by
their membership functions ℎ, ℎ1, and ℎ2, we define the
complement represented ℎ𝑐, the union represented by ℎ1∪ℎ2,
and the intersection represented by ℎ1 ∩ ℎ2 and they are also
HMSs:

(1) complement: ℎ𝑐 = ⋃
𝜌∈ℎ
{1/𝜌};

(2) union: ℎ1 ∪ ℎ2 = ⋃𝜌1∈ℎ1 ,𝜌2∈ℎ2
{𝜌1 ∨ 𝜌2};

(3) intersection: ℎ1⋂ℎ2 = ∩𝜌1∈ℎ1 ,𝜌2∈ℎ2{𝜌1 ∧ 𝜌2}.

Definition 12 (see [32]). Let ℎ1 and ℎ2 be two HMNs and 𝜆 a
positive real number, then:

(1) ℎ𝜆 = ⋃
𝜌∈ℎ
{𝜌

𝜆
/((1 + 𝜌)

𝜆
− 𝜌

𝜆
)};

(2) 𝜆ℎ = ⋃
𝜌∈ℎ
{(1 + 𝛾)

𝜆
− 1};

(3) ℎ1 ⊕ ℎ2 = ⋃𝜌1∈ℎ1 ,𝜌2∈ℎ2
{(𝜌1 + 1)(𝜌2 + 1) − 1};

(4) ℎ1 ⊗ ℎ2 = ⋃𝜌1∈ℎ1 ,𝜌2∈ℎ2
{𝜌1𝜌2/(𝜌1 + 𝜌2 − 1)}.

Theorem 13 (see [32]). Given three HMFNs, ℎ, ℎ1, and ℎ2,
then we have

(1) ℎ𝑐
1
∪ ℎ

𝑐

2
= (ℎ1 ∩ ℎ2)

𝑐;
(2) ℎ𝑐

1
∩ ℎ

𝑐

2
= (ℎ1 ∪ ℎ2)

𝑐;
(3) (ℎ𝑐)𝑛 = (𝑛ℎ)𝑐;
(4) 𝑛(ℎ𝑐) = (ℎ𝑛)𝑐;
(5) ℎ𝑐

1
⊕ ℎ

𝑐

2
= (ℎ1 ⊗ ℎ2)

𝑐;
(6) ℎ𝑐

1
⊗ ℎ

𝑐

2
= (ℎ1 ⊕ ℎ2)

𝑐.

Definition 14. Let 𝑋 be a fixed set, then a multiplicative
multisets set (MMS)𝐷𝑀 on𝑋 is described as

𝐷
𝑀
= {⟨𝑥, ℎ

𝑀
(𝑥)⟩ | 𝑥 ∈ 𝑋} . (6)

For any 𝑥 ∈ 𝑋, the set ℎ𝑀(𝑥) is given by ℎ𝑀(𝑥) = {𝜌(1)
ℎ𝑀(𝑥)
,

𝜌
(2)

ℎ𝑀(𝑥)
, . . . , 𝜌

(|ℎ
𝑀
(𝑥)|)

ℎ𝑀(𝑥)
}, where |ℎ𝑀(𝑥)| denotes the cardinality of

ℎ
𝑀
(𝑥) and 𝜌(𝑖)

ℎ𝑀(𝑥)
∈ [1/9, 9] for all 𝑖 ∈ {1, 2, . . . , |ℎ𝑀(𝑥)|}.

We also define 𝜌+
ℎ𝑀(𝑥)

= max{𝜌 | 𝜌 ∈ ℎ
𝑀
(𝑥)} =

max𝑖=1,2,...,|ℎ𝑀(𝑥)|{𝜌
(𝑖)

ℎ𝑀(𝑥)
}.

Definition 15. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be 𝑛 alternatives, then
a hesitant multiplicative preference relation is expressed as
𝐴 = (ℎ

𝑀

𝑖𝑗
)
𝑛×𝑛

, where ℎ𝑀
𝑖𝑗
= {𝜌

(1)

ℎ𝑀
𝑖𝑗

, . . . , 𝜌
(|ℎ
𝑀

𝑖𝑗
|)

ℎ𝑀
𝑖𝑗

} is a MMN, and

𝜌
(𝑘)

ℎ𝑀
𝑖𝑗

expresses for any 𝑘 ∈ {1, . . . , |ℎ𝑀
𝑖𝑗
|} a degree of intensity to

which alternative 𝑥𝑖 is preferred to 𝑥𝑗. Furthermore, it should
hold that |ℎ𝑀

𝑖𝑗
| = |ℎ

𝑀

𝑖𝑗
| and that each element of ℎ𝑀

𝑗𝑖
is the

inverse of one element of ℎ𝑖𝑗, that is, ℎ
𝑀

𝑖𝑗
= ∪𝜌∈ℎ𝑀

𝑖𝑗

{1/𝜌}, and
𝜌ℎ𝑀
𝑖𝑗

indicates the intensity degree to which the alternative 𝑥𝑖
is preferred to 𝑥𝑗.

If one wants to allow for repetition of a same value in the
set, he/she can use the concept of multiplicative multisets set.

2.3. Power Aggregation Operators. Yager [23] introduced a
nonlinear weighted average aggregation tool, which is called
power average operator as follows.

Definition 16 (see [21]). The power average (PA) operator is
the mapping PA: 𝑅𝑛 → 𝑅 defined by the following formula:

PA (𝑎𝑖 | 𝑖 = 1, 2, . . . , 𝑛) =
∑
𝑛

𝑖=1
(1 + 𝑇 (𝑎𝑖)) 𝑎𝑖

∑
𝑛

𝑖=1
(1 + 𝑇 (𝑎𝑖))

, (7)

where

𝑇 (𝑎𝑖) =

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

Sup (𝑎𝑖, 𝑎𝑗) (8)

and Sup(𝑎𝑖, 𝑎𝑗) are the support for 𝑎𝑖 from 𝑎𝑗. The support
satisfies the following three properties:

(1) Sup(𝑎𝑖, 𝑎𝑗) ∈ [0, 1];

(2) Sup(𝑎𝑖, 𝑎𝑗) = Sup(𝑎𝑗, 𝑎𝑖);

(3) Sup(𝑎𝑖, 𝑎𝑗) ≥ Sup(𝑎𝑠, 𝑎𝑡) if |𝑎𝑖 − 𝑎𝑗| < |𝑎𝑠 − 𝑎𝑡|.

Based on the OWA operator and the PA operator, Yager
defined a power ordered weighted average (POWA) operator
as follows.

Definition 17 (see [23]). The power ordered weighted average
(POWA) operator is themapping PA:𝑅𝑛 → 𝑅 defined by the
following formula:

POWA (𝑎𝑖 | 𝑖 = 1, 2, . . . , 𝑛) =
𝑛

∑

𝑖=1

𝑢𝑖𝑎𝑖, (9)
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where

𝑢𝑖 = 𝑔(
𝑅𝑖

𝑇𝑉
) − 𝑔(

𝑅𝑖−1

𝑇𝑉
) , 𝑅𝑖 =

𝑖

∑

𝑗=1

𝑉index(𝑗),

𝑇𝑉 =

𝑛

∑

𝑖=1

𝑉index(𝑖),

𝑉index(𝑖) = 1 + 𝑇 (𝑎index(𝑖)) ,

𝑇 (𝑎index(𝑖)) =
𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

Sup (𝑎index(𝑖), 𝑎index(𝑗)) .

(10)

In the above equations, 𝑎index(𝑖) is the 𝑖th largest argu-
ment of all the arguments, 𝑇(𝑎index(𝑖)) denotes the support
of the 𝑖th largest argument by all the other arguments,
Sup(𝑎index(𝑖), 𝑎index(𝑗)) indicates the support for 𝑎index(𝑖) from
𝑎index(𝑗), and 𝑔 : [0, 1] → [0, 1] is a basic unit-interval
monotonic (BUM) function that has the following properties:
(1) 𝑔(0) = 0, (2) 𝑔(1) = 1, (3) if 𝑥 > 𝑦, then 𝑔(𝑥) ≥ 𝑔(𝑦).

