
Mobile Information Systems 10 (2014) 385–405 385
DOI 10.3233/MIS-140189
IOS Press

k-nearest neighbor search based on node
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Abstract. In a kNN query processing method, it is important to appropriately estimate the range that includes kNNs. While
the range could be estimated based on the node density in the entire network, it is not always appropriate because the density
of nodes in the network is not uniform. In this paper, we propose two kNN query processing methods in MANETs where the
density of nodes is ununiform; the One-Hop (OH) method and the Query Log (QL) method. In the OH method, the nearest
node from the point specified by the query acquires its neighbors’ location and then determines the size of a circle region (the
estimated kNN circle) which includes kNNs with high probability. In the QL method, a node which relays a reply of a kNN
query stores the information on the query result for future queries.
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1. Introduction

A location-based service (LBS) [15] is a typical application in mobile ad hoc networks (MANETs) [1,
2,7,10,13,16,19,25]. In an LBS, it is common that a node issues queries to search information on a
specific location held by a mobile node in real time. In such a case, it is effective to process the queries
as k nearest neighbor (kNN) queries, which search the information on the k nearest neighbors (kNNs)
from a specified location (query point) [4,6,14,17,21,26–28].

In our previous work, we proposed a kNN query processing method, the Explosion (EXP) method,
which can reduce traffic and also maintain high accuracy of the query result in MANETs [12]. In the
EXP method, the query-issuing node first transmits a kNN query using geo-routing to the nearest node
from the query point (the global coordinator). Then, the global coordinator floods the kNN query to
nodes within a specific circle region (the estimated kNN circle) whose center is the query point, which
looks like a query message that explodes at the global coordinator. Each node that received the query
replies with the information on itself to the global coordinator, and the global coordinator sends back
kNNs to the query-issuing node.

It is very important to appropriately determine the size of the estimated kNN circle because it directly
affects performance. If the estimated kNN circle is set too small, the information of all kNNs may not
be acquired because there may be less than k nodes within the estimated kNN circle. On the other hand,
if the estimated kNN circle is set too large, unnecessary traffic increases because nodes that are not
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included in the result of the kNN query reply with their information. In the EXP method, the estimated
kNN circle is determined based on the density of nodes in the entire MANET. However, in a real envi-
ronment, it is not always easy to know the total number of nodes in the entire MANET and the area size
beforehand. Moreover, since the density of nodes is generally not uniform in a MANET, the estimated
kNN circle, which is set based on the density in the entire area, is not always appropriate.

In this paper, we propose two extended EXP methods; the One-Hop (OH) method and the Query Log
(QL) method, for reducing traffic and also maintaining high accuracy of the query result in MANETs
where the density of nodes is not uniform. In the OH method, the global coordinator acquires its neigh-
bors’ information (only one-hop nodes’ information) by exchanging messages to know the density of
nodes near the query point. If the number of neighbors exceeds k, the global coordinator can reply with
kNNs to the query-issuing node. If not, the global coordinator sets the radius of the estimated kNN
circle based on the density of nodes within its communication range, and acquires the information on
nodes within the estimated kNN circle. In the QL method, a node that relays a reply for a kNN query
stores the information on the query result to use it for determining the estimated kNN circle for future
queries. During query forwarding, the query-issuing and query-relaying nodes attach some of the stored
information to the query, which is used to estimate the density of nodes near the query point. The global
coordinator then estimates the radius of the estimated kNN circle using some of the attached informa-
tion, and acquires the information on nodes within the estimated kNN circle. These methods can set the
size of the estimated kNN circle more appropriately using the information acquired during the query
execution even if each node cannot know the information on the area size and the total number of nodes
beforehand, and the density of nodes in the entire network is not uniform.

We also explain some experimental results to verify that our proposed methods can reduce traffic
compared with the EXP method and also achieve high accuracy of the query result.

The contributions of this paper are as follows:
– Since the network bandwidth and batteries of mobile nodes are limited in MANETs, it is very

important for kNN query processing to reduce unnecessary query messages and replies (i.e., traffic)
as much as possible. We propose two effective kNN query processing methods (the One-Hop (OH)
and Query Log (QL) method) for reducing traffic and also maintaining high accuracy of the query
result.