Motivated by Yager [23] and based on the PA operator
and the geometricmean, Xu andYager [24] defined the power
geometric (PG) operator.

Definition 18 (see [24]). The power geometric (PG) operator
is the mapping PG: 𝑅𝑛 → 𝑅 defined by the following
formula:

PG (𝑎𝑖 | 𝑖 = 1, 2, . . . , 𝑛) =
𝑛

∏

𝑖=1

𝑎𝑖
(1+𝑇(𝑎𝑖))/∑

𝑛

𝑖=1
(1+𝑇(𝑎𝑖)), (11)

where 𝑇(𝑎𝑖) satisfies condition (12).

Definition 19 (see [24]). Thepower orderedweighted geomet-
ric (POWG) operator is the mapping PG: 𝑅𝑛 → 𝑅 defined
by the following formula:

POWG (𝑎𝑖 | 𝑖 = 1, 2, . . . , 𝑛) =
𝑛

∏

𝑖=1

𝑎
𝑢𝑖

index(𝑖)
, (12)

where 𝑢𝑖 satisfies condition (10).

3. Hesitant Multiplicative Fuzzy Power
Geometric Operators

Fuzzy multisets are another generalization of fuzzy sets.
They are based on multisets (elements can be repeated in a
multiset). In fuzzy multisets, the membership can be partial
(instead of Boolean as for standard multisets).

In this section, we extend the power aggregation opera-
tors to accommodate hesitant multiplicative fuzzy informa-
tion as input. As we know, the support measure indicates the
degree of similarity between two elements.We first introduce
the concept of compatibility of HMFNs.

Compatibility is an efficient and important tool which
can be used to measure the consensus of opinions within a
group of decision makers [37]. It is noted that the number

of values in different HMFNs may be different; let two
HMFNs, ℎ1 and ℎ2, in most cases, |ℎ1| ̸= |ℎ2|. Wang et al. [38]
extended the shorter one by adding different values to get
the correlationmeasures in dual hesitant fuzzy environments
[39]. We should extend the shorter one until both of them
have the same length when we compare them. To extend the
shorter one, the best way is to add the same value several
times in it. The selection of this value mainly depends on
the decision makers’ risk preferences. Optimists anticipate
desirable outcomes and may add the maximum value, while
pessimists expect unfavorable outcomes and may add the
minimum value. For example, let ℎ1 = {4, 3, 5/2} and ℎ2 =
{5, 3}. To operate correctly, the optimist may extend ℎ2 =
{5, 3} to ℎ2 = {5, 5, 3} and the pessimist may extend it as
ℎ2 = {5, 3, 3}. The same situation can also be found in many
existing [40–42]. To operate correctly, we suppose that two
HMFNs, ℎ1 and ℎ2, have the same length. We can also find
that the values in a HMFN are out of order; we can arrange
them in any order. For a HMFN ℎ, let 𝜎 : (1, 2, 3, . . . , 𝑛) →
(1, 2, 3, . . . , 𝑛) be a permutation satisfying 𝜌𝜎(𝑖) ≤ 𝜌𝜎(𝑖+1) , 𝜌 ∈
ℎ, 𝑖 = 1, 2, . . . , |ℎ|.

We define the compatibility degree of HMFNs and
investigate its properties, and some detailed analysis will be
presented sequentially.

For two HMFNs, ℎ1 and ℎ2, the compatibility between
ℎ1 and ℎ2 , denoted by 𝐶(ℎ1, ℎ2), should satisfy the following
properties:

(1) 0 < 𝐶(ℎ1, ℎ2) ≤ 1;
(2) 𝐶(ℎ1, ℎ2) = 1 if only if ℎ1 = ℎ2;
(3) 𝐶(ℎ1, ℎ2) = 𝐶(ℎ2, ℎ1).

On the basis of the above properties, we give the following
compatibility measures of HMFNs.

Definition 20. For two HMFNs, ℎ1 and ℎ2, the compatibility
between ℎ1 and ℎ2, denoted by 𝐶(ℎ1, ℎ2) is

𝐶 (ℎ1, ℎ2) = (∏

𝜌∈ℎ

(min{
𝜌ℎ1
𝜎(𝑖)

𝜌ℎ2𝜎(𝑖)

,

𝜌ℎ2
𝜎(𝑖)

𝜌ℎ1𝜎(𝑖)

}))

1/|ℎ|

. (13)

Clearly, ℎ1 and ℎ2 are perfectly compatible if ℎ1 = ℎ2;
that is, 𝐶(ℎ1, ℎ2) = 1. By contrast, ℎ1 and ℎ2 have the worst
compatibility if 𝐶(ℎ1, ℎ2) → 1/81. Thus, the bigger the
value of 𝐶(ℎ1, ℎ2), the better the compatibility of ℎ1 and ℎ2.
Yager’s power average operators are two nonlinear weighted
aggregation tools, and the weight 𝑤𝑖 = (1 + 𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1 +

𝑇(ℎ𝑖)) of argument ℎ𝑖 depends on all of the input arguments
ℎ𝑗 (𝑗 = 1, 2, . . . , 𝑛) and allows the argument values to support
each other in the aggregation process. Furthermore, based on
Definitions 16 and 20, we can see the compatibility 𝐶 has the
properties of a support function; hence, it can be regarded
as a possible support function. Let Sup(ℎ𝑖, ℎ𝑗) = 𝐶(ℎ1, ℎ2) (it
does not means the support function is unique and cannot
be something else). The higher the compatibility is, the more
they support each other.

Then, we investigate the power aggregation operators in
hesitant multiplicative fuzzy environments.
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3.1. Hesitant Multiplicative Fuzzy Power Geometric
(HMFPG) Operators

Definition 21. Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2, . . . , 𝑛) be a collection
of HMFNs, hesitant multiplicative fuzzy power geometric
(HMFPG) operators

HMFPG (ℎ𝑖 | 𝑖 = 1, 2, . . . , 𝑛) =
𝑛

⨂

𝑖=1

(ℎ𝑖
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))) ,

(14)

where

𝑇 (ℎ𝑖) =

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝐶 (ℎ𝑖, ℎ𝑗) ,

𝐶 (ℎ𝑖, ℎ𝑗)

= ( ∏

𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min
{

{

{

𝜌ℎ𝑖
𝜎(𝑖)

𝜌ℎ𝑗𝜎(𝑖)

,

𝜌ℎ𝑗
𝜎(𝑖)

𝜌ℎ𝑖𝜎(𝑖)

}

}

}

))

1/|ℎ|

,

|ℎ| =
ℎ𝑖
 =

ℎ𝑗


, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(15)

If we restrict 𝜆 to be a real number in [0, 1] in
Definition 12, then the result would be always a HMN.

Theorem 22. Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2, . . . , 𝑛) be a collection
of HMFNs, the aggregated value using the HMFPG operator is
also a HMFN, and

HMFPG (ℎ𝑖 | 𝑖 = 1, 2 . . . , 𝑛)

= ⋃

𝜌𝑖∈ℎ𝑖 ,1,2,...,𝑛

{(

𝑛

∏

𝑖=1

(𝜌𝑖)
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
𝑇(ℎ𝑖)
)

× (

𝑛

∏

𝑖=1

(1 + 𝜌𝑖)
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))

−

𝑛

∏

𝑖=1

(𝜌𝑖)
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))

)

−1
}

}

}

.

(16)

Proof. We shall find convenient 𝑉𝑖 = 1 + 𝑇(ℎ𝑖) = 1 +
∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝐶(ℎ𝑖, ℎ𝑗) = 1+∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
(∏

𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗
(min{𝜌

ℎ𝑖
𝜎(𝑖)

/𝜌ℎ𝑗𝜎(𝑖)
,

𝜌
ℎ𝑗
𝜎(𝑖)

/𝜌ℎ𝑖𝜎(𝑖)
})
1/|ℎ|, and𝑤𝑖 = 𝑉𝑖/∑

𝑛

𝑖=1
𝑉𝑖. Here,𝑤𝑖 is a proper of

weights, 𝑤𝑖 ≥ 0 and ∑
𝑛

𝑖=1
𝑤𝑖 = 1, then,

HMFPG(ℎ𝑖 | 𝑖 = 1, 2, . . . , 𝑛) =
𝑛

⨂

𝑖=1

ℎ
𝑤𝑖

𝑖
; by using mathe-

matical induction on 𝑛.

Suppose above equality holds for 𝑛 = 𝑡; that is,

HMFPG (ℎ1, ℎ2, . . . , ℎ𝑡)

=

𝑡

⨂

𝑖=1

ℎ
𝑤𝑖

𝑖

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑡∈ℎ𝑡

{
∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

∏
𝑡

𝑖=1
(1 + 𝜌𝑖)

𝑤𝑖
−∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖
} ,

(17)

where

𝑤𝑖

= (1 +

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

(∏min(
{

{

{

𝜌ℎ𝑖
𝜎(𝑖)

𝜌ℎ𝑗𝜎(𝑖)

,

𝜌ℎ𝑗
𝜎(𝑖)

𝜌ℎ𝑖𝜎(𝑖)

}

}

}

))

1/|ℎ|

)

×(

𝑛

∑

𝑖=1

(1 + ( ∏

𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min
{

{

{

𝜌ℎ𝑖
𝜎(𝑖)

𝜌ℎ𝑗𝜎(𝑖)

,

𝜌ℎ𝑗
𝜎(𝑖)

𝜌ℎ𝑖𝜎(𝑖)

}

}

}

))

1/|ℎ|

))

−1

(18)

then

HMFPG (ℎ1, ℎ2, . . . , ℎ𝑡, ℎ𝑡+1)

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑡∈ℎ𝑡

{
∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

∏
𝑡

𝑖=1
(1 + 𝜌𝑖)

𝑤𝑖
−∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖
}

⊗ ℎ
𝑤𝑡+1

𝑡+1

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑡∈ℎ𝑡

{
∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

∏
𝑡

𝑖=1
(1 + 𝜌𝑖)

𝑤𝑖
−∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖
}

⊗ ⋃

𝜌𝑡+1∈ℎ𝑡+1

{
(𝜌𝑡+1)

𝑤𝑡+1

(1 + 𝜌𝑡+1)
𝑤𝑡+1
− (𝜌𝑡+1)

𝑤𝑡+1
}

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑡+1∈ℎ𝑡+1

{{{{

{{{{

{

(
∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

∏
𝑡

𝑖=1
(1 + 𝜌𝑖)

𝑤𝑖
−∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

⋅
(𝜌𝑡+1)

𝑤𝑡+1

(1 + 𝜌𝑡+1)
𝑤𝑡+1
− (𝜌𝑡+1)

𝑤𝑡+1
)
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×(
∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

∏
𝑡

𝑖=1
(1 + 𝜌𝑖)

𝑤𝑖
−∏

𝑡

𝑖=1
(𝜌𝑖)

𝑤𝑖

+
(𝜌𝑡+1)

𝑤𝑡+1

(1 + 𝜌𝑡+1)
𝑤𝑡+1
− (𝜌𝑡+1)

𝑤𝑡+1

+ 1)

−1

}}}}

}}}}

}

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2,...,𝜌𝑡+1∈ℎ𝑡+1

{
∏

𝑡+1

𝑖=1
(𝜌𝑖)

𝑤𝑖

∏
𝑡+1

𝑖=1
(1 + 𝜌𝑖)

𝑤𝑖
−∏

𝑡+1

𝑖=1
(𝜌𝑖)

𝑤𝑖
} ;

(19)

that is, above equality holds for 𝑛 = 𝑘 + 1. Thus the equality
holds for all 𝑛.

Then we can investigate some desirable properties of the
HMFPG operator.

Property 1. If all 𝐶(ℎ𝑖, ℎ𝑗) = 𝑘, 𝑖 ̸= 𝑗, (𝑖, 𝑗 = 1, 2, . . . , 𝑛), then

HMFPG (ℎ1, ℎ2, . . . , ℎ𝑛)

= ⋃

𝜌𝑖∈ℎ𝑖 ,𝑖=1,2,...,𝑛

{
∏

𝑛

𝑖=1
𝜌𝑖
1/𝑛

∏
𝑛

𝑖=1
(1 + 𝜌𝑖)

1/𝑛
−∏

𝑛

𝑖=1
𝜌𝑖
1/𝑛

} .

(20)

Proof. If 𝐶(ℎ𝑖, ℎ𝑗) = 𝑘, for all 𝑖 ̸= 𝑗, 𝑇(ℎ𝑖) =

∑
𝑛

𝑗=1,𝑗 ̸= 𝑖 𝐶(ℎ𝑖, ℎ𝑗) = (𝑛 − 1)𝑘

HMFPG (ℎ𝑖 | 𝑖 = 1, 2, . . . , 𝑛)

=

𝑛

⨂

𝑖=1

ℎ𝑖
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑛∈ℎ𝑛

{

{

{

(

𝑛

∏

𝑖=1

𝜌𝑖
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖)))

× (

𝑛

∏

𝑖=1

(1 + 𝜌𝑖)
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖))

−

𝑛

∏

𝑖=1

𝜌𝑖
(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
(1+𝑇(ℎ𝑖)))

−1
}

}

}

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑛∈ℎ𝑛

{

{

{

(

𝑛

∏

𝑖=1

𝜌𝑖
(1+(𝑛−1)𝑘)/∑

𝑛

𝑖=1
(1+(𝑛−1)𝑘)

)

× (

𝑛

∏

𝑖=1

(1 + 𝜌𝑖)
(1+(𝑛−1)𝑘)/∑

𝑛

𝑖=1
(1+(𝑛−1)𝑘)

−

𝑛

∏

𝑖=1

𝜌𝑖
(1+(𝑛−1)𝑘)/∑

𝑛

𝑖=1
(1+(𝑛−1)𝑘)

)

−1
}

}

}

= ⋃

𝜌1∈ℎ1 ,𝜌2∈ℎ2 ,...,𝜌𝑛∈ℎ𝑛

{
∏

𝑛

𝑖=1
𝜌𝑖
1/𝑛

∏
𝑛

𝑖=1
(1 + 𝜌𝑖)

1/𝑛
−∏

𝑛

𝑖=1
𝜌𝑖
1/𝑛

} .

(21)

Property 2 (commutativity). Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2, . . . , 𝑛) be
a collection of HMFPG. Then, if ℎ

𝑖
= {𝜌



ℎ𝑖
} (𝑖 = 1, 2, . . . , 𝑛)

any permutation of ℎ𝑖 = {𝜌ℎ𝑖}, then we have

HMFPG (ℎ1, ℎ2, . . . , ℎ𝑛) = HMFPG (ℎ
1
, ℎ



2
, . . . , ℎ



𝑛
) . (22)

However, the HMFPG operator is neither idempotent,
bounded, nor monotonic, as illustrated by the following
example.

Example. Let ℎ1 = {6, 3}, ℎ2 = {9, 2}, ℎ3 = {5, 3}, and
ℎ4 = {8, 7} be four HMFNs. Assume that 𝐶(ℎ𝑖, ℎ𝑗) (𝑖, 𝑗 =
1, 2, 3, 4, 𝑖 ̸= 𝑗) is compatibility between ℎ𝑖 and ℎ𝑗, then

we have

HMFPG (ℎ1, ℎ1, ℎ1) = {6, 4.5502, 3.6326, 3} ,

HMFPG (ℎ1, ℎ2, ℎ3)

= {6.2359, 4.9282, 4.6333, 3.8400,

3.6643, 3.1291, 2.9962, 2.6132} ,

HMFPG (ℎ1, ℎ2, ℎ4)

= {7.4367, 7.1329, 5.3207,

5.15613.9287, 3.8333, 3.1880, 3.1220} .

(23)

According to Definition 4, we have

𝑠 (ℎ1) = 𝑠 (ℎ2) = 4.2426, 𝑠 (ℎ3) = 3.8730,

𝑠 (ℎ4) = 7.4833,

𝑠 (HMFPG (ℎ1, ℎ1, ℎ1)) = 4.1238,

𝑠 (HMFPG (ℎ1, ℎ2, ℎ3)) = 3.8581,

𝑠 (HMFPG (ℎ1, ℎ2, ℎ4)) = 4.6488.