– The performance of these methods is affected by several factors such as k and network topology.
Thus, by adaptively choosing one of the two methods, we can adapt to various system situations.

– Through extensive simulations, we show that our proposed methods work very well in terms of both
traffic reduction and high accuracy of the query result.

The remainder of this paper is organized as follows: In Section 2, we introduce related work. In
Section 3, we explain our previous work. In Section 4, we present our proposed kNN query processing
methods. In Section 5, we show the results of the simulation experiments. Finally, we summarize this
paper in Section 6.

2. Related work

In [5,23], the authors proposed infrastructure-free kNN query processing methods. In these methods,
a query is first transmitted to the nearest node from the query point [11], adding the information for
setting the search range that contains kNNs with high probability. Then, the nearest node from the query
point estimates the size of the search range based on the information attached to the query. In [23], a
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relaying node sends the query with a list including its location and the number of newly encountered
neighbors. The nearest node from the query point determines the size of the search range based on the
information on the list. On the other hand, in [5], a relaying node updates the query message including
the total area covered by the communication ranges of all relaying nodes and the total number of nodes
within the area. Then, the nearest node from the query point determines the search range based on the
calculated density of nodes within the area. After that, the search range is partitioned into some sectors.
With respect to each sector, a node collects partial results that contain information on nodes within its
communication range and propagates the query to the next node along a well devised itinerary structure.

However, these methods basically assume a location-aware sensor network. More specifically, in these
methods, each sensor node must precisely know its neighbors (e.g., by frequently exchanging beacon
messages), which causes too much overhead in highly dynamic MANETs. On the other hand, in our
proposed methods, each mobile node does not have to know the network topology or its neighbors
beforehand, which is more suitable for MANETs.

In [24], the authors proposed methods for processing kNN queries in location-aware sensor networks;
the GRT, KBT and IKNN algorithms. In the KBT algorithm, a tree infrastructure composed of sensor
nodes is constructed and a kNN query propagates along it. The nearest node from the query point deter-
mines the search range using for example an approach based on the number of hops during geo-routing.
However, in these approaches, because the radius of the search range is set large enough in order not
to miss kNNs, unnecessary replies are sent back from nodes that are in the circle but not kNNs. More-
over, a static sensor network is basically assumed with these methods; therefore, they cannot be directly
applied to highly dynamic MANETs.

In [9], the authors proposed a kNN query processing method in a 3D sensor network. This method
adopts a data collector that efficiently tours kNNs. Because it is assumed that nodes are uniformly
distributed in the network and each node knows the area size and number of nodes in the entire network
with this method, the search range is set based on the average density of nodes in the network similar to
our EXP method. However, as mentioned, in a real environment, it is not always easy to know the total
number of nodes in the entire MANET and the area size beforehand. Moreover, the density of nodes is
generally not uniform in a MANET.

3. Previous work: EXP method

In this section, we describe the EXP method that we previously proposed [12].

3.1. Geo-routing for forwarding query to query point

In the EXP method, the query-issuing node first forwards a kNN query using our geo-routing method
(an extension of the protocol proposed in [8]) to the global coordinator. Our geo-routing method adopts a
three-way handshake protocol to send a query to the neighboring node closest to the query point among
its neighboring nodes. By repeating this procedure, the query is forwarded to the global coordinator.

More specifically, in our geo-routing method, the query-issuing node first broadcasts a neighbor
searching message. Then, when a node receives the neighbor searching message, if it is closer to the
query point than the source node, it sets the waiting time for sending a reply. Because nodes closer to
the query point transmit a reply message after a shorter waiting time, the nearest node from the query
point among the neighbors firstly transmits a reply message to the source node. Then the source node
that received reply messages from its neighbors sends a (forwards the) kNN query message only to the
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node that firstly sent the reply. The node that received the forwarded kNN query broadcasts a neighbor
searching message in the same procedure. Finally, if the node that sent a neighbor searching message
does not receive any reply messages when the query point is included in its communication range, it
recognizes itself as the global coordinator and starts acquiring kNNs.