(24)

Therefore, HMFPG(ℎ1, ℎ1, ℎ1) ̸= ℎ1, which implies that
the HMFPG operator is not idempotent.

Furthermore, because 𝑠(HMFPG(ℎ1, ℎ2, ℎ3)) < 𝑠(ℎ3) <
𝑠(ℎ2) = 𝑠(ℎ1), which implies that the DHFPA operator is not
bounded.

Finally, because 𝑠(HMFPG(ℎ1, ℎ1, ℎ1)) > 𝑠(HMFPG(ℎ1,
ℎ2, ℎ3)) and 𝑠(HMFPG(ℎ1, ℎ1, ℎ1)) < 𝑠(HMFPG(ℎ1, ℎ2, ℎ4)),
we have HMFPG(ℎ1, ℎ1, ℎ1) ≻ HMFPG(ℎ1, ℎ2, ℎ3) and
HMFPG(ℎ1, ℎ1, ℎ1) ≺ HMFPG(ℎ1, ℎ2, ℎ4).

Therefore, the HMFPG operator is not monotonic.
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Moreover, in the HMFPG operator, all of the arguments
that are being aggregated are of equal importance. If we allow
the arguments to have different weights, then we provide
a generalization of the HMFPG operator by combining it
with the generalized mean operator to obtain the weighted
generalized hesitant multiplicativefuzzy power geometric
(WGHMFPG) operator as follows.

Definition 23. Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2, . . . , 𝑛) be a collection of
HMFNs, weighted generalized hesitant multiplicative fuzzy
power geometric (WGHMFPG) operators

WGHMFPG (ℎ𝑖 | 𝑖 = 1, 2, . . . , 𝑛)

=
1

𝜆

𝑛

⨂

𝑖=1

(𝜆ℎ𝑖
𝑤𝑖(1+𝑇(ℎ𝑖))/∑

𝑛

𝑖=1
𝑤𝑖(1+𝑇(ℎ𝑖))) ,

(25)

where

𝑇 (ℎ𝑖) =

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑤𝑗𝐶 (ℎ𝑖, ℎ𝑗) ,

𝐶 (ℎ𝑖, ℎ𝑗)

= ( ∏

𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min
{

{

{

𝜌ℎ𝑖
𝜎(𝑖)

𝜌ℎ𝑗𝜎(𝑖)

,

𝜌ℎ𝑗
𝜎(𝑖)

𝜌ℎ𝑖𝜎(𝑖)

}

}

}

))

1/|ℎ|

,

|ℎ| =
ℎ𝑖
 =

ℎ𝑗


, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(26)

with the conditions that 𝑤𝑖 ∈ [0, 1] 𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑛, and
∑
𝑛

𝑖=1
𝑤𝑖 = 1.

Using HMFN operations and mathematical induction on
𝑛, (25) can be transformed into the following form:

WGHMFPG (ℎ𝑖 | 𝑖 = 1, 2, . . . , 𝑛)

= ⋃

𝜌𝑖∈ℎ𝑖 ,1,2,...,𝑛

{
(𝜌

∗
)
1/𝜆
− (𝜌

∗
− 𝜌

∧
)
1/𝜆

(𝜌∗ − 𝜌∧)
1/𝜆

} ,

(27)

where

𝜌
∗
=

𝑛

∏

𝑖=1

(1 + 𝜌𝑖)
𝑤𝑖𝜆(1+∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑤𝑗(∏𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min{𝜌ℎ𝑖
𝜎(𝑖)

/𝜌ℎ𝑗𝜎(𝑖)
,𝜌ℎ𝑗
𝜎(𝑖)

/𝜌ℎ𝑖𝜎(𝑖)
}))
1/|ℎ|

)/∑
𝑛

𝑖=1
𝑤𝑖(1+∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑤𝑗(∏𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min{𝜌ℎ𝑖
𝜎(𝑖)

/𝜌ℎ𝑗𝜎(𝑖)
,𝜌ℎ𝑗
𝜎(𝑖)

/𝜌ℎ𝑖𝜎(𝑖)
}))
1/|ℎ|

)

𝜌
∧
=

𝑛

∏

𝑖=1

((1 + 𝜌𝑖)
𝜆
− 1)

𝑤𝑖(1+∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑤𝑗(∏𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min{𝜌ℎ𝑖
𝜎(𝑖)

/𝜌ℎ𝑗𝜎(𝑖)
,𝜌ℎ𝑗
𝜎(𝑖)

/𝜌ℎ𝑖𝜎(𝑖)
}))
1/|ℎ|

)/

𝑛

∑
𝑖=1

𝑤𝑖(1+∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑤𝑗(∏𝜌𝑖∈ℎ𝑖 ,𝜌𝑗∈ℎ𝑗

(min{𝜌ℎ𝑖
𝜎(𝑖)

/𝜌ℎ𝑗𝜎(𝑖)
,𝜌ℎ𝑗
𝜎(𝑖)

/𝜌ℎ𝑖𝜎(𝑖)
}))
1/|ℎ|

)

.

(28)

3.2. Hesitant Multiplicative Fuzzy Power Ordered Weighted
Geometric (HMFPOWG) Operators. Based on the POWG
and HMFPG operators, we next define a hesitant multiplica-
tive fuzzy power ordered weighted geometric (HMFPOWG)
operator.

Definition 24. Let ℎ𝑖 = {𝜌ℎ𝑖} (𝑖 = 1, 2, . . . , 𝑛) be a collection
of HMFNs, a hesitant multiplicative fuzzy power ordered
weighted geometric (HMFPOWG) operator:

HMFPOWA (ℎ1, ℎ2, . . . , ℎ𝑛) =
𝑛

⨂

𝑖=1

(ℎ
𝑢𝑖

index(𝑖)) , (29)

where

𝑢𝑖 = 𝑔(
𝑅𝑖

𝑇𝑉
) − 𝑔(

𝑅𝑖−1

𝑇𝑉
) , 𝑅𝑖 =

𝑖

∑

𝑗=1

𝑉index(𝑗),

𝑇𝑉 =

𝑛

∑

𝑖=1

𝑉index(𝑖), 𝑉index(𝑖) = 1 + 𝑇 (ℎindex(𝑖)) ,

𝑇 (ℎindex(𝑖)) =
𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝐶 (ℎindex(𝑖), ℎindex(𝑗)) .

(30)

In Definition 14, ℎindex(𝑖) is the 𝑖th largest HMFN among all
of the HMFNs, ℎ𝑗 (𝑗 = 1, 2, . . . , 𝑛), 𝑇(ℎindex(𝑖)) denotes the
support of the 𝑖th largest HMFN by all of the other HMFNs,
𝐶(ℎindex(𝑖), ℎindex(𝑗)) denotes the support of the 𝑗th largest
HMFN for the 𝑖th largest HMFN, and Yager defined a BUM
function 𝑔 : [0, 1] → [0, 1], having the properties: 𝑔(0) = 1,
𝑔(1) = 1, and 𝑔(𝑥) ≥ 𝑔(𝑦) if 𝑥 ≥ 𝑦.

Using the operational laws of HMFNs, (29) can be further
expressed as follows:

HMFPOWG (ℎ1, ℎ2, . . . , ℎ𝑛)

= ⋃

𝜌index(𝑖)∈ℎindex(𝑖) ,𝑖=1,2,...,𝑛

{

{

{

(

𝑛

∏

𝑖=1

(𝜌index(𝑖))
𝑢𝑖
)

× (

𝑛

∏

𝑖=1

(1 + 𝜌index(𝑖))
𝑢𝑖

−

𝑛

∏

𝑖=1

(𝜌index(𝑖))
𝑢𝑖
)

−1
}

}

}

,

(31)

where 𝑢𝑖 satisfies condition (30).
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4. Approaches to Multiple
Attribute Group Decision Making in
Uncertain Environments

In the following, we use the proposed hesitant multiplica-
tive fuzzy power aggregation operators to develop some
approaches to multiple attribute group decision making
with hesitant multiplicative fuzzy information in uncertain
environments:

For a multiple attribute group decision making problem
with hesitant multiplicative fuzzy information, let 𝑋 =

{𝑥1, 𝑥2, . . . , 𝑥𝑛} be a set of 𝑛 alternatives which is to be
compared and 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑚} a set of 𝑚 attributes,
whose weight vector is 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑚)

𝑇, with 𝑤𝑗 ∈
[0, 1] for 𝑗 = 1, 2, . . . , 𝑚, and ∑𝑚

𝑗=1
𝑤𝑗 = 1. And let 𝐸 =

{𝑒1, 𝑒2, . . . , 𝑒𝑠} be a set of 𝑠 decision makers, whose weight
vector is 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑠)

𝑇, with 𝜔𝑞 ∈ [0, 1] for 𝑞 =
1, 2, . . . , 𝑠, and ∑𝑠

𝑞=1
𝜔𝑞 = 1. The 𝑠 decision makers are

authorized to give their preferences about these alternatives,
the decision makers uses the Saaty’s 1–9 scale to express their
preferences. Let 𝐴(𝑞) = (ℎ𝑖𝑗)

(𝑞) be a hesitant multiplicative
fuzzy decision matrix, where (ℎ𝑖𝑗)

(𝑞)
= {⋃

(𝜌𝑖𝑗)
(𝑞)
∈(ℎ𝑖𝑗)

(𝑞) (𝜌𝑖𝑗)
(𝑞)
}

is an value provided by the decision maker 𝑒𝑞 with the
attribute 𝑔𝑝, denoted by a HMFN that indicates all of the
possible intensity degree that the alternative 𝑥𝑖 is priority
with the attribute 𝑔𝑗. When all the performances of the
alternatives are provided, the hesitant multiplicative fuzzy
decision matrix 𝐴(𝑞) = (ℎ𝑖𝑗)

(𝑞), 𝑞 = 1, 2 . . . , 𝑠, 𝑖 = 1, 2, . . . 𝑛,
𝑗 = 1, 2, . . . 𝑚, can be constructed.

To obtain the ranking of the alternatives, we improve the
method of Xu and Yager [24] and Xu and Wang [29]:

Approach 1.

Step 1. Calculate the supports measures between 𝑠 decision
makers:

Sup((ℎ𝑖𝑗)
(𝑝)

, (ℎ𝑖𝑗)
(𝑞)

) = 𝐶((ℎ𝑖𝑗)
(𝑝)

, (ℎ𝑖𝑗)
(𝑞)

) ,

𝑝, 𝑞 = 1, 2 . . . , 𝑠; 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 1, 2, . . . 𝑚.

(32)

Step 2. Use the weights 𝑤𝑞 of 𝑠decision makers 𝑒𝑞 (𝑞 =
1, 2, . . . , 𝑠) to calculate the weighted support 𝑇((ℎ𝑖𝑗)

(𝑞)
) of

HMFN (ℎ𝑖𝑗)
(𝑞) by the other decision makers 𝑒𝑝 denoted by

HMFNs (ℎ𝑖𝑗)
(𝑝)
(𝑝, 𝑞 = 1, 2, . . . , 𝑠, and 𝑝 ̸= 𝑞).

𝑇(ℎ𝑖𝑗)
(𝑞)

=

𝑠

∑

𝑝=1

𝑝 ̸= 𝑞

𝑤𝑝 Sup((ℎ𝑖𝑗)
(𝑞)

, (ℎ𝑖𝑗)
(𝑝)

) ,

𝑝, 𝑞 = 1, 2, . . . 𝑠, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . 𝑚.

(33)

Step 3. Utilize the WGHMFPG operator to aggregate all of
the individual hesitant multiplicative fuzzy decision matrices

𝐴
(𝑞)
= (ℎ𝑖𝑗)

(𝑞) into the collective hesitant multiplicative fuzzy
decision matrix 𝐴 = (ℎ𝑖𝑗)𝑛×𝑚:

(ℎ𝑖𝑗) =WGHMFPG((ℎ𝑖𝑗)
(1)

, (ℎ𝑖𝑗)
(2)

, . . . , (ℎ𝑖𝑗)
(𝑞)

)

=
1

𝜆

𝑠

⨂

𝑞=1

(𝜆ℎ
(𝑞)

𝑖𝑗
)
𝑤𝑞(1+𝑇(ℎ

(𝑞)

𝑖𝑗
))/∑
𝑠

𝑞=1
𝑤𝑞(1+𝑇(ℎ

(𝑞)

𝑖𝑗
))

.

(34)

Step 4. Then, we use Xu’s GHHMWG operator to aggregate
all of the preference values for 𝑖 alternatives (𝑖 = 1, 2, . . . , 𝑛)
which indicates how the alternative 𝑥𝑖 is priority:

(ℎ𝑖) = GHHMWG ((ℎ𝑖1) , (ℎ𝑖2) , . . . , (ℎ𝑖𝑚)) . (35)

Step 5. Rank the ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛) in descending order using
Definition 4.
Step 6.Rank all of the alternatives 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛) and then
select the best alternative in accordance with the collective
overall preference values ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛).

If the information regarding the weights of the decision
makers and attributes is unknown, then we use the HMF-
POWG operator to develop an alternative approach to the
MAGDM problem with hesitant fuzzy information, which is
described below.

Approach 2.

Step 1. Calculate the supports measures between 𝑠 decision
makers:

Sup((ℎ𝑖𝑗)
index(𝑝)

, (ℎ𝑖𝑗)
index(𝑞)

)

= 𝐶((ℎ𝑖𝑗)
index(𝑝)

, (ℎ𝑖𝑗)
index(𝑞)

) ,

𝑝, 𝑞 = 1, 2 . . . , 𝑠; 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 1, 2, . . . 𝑚.

(36)

Step 2. Calculate the support 𝑇((ℎ𝑖𝑗)
index(𝑞)

) of HMFN
(ℎ𝑖𝑗)

index(𝑞) by the other decision makers 𝑒index(𝑝) denoted by
HMFNs (ℎ𝑖𝑗)

index(𝑝)
(𝑝, 𝑞 = 1, 2, . . . , 𝑠, and 𝑝 ̸= 𝑞).

𝑇(ℎ𝑖𝑗)
index(𝑞)

=

𝑠

∑

𝑝=1

𝑝 ̸= 𝑞

Sup((ℎ𝑖𝑗)
index(𝑞)

, (ℎ𝑖𝑗)
index(𝑝)

) ,

𝑝, 𝑞 = 1, 2, . . . 𝑠, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . 𝑚.

(37)

Step 3. Calculate the weight. Use the weights 𝑢𝑞 = (𝑢𝑖𝑗)
(𝑞)

of 𝑒index(𝑞) decision makers, that is, associated with the 𝑞th
largest HFMN (ℎ𝑖𝑗)

index(𝑞), where

(𝑢𝑖𝑗)
(𝑞)

= 𝑔(

(𝑅𝑖𝑗)
(𝑞)

𝑇𝑉𝑖𝑗

) − 𝑔(

(𝑅𝑖𝑗)
(𝑞−1)

𝑇𝑉𝑖𝑗

) ,

(𝑅𝑖𝑗)
(𝑞)

=

𝑞

∑

𝑝=1

(𝑉𝑖𝑗)
index(𝑝)

, 𝑇𝑉𝑖𝑗 =

𝑠

∑

𝑝=1

(𝑉𝑖𝑗)
index(𝑝)

,
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(𝑉𝑖𝑗)
index(𝑝)

= 1 + T(ℎ𝑖𝑗)
index(𝑝)

,

𝑇(ℎ𝑖𝑗)
index(𝑝)

=

𝑠

∑

𝑟=1
𝑟 ̸= 𝑝

𝐶((ℎ𝑖𝑗)
index(𝑝)

, (ℎ𝑖𝑗)
index(𝑟)

) .

(38)

Step 4. Use the GHMFPOWG operator to aggregate all of
the individual hesitant multiplicative fuzzy decision matrices
𝐴
(𝑞)
= (ℎ𝑖𝑗)

(𝑞) into the collective hesitant multiplicative fuzzy
decision matrix 𝐴 = (ℎ𝑖𝑗)𝑛×𝑚:

(ℎ𝑖𝑗) = GHMFPOWG((ℎ𝑖𝑗)
(1)

, (ℎ𝑖𝑗)
(2)

, . . . , (ℎ𝑖𝑗)
(𝑞)

)

=
1

𝜆

𝑠

⨂

𝑞=1

(𝜆ℎ
index(𝑞)
𝑖𝑗

)
(𝑢𝑖𝑗)
(𝑞)

.