Therefore, the query-issuing node forwards a kNN query to the global coordinator with little traffic
because this geo-routing method neither uses beacon messages nor constructs multi-paths.

3.2. Forwarding kNN query and replying result

In the EXP method, we assume each node knows the total number of nodes and the size of the entire
area in which nodes exist. First, the query-issuing node determines the size of the estimated kNN circle
based on the density of nodes in the entire area. After receiving a query transmitted using the geo-routing
method described in Section 3.1, the global coordinator floods a local query message to nodes within
the estimated kNN circle. Then, each node that received the local query message stores the identifier
of the source node as its EXP parent and sets the waiting time, WT, for sending a reply. Here, WT
gets decreases as the distance between the node and the query point increases. When WT has passed, the
node transmits a reply message attached with its information to its EXP parent. Finally, after collecting
replies from nodes in the estimated kNN circle, the global coordinator replies with the kNN result to the
query-issuing node.

Figure 1 shows an example of executing the EXP method where M1 is the global coordinator. When
M5 receives a local query message from M1, it stores M1’s ID as its EXP parent and broadcasts a
local query message to its neighboring nodes because it is within the estimated kNN circle. In the same
way, upon receiving the query message, M6 stores M5’s ID as its EXP parent and broadcasts a local
query message to its neighboring nodes. On the other hand, upon receiving the query message, M7

discards the message because it is not within the estimated kNN circle. When WT has passed at M6, M6

transmits a reply message attached with M6’s information to M5. M5 that received the reply message
from M6 transmits a reply message attached with M5’s and M6’s information when WT has passed. Such
procedures are performed in the entire MANET. Finally, M1 acquires the information on all nodes within
the estimated kNN circle. When WT has passed at M1, M1 transmits the kNN result to the query-issuing
node.

The EXP method can reduce the traffic for collecting the kNN result because a tree structure is dy-
namically constructed during transmissions of local query messages, and the information of nodes in
only a specific region (the estimated kNN circle) is efficiently collected along the tree. In this method,
determining the radius of the estimated kNN circle, R, is based on the density of nodes in the entire
MANET. However, in a real environment, it is not always easy to know the total number of nodes in the
entire MANET and the area size beforehand. Moreover, the density of nodes is generally not uniform in
a MANET.

4. KNN query processing methods

In this section, first we describe the design policy of our proposed methods and the assumed envi-
ronment. Then, we give an overview of our proposed methods. Finally, we describe in detail of how to
process a kNN query with our methods.
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Fig. 1. EXP method.

4.1. Design policy

In MANETs, it is very important to reduce as much traffic as possible due to limitations of network
bandwidth and battery of mobile nodes. If each node periodically broadcasts a beacon message even
when no node searches kNNs in the network, this causes unnecessary traffic. A method without us-
ing beacon messages is suitable for MANETs. However, without exchanging beacon messages, each
node cannot know its neighboring nodes’ information beforehand. Therefore, we design our methods as
beacon-less methods that perform on-demand search.

Moreover, in MANETs, the k nearest nodes from the query point change during the search because
a node moves freely. Therefore, the query-issuing node should acquire the query result in a short time.
For this aim, we design our methods to execute a query by just one round of message transmissions.

Since mobile nodes consume limited communication bandwidth for data transmission, packet loss
and packet retransmission may occur when the network is congested, i.e., some information cannot be
transmitted. Thus, the amount of information transmitted by each mobile node should be reduced as
much as possible, so the estimated kNN circle should be appropriately set. When each node knows
the total number of nodes in the entire network and the area size, and the density of nodes is uniform,
the density of nodes in the entire network can be the optimal estimated kNN circle. However, these
assumptions are not always true in a real environment. Therefore, we propose the methods without these
assumptions.

4.2. Assumptions

The system environment is assumed to be a MANET in which all mobile nodes have the same radio
communication facility, in which the communication range is a circle with a fixed size. We assume that
the MANET is sufficiently dense so that network partitioning does not occur and geo-routing can be
performed between any pair of nodes. In the MANET, mobile nodes retrieve the information on mobile
nodes using kNN queries. The query-issuing node transmits a query message associated with the query
point and acquires the information on the k nearest nodes from the query point among all nodes in the
entire network.