(39)

Step 5.Calculate the supports measures between𝑚 attributes:

Sup (ℎ𝑖 index(𝑗), ℎ𝑖 index(𝑘)) = 𝐶 (ℎ𝑖 index(𝑗), ℎ𝑖 index(𝑘)) ,

𝑖 = 1, 2 . . . , 𝑛; 𝑗, 𝑘 = 1, 2, . . . 𝑚,

(40)

where ℎ𝑖index(𝑗) is the 𝑗th largest attribute of all the attributes
for the alternative 𝑥𝑖.
Step 6. Calculate the support 𝑇(ℎ𝑖 index(𝑗)) of HMFN ℎ𝑖 index(𝑗)
by the other attributes denoted by HMFNs ℎ𝑖 index(𝑡) (𝑗, 𝑡 =
1, 2, . . . , 𝑚, and 𝑗 ̸= 𝑡).

𝑇(ℎ𝑖 index(𝑗)) =
𝑚

∑

𝑡=1
𝑡 ̸= 𝑗

Sup (ℎ𝑖 index(𝑗), ℎ𝑖 index(𝑡)) ,

𝑗, 𝑡 = 1, 2, . . . 𝑚, 𝑖 = 1, 2, . . . , 𝑛.

(41)

Step 7. Calculate the weight. Use the weights V𝑖𝑗, that is,
associated with the 𝑗th largest HFMN (ℎ𝑖index(𝑗)), where

V𝑖𝑗 = 𝑔(
𝑅𝑖𝑗

𝑇𝑉𝑖

) − 𝑔(

𝑅𝑖(𝑗−1)

𝑇𝑉𝑖

) , 𝑅𝑖𝑗 =

𝑗

∑

𝑘=1

(𝑉𝑖 index(𝑘)) ,

𝑇𝑉𝑖 =

𝑚

∑

𝑘=1

(𝑉𝑖 index(𝑘)) , 𝑉𝑖 index(𝑘) = 1 + 𝑇 (ℎ𝑖 index(𝑘)) ,

𝑇 (ℎ𝑖 index(𝑘)) =
𝑚

∑

𝑙=1
𝑙 ̸= 𝑘

𝐶 (ℎ𝑖 index(𝑘), ℎ𝑖 index(𝑙)) .

(42)

Step 8. Then, we use Xu’s GHHMWG operator to aggregate
all of the preference values for 𝑖 alternatives (𝑖 = 1, 2, . . . , 𝑛)
which indicates how the alternative 𝑥𝑖 is priority:

(ℎ𝑖) = GHHMWG ((ℎ𝑖1) , (ℎ𝑖2) , . . . , (ℎ𝑖𝑚)) . (43)

Step 9. Rank the ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛) in descending order using
Definition 4.

Step 10. Rank all of the alternatives 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛)
and then select the best alternative in accordance with the
collective overall preference values ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛).

5. Illustrative Example

Our methods is a good way to those people who in the
decision organization do not like to use the values between 0
and 1 but would like to use Saaty’s ratio scale. As urban traffic
is heavy, complex, and changeable, travelers have difficulty in
route choices. Driving is a complex task involving a variety of
skills.Themost important of these skills involve taking in and
processing information and making quick decisions based
on this information. Driver tasks are categorized into three
main elements: control, guidance, and navigation. Therefore,
selecting a safe path and keeping the vehicle in the proper lane
are of great importance for the drivers. But it is hard to choose
themost suitable one among the alternatives which dominate
each other in different characteristics. In real world appli-
cations, all the parameters of the transportation problems
may not be known precisely due to uncontrollable factors.
This type of imprecise data is not always well represented
by random variable selected from a probability distribution.
Fuzzy number may represent this data. So, fuzzy decision
making method is needed here and is studied by many
authors [43, 44]. For the application, an expert team was
formed.The criteria to be used in themodel were determined
by the expert team. Now the standard for route choice is
average travel speed, density, average queue length, and level
of service. The application performed is based on the steps
provided in previous section and explained step by step
together with the results. Suppose one driver wishes to plan
and execute a trip. After preliminary screening, four routes
(alternatives) 𝑥𝑖 (𝑖 = 1, 2, 3, 4) remain on the candidate list.
Three experts 𝑒𝑘 (𝑘 = 1, 2, 3) from a committee to act as
decision makers, whose weight vector is 𝑤 = (0.3, 0.3, 0.4)𝑇.
Four attributes are under consideration: (1) average travel
speed is computed by dividing the length of the highway,
street section, or segment under consideration by the average
travel time of the vehicles traversing it, (𝐺1); (2) density is
the number of vehicles (or pedestrians) occupying a given
length of a lane or roadway at a particular instant. For the
computations, density is averaged over time and is usually
expressed as vehicles per mile (veh/mi) or passenger cars
per mile (pc/mi), (𝐺2); (3) the average queue length, at the
beginning of red, the queue length is zero and increases
to its maximum value at the end of the red period. Then
the queue length decreases until the arrival line intersects
the service line, when the queue length equals zero. (𝐺3)
(4) Level of service (LOS) is a quality measure describing
operational conditions within a traffic stream. (𝐺4). The
weight vector of the attributes 𝐺𝑗 (𝑗 = 1, 2, 3, 4) is 𝑤 =
(0.15, 0.20, 0.20, 0.45)

𝑇, the results of which are the hesitant
multiplicative sets. The experts 𝑒𝑘 (𝑘 = 1, 2, 3) evaluate the
routes (alternatives) 𝑥𝑖 (𝑖 = 1, 2, 3, 4) with respect to the
attributes 𝐺𝑗 (𝑗 = 1, 2, 3, 4) and construct the following
three hesitant multiplicative fuzzy decision matrices 𝐴(𝑞)𝑝 =
(ℎ𝑖𝑗)

(𝑞)

𝑝
(𝑞 = 1, 2, 3, 𝑝 = 1, 2, 3, 4) (see Tables 1, 2, and 3).
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Table 1: The hesitant multiplicative fuzzy decision matrix 𝐴(1).

𝐺1 𝐺2 𝐺3 𝐺4

𝑥1 {1,
1

3
} {

2

5
,
1

3
,
1

5
} {

2

3
,
1

3
} {9}

𝑥2 {
1

5
} {9, 7, 5} {4, 2} {1}

𝑥3 {2, 1} {
1

6
} {1,

2

3
} {6}

𝑥4 {2, 1,
1

2
} {7, 5, 3} {5} {

1

3
}

Table 2: The hesitant multiplicative fuzzy decision matrix 𝐴(2).

𝐺1 𝐺2 𝐺3 𝐺4

𝑥1 {1,
1

3
,
1

5
} {1,

1

3
} {

1

2
,
1

3
} {

15

2
}

𝑥2 {1,
1

2
} {8, 7} {1,

1

2
} {

2

3
}

𝑥3 {3, 1} {
1

2
,
1

3
} {3, 1} {4}

𝑥4 {1} {6, 4} {8, 6, 5} {
1

2
}

Table 3: The hesitant multiplicative fuzzy decision matrix 𝐴(3).

𝐺1 𝐺2 𝐺3 𝐺4

𝑥1 {1,
1

2
} {1,

2

3
} {1,

1

2
} {8}

𝑥2 {
1

2
,
1

3
} {7, 4} {3, 2, 1} {

3

2
}

𝑥3 {4, 2} {
1

3
,
1

5
,
1

6
} {1,

2

3
} {3}

𝑥4 {3, 2} {8, 7, 5} {7, 4} {
1

5
}

Assume that the weights of the decision makers and
attributes are known. We use Approach 1 to select the route.

Step 1. Calculate the supports measures between 𝑠 decision
makers:

Sup((ℎ𝑖𝑗)
(𝑝)

, (ℎ𝑖𝑗)
(𝑞)

) = 𝐶((ℎ𝑖𝑗)
(𝑝)

, (ℎ𝑖𝑗)
(𝑞)

) ,

𝑝, 𝑞 = 1, 2 . . . , 𝑠; 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 1, 2, . . . 𝑚,

(44)

which satisfy support conditions. Here, we gave two cases
where all the decision makers are optimists or pessimists.
(Actually, they are not.) The case mainly depends on the
decision makers’ risk preferences. Three decision makers
have eight preference permutations: (1) Optimist, optimist,
optimist; (2) optimist, optimist, pessimist; (3) optimist, pes-
simist, optimist; (4) pessimist, optimist, optimist; (5) pes-
simist, optimist, pessimist; (6) pessimist, pessimist, optimist;
(7) optimist, pessimist, pessimist; (8) pessimist, pessimist,
pessimist), denoted by OOO, OOP, OPO, POO, PPO, POP,
OPP, and PPP, respectively.

For simplicity, we denote 𝐶((ℎ𝑖𝑗)
(𝑝)
, (ℎ𝑖𝑗)

(𝑞)
) by 𝐶(𝑝𝑞)

𝑖𝑗

which refers to the supports between (ℎ𝑖𝑗)
(𝑝)and (ℎ𝑖𝑡)

(𝑞) in the
following:

𝐶
(12)

optimists = 𝐶
(21)

optimists =
[
[
[

[

0.5848 0.4309 0.8660 0.8571

0.2828 0.8221 0.2500 0.6667

0.8165 0.3816 0.4714 0.6667

0.6300 0.8122 0.8046 0.6667

]
]
]

]

,

𝐶
(13)

optimists = 𝐶
(31)

optimists =
[
[
[

[

0.8736 0.3420 0.6667 0.8889

0.4899 0.8537 0.5724 0.6667

0.5000 0.7469 1.0000 0.5000

0.3816 0.7211 0.7418 0.6000

]
]
]

]

,

𝐶
(23)

optimists = 𝐶
(32)

optimists =
[
[
[

[

0.5109 0.7937 0.5774 0.9375

0.5774 0.7591 0.4368 0.4444

0.6124 0.5109 0.4714 0.7500

0.3816 0.8012 0.8434 0.4000

]
]
]

]

;

𝐶
(12)

pessimists = 𝐶
(21)

pessimists =
[
[
[

[

0.8434 0.6214 0.8660 0.8333

0.2828 0.8595 0.2500 0.6667

0.8165 0.4368 0.4714 0.6667

0.6300 0.8012 0.8046 0.6667

]
]
]

]

,

𝐶
(13)

pessimists = 𝐶
(31)

pessimists =
[
[
[

[

0.7631 0.3915 0.6667 0.8889

0.4899 0.7084 0.7211 0.6667

0.5000 0.7469 1.0000 0.5000

0.4368 0.7211 0.7703 0.6000

]
]
]

]

,

𝐶
(23)

pessimists = 𝐶
(32)

pessimists =
[
[
[

[

0.6437 0.6300 0.5774 0.9375

0.5774 0.6586 0.3467 0.4444

0.6124 0.5848 0.4714 0.7500

0.4368 0.6999 0.7757 0.4000

]
]
]

]

.

(45)

Step 2. Use the weights 𝑤𝑞 of 𝑠 decision makers 𝑒𝑞 (𝑞 =
1, 2, . . . , 𝑠) to calculate the weighted support 𝑇((ℎ𝑖𝑗)

(𝑞)
) of

HMFN (ℎ𝑖𝑗)
(𝑞) by the other decision makers 𝑒𝑝 denoted by

HMFNs (ℎ𝑖𝑗)
(𝑝)
(𝑝, 𝑞 = 1, 2, . . . , 𝑠, and𝑝 ̸= 𝑞).

𝑇
(1)

optimists =
[
[
[

[

0.5249 0.2661 0.5265 0.6056

0.2808 0.5881 0.3039 0.4667

0.4449 0.4132 0.5414 0.4000

0.3416 0.5321 0.5381 0.4400

]
]
]

]

,

𝑇
(2)

optimists =
[
[
[

[

0.3798 0.4467 0.4907 0.6250

0.3158 0.5503 0.2497 0.3778

0.4899 0.3188 0.3300 0.5000

0.3416 0.5641 0.5787 0.3600

]
]
]

]

,

𝑇
(3)

optimists =
[
[
[

[

0.4153 0.3407 0.3732 0.5479

0.3202 0.4839 0.3027 0.3333

0.3337 0.3773 0.4414 0.3750

0.2289 0.4567 0.4756 0.3000

]
]
]

]

,

𝑇
(1)

pessimists =
[
[
[

[

0.5583 0.3430 0.5265 0.6056

0.2808 0.5412 0.3634 0.4667

0.4449 0.4298 0.5414 0.4000

0.3637 0.5288 0.5495 0.4400

]
]
]

]

,
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Table 4: The collective hesitant multiplicative fuzzy decision matrix 𝐴 based on the optimists (OOO).

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑥1

{0.3318 0.3889

0.4130 0.4506

0.4891 0.5194

0.5363 0.5733

0.6695 0.6936

0.7428 1.0000}

{0.3677 0.4159

0.4313 0.4553

0.4908 0.5059

0.5194 0.5799

0.6039 0.6419

0.6990 0.7457}

{0.3864 0.4377

0.4774 0.4811

0.5457 0.5500

0.6041 0.6991}

8.1095

𝑥2

{0.3193 0.3734

0.3766 0.4436}

{4.9701 5.1155

5.4600 5.6332

5.7853 5.9784

6.2385 6.4611

7.0000 7.2771

7.5240 7.8422}

{0.9414 1.0514

1.1968 1.2011

1.3332 1.3575

1.3628 1.5249

1.5845 1.8013

1.8410 2.1217}

1.0073

𝑥3

{1.2590 1.4815

1.5557 1.7288

1.8741 2.1119

2.2463 2.8645}

{0.2018 0.2175

0.2232 0.2409

0.2662 0.2961}

{0.7408 0.8423

0.8705 0.9092

1.0000 1.0477

1.0868 1.2703}

3.9100

𝑥4

{0.9672 1.0581

1.2605 1.3986

1.5622 1.7590}

{3.9236 4.3199

4.3806 4.4636

4.6446 4.8687

5.0480 5.0657

5.1905 5.2756

5.3925 5.7111

5.8128 5.9529

5.9742 6.2374

6.6580 6.9816}

{4.5640 4.7964

5.1304 5.6320

5.9773 6.4854}

0.3045

𝑇
(2)

pessimists =
[
[
[

[

0.5105 0.4384 0.4907 0.6250

0.3158 0.5213 0.2137 0.3778

0.4899 0.3650 0.3300 0.5000

0.3637 0.5203 0.5516 0.3600

]
]
]

]

,

𝑇
(3)

pessimists =
[
[
[

[

0.4220 0.3064 0.3732 0.5479

0.3202 0.4101 0.3203 0.3333

0.3337 0.3995 0.4414 0.3750

0.2621 0.4263 0.4638 0.3000

]
]
]

]

.

(46)

Step 3. Use the WGHMFPG operator to aggregate all of
the individual hesitant multiplicative fuzzy decision matrices
𝐴
(𝑞)
= (ℎ𝑖𝑗)

(𝑞) into the collective hesitant multiplicative fuzzy
decision matrix 𝐴 = (ℎ𝑖𝑗)𝑛×𝑚 (See Tables 4 and 5).

Step 4. Then, we use Xu’s GHHMWG operator to aggregate
all of the preference values for 𝑖 alternatives (𝑖 = 1, 2, . . . , 𝑛)
which indicates how the alternative 𝑥𝑖 is priority; we do not
list the collective overall preference values because of limited
space. Consider

(ℎ𝑖) = GHHMWG ((ℎ𝑖1) , (ℎ𝑖2) , . . . , (ℎ𝑖𝑚)) . (47)

Step 5. Calculate the score function of ℎ𝑖; the numerical
results obtained for these datasets are also listed in Table 6.

Case 1. Optimists (OOO): 𝑠(𝑥1) = 1.1157, 𝑠(𝑥2) = 1.1068,
𝑠(𝑥3) = 1.1125, and 𝑠(𝑥4) = 0.8012.

Case 2. Pessimists (PPP): 𝑠(𝑥1) = 1.1091, 𝑠(𝑥2) = 1.1099,
𝑠(𝑥3) = 1.1137, and 𝑠(𝑥4) = 0.8013.

Step 6. Rank all of the alternatives 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛)

and then select the best alternative in accordance with the
collective overall preference values ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛).

Case 1. Optimists (OOO): 𝑠(𝑥1) > 𝑠(𝑥3) > 𝑠(𝑥2) > 𝑠(𝑥4).

Case 2. Pessimists (PPP): 𝑠(𝑥3) > 𝑠(𝑥2) > 𝑠(𝑥1) > 𝑠(𝑥4).

From the Table 6, we can see the selection of the best
alternative mainly depends on the decision makers’ risk
preferences. If three decision makers are optimists, they will
select number 1 route, but if decision makers are optimists,
they will choose number 3 route.

Moreover, when we change the parameter 𝜆, we can
obtain the different results (Tables 7 and 8).

We now present a figure to clearly demonstrate how
the score values vary as the parameter 𝜆 increases and the
aggregation arguments are kept fixed (see Figures 1 and 2). In
Figure 1, we choose all the decision makers’ risk preferences
are optimistic. We can find that scores of each route decrease
as the values of 𝜆 change from 0 to 10.
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Table 5: The collective hesitant multiplicative fuzzy decision matrix 𝐴 based on the pessimists (PPP).

𝑒1 𝑒2 𝑒3 𝑒4

𝑥1

{0.3274 0.3870

0.4044 0.4422

0.4832 0.5256

0.5310 0.5575

0.6729 0.6805

0.7491 1.0000}

{0.3617 0.4074

0.4278 0.4529

0.4847 0.4950

0.5144 0.5645

0.5961 0.6356

0.6863 0.7345}

{0.3864 0.4377

0.4774 0.4811

0.5457 0.5500

0.6041 0.6991}

8.1095

𝑥2

{0.3193 0.3734

0.3766 0.4436}

{4.9847 5.1333

5.4799 5.6571

5.8091 6.0068

6.2353 6.4614

7.0000 7.2817

7.5266 7.8503}

{0.9555 1.0723

1.2091 1.2180

1.3586 1.3787

1.3896 1.5641

1.5981 1.8187

1.8685 2.1574}

1.0073

𝑥3

{1.2590 1.4815

1.5557 1.7288

1.8741 2.1119

2.2463 2.8645}

{0.2024 0.2180

0.2241 0.2418

0.2667 0.2971}

{0.7408 0.8423

0.8705 0.9092

1.0000 1.0477

1.0868 1.2703}

3.9100

𝑥4

{0.9695 1.0614

1.2625 1.4019

1.5636 1.7621}

{3.9166 4.3101

4.3667 4.4527

4.6482 4.8500

5.0273 5.0770

5.1928 5.2725

5.3942 5.7227

5.8182 5.9645

5.9675 6.2292

6.6615 6.9842}

{4.5647 4.7945

5.1243 5.6307

5.9718 6.4730}

0.3045

Table 6: Score values obtained by WGHMFPG operator based on preference permutations of experts and the ranking of alternatives.

Preference permutations 𝑆(𝑥1) 𝑆(𝑥2) 𝑆(𝑥3) 𝑆(𝑥4) Ranking
OOO 1.1157 1.1068 1.1125 0.8012 𝑥1 ≻ 𝑥3 ≻ 𝑥2 ≻ 𝑥4

OOP 1.1129 1.1069 1.1125 0.8014 𝑥1 ≻ 𝑥3 ≻ 𝑥2 ≻ 𝑥4

OPO 1.1104 1.1081 1.1137 0.8012 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4

POO 1.1131 1.1084 1.1125 0.8012 𝑥1 ≻ 𝑥3 ≻ 𝑥2 ≻ 𝑥4

PPO 1.1077 1.1098 1.1137 0.8012 𝑥3 ≻ 𝑥2 ≻ 𝑥1 ≻ 𝑥4

POP 1.1136 1.1085 1.1125 0.8013 𝑥
1
≻ 𝑥

3
≻ 𝑥

2
≻ 𝑥

4

OPP 1.1099 1.1082 1.1137 0.8013 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4

PPP 1.1091 1.1099 1.1137 0.8013 𝑥3 ≻ 𝑥2 ≻ 𝑥1 ≻ 𝑥4

Table 7: Score values obtained by WGHMFPG operator based on the preference of OOO and the ranking of alternatives.

OOO 𝑆(𝑥1) 𝑆(𝑥2) 𝑆(𝑥3) 𝑆(𝑥4) Ranking
𝜆 = 0.1 1.1303 1.1316 1.1290 0.8099 𝑥2 ≻ 𝑥1 ≻ 𝑥3 ≻ 𝑥4

𝜆 = 0.3 1.1272 1.1264 1.1256 0.8081 𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4

𝜆 = 0.5 1.1240 1.1210 1.1220 0.8062 𝑥
1
≻ 𝑥

3
≻ 𝑥

2
≻ 𝑥

4

𝜆 = 1 1.1157 1.1068 1.1125 0.8012 𝑥1 ≻ 𝑥3 ≻ 𝑥2 ≻ 𝑥4

𝜆 = 3 1.0797 1.0452 1.0732 0.7796 𝑥1 ≻ 𝑥3 ≻ 𝑥2 ≻ 𝑥4

𝜆 = 5 1.0427 0.9890 1.0401 0.7587 𝑥
1
≻ 𝑥

3
≻ 𝑥

2
≻ 𝑥

4

𝜆 = 10 0.9670 0.8936 0.9866 0.7170 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4
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Table 8: Score values obtained by WGHMFPG operator based on the preference of PPP and the ranking of alternatives.

PPP 𝑆(𝑥1) 𝑆(𝑥2) 𝑆(𝑥3) 𝑆(𝑥4) Ranking
𝜆 = 0.1 1.1237 1.1347 1.1303 0.8101 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥4

𝜆 = 0.3 1.1206 1.1296 1.1268 0.8082 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥4

𝜆 = 0.5 1.1174 1.1242 1.1232 0.8063 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥4

𝜆 = 1 1.1091 1.1099 1.1137 0.8013 𝑥3 ≻ 𝑥2 ≻ 𝑥1 ≻ 𝑥4

𝜆 = 3 1.0733 1.0480 1.0743 0.7797 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4

𝜆 = 5 1.0368 0.9914 1.0411 0.7588 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4

𝜆 = 10 0.9624 0.8950 0.9874 0.7171 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4
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Figure 2: Variation of the score values with respect to the parameter 𝜆.
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(1) If 0 < 𝜆 < 0.2247, then we have 𝑥2 ≻ 𝑥1 ≻ 𝑥3 ≻ 𝑥4.

(2) If 0.2247 < 𝜆 < 0.3912, then we have 𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻
𝑥4.

(3) If 0.3912 < 𝜆 < 5.6723, then we have 𝑥1 ≻ 𝑥3 ≻ 𝑥2 ≻
𝑥4.

(4) If 5.6723 < 𝜆 < 10, then we have 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4.

Figure 2 illustrates that scores of each route decrease as
the values of 𝜆 change from 0 to 10 with respect to pessimists
of decision makers’ risk preferences. From Figure 2, we can
find the following.

(1) If 0 < 𝜆 < 0.6062, then we have 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥4.

(2) If 0.6062 < 𝜆 < 1.0630, then we have 𝑥3 ≻ 𝑥2 ≻ 𝑥1 ≻
𝑥4.

(3) If 1.0630 < 𝜆 < 10, then we have 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4.

6. Conclusion

In this paper, we have defined the compatibility mea-
sures between DHFEs and presented several new hesitant
multiplicative fuzzy aggregation operators, including the
HMFPG, WGHMFPG, and HMFPOWG operators. More-
over, we studied their properties, including their com-
mutativity, idempotency, boundedness, and monotonicity.
We have applied the proposed operators to develop two
approaches to multiple attribute group decision making
in hesitant multiplicative fuzzy environments. Finally, one
typical real world example has been used to illustrate the
application and verify the validity of our results.
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