390 Y. Komai et al. / k-nearest neighbor search based on node density in MANETs

We assign a unique node identifier to each mobile node in the system. The set of all mobile nodes in
the system is denoted as M = {M1, M2, · · · , Mn}, where n is the total number of mobile nodes and Mi

(1 � i � n) is a node identifier. Each mobile node moves freely. Every mobile node knows its current
location by using positioning devices such as GPS.

4.3. Overview of our methods

To appropriately set the estimated kNN circle, the node should efficiently know the density of nodes
near the query point because there should be kNNs near the query point. When the density of nodes is not
uniform in the entire network, it is more effective to know the density of nodes near the query point than
the average density of nodes in the entire network. However, it is costly to widely acquire the information
on locations of many nodes to calculate the density of nodes. Therefore, the global coordinator first
acquires only the number of nodes within its communication range (one-hop) by broadcasting the query
to its neighbors. By doing so, the global coordinator can calculate the density of nodes near the query
point.

According to the above policy, after a query is transmitted to the global coordinator using geo-routing
with the OH method, the global coordinator acquires its neighbors’ information (one-hop nodes’ infor-
mation) by exchanging messages to know the density of nodes near the query point. If the number of
neighbors exceeds k, the global coordinator can reply with kNNs to the query-issuing node. If not, the
global coordinator sets the radius of the estimated kNN circle based on the density of nodes within its
communication range and acquires the information on nodes within the estimated kNN circle.

The problem in which a node can estimate the density of nodes only from its (one-hop) neighboring
nodes is evident with the OH method. Thus, when k is large or the density of nodes is sparse, i.e., the
range where kNNs exist is large, the accuracy of the estimated kNN circle, which is estimated by the
information obtained from its neighboring nodes, is expected to decrease. If a node stores the information
on the query result when receiving or relaying the query reply, it can use the information to know the
density of nodes near the query point in a wider range than with the OH method. Since there are various
kNN queries issued in the network, a node can widely determine the density of nodes in the entire
network by storing the information on the query result. When a new query is issued, such information
on the density of nodes can be used for determining the estimated kNN circle. That information can
also be collected from multiple nodes that relay the query message during geo-routing, which is helpful
to enhance the quality of the information on the node density. After receiving the query, the global
coordinator can determine the radius of the estimated kNN circle based on the density information
attached to the query.

According to the above policy, a node that relays a reply for a kNN query in the QL method stores
the information on the query result as the query log, which includes the density of nodes around the
query point, to use it for future queries. During query forwarding for a new query, the query-issuing
and query-relaying nodes attach some of the stored information to the query message, which is used
to estimate the density of nodes near the query point. Then, the global coordinator estimates the radius
of the estimated kNN circle based on some of the attached information. The information on the node
density attached to the query message is expected to be more accurate when its query point is closer to
that of the current query, and when its query-issuing time is closer to that of the current query. Thus, the
QL method takes this fact into account when determining the estimated kNN circle.
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4.4. Forwarding kNN query and replying with result: One-Hop (OH) method

The behaviors of the query-issuing node, Ms, and mobile nodes that receive the query message are
as follows. After step 6 except for step 10, each node mostly behaves in the same way as in the EXP
method.

1. Ms specifies the requested number of kNNs, k, and the query point. Then, similar to the EXP
method,Ms transmits a kNN query message to the global coordinator using the geo-routing method
described in Section 3.1. In the query message, the query-issuing node’s ID and location are re-
spectively set as Ms and its location, the requested number of kNN is set as k, and the query point
is set as the location specified by the query.

2. Through the procedures described in Section 3.1, the global coordinator, Mp, is selected. Then it
broadcasts a one-hop query message to its neighboring mobile nodes. In the message, the global
coordinator’s ID and location are respectively set as Mp and its location.

3. Each mobile node, Mq, that received the one-hop query message replies with a one-hop reply
message to Mp if the distance between the query point and Mq is shorter than the radius of the
communication range. In the message, the source node’s ID and location are respectively set as Mq

and its location.
4. Mp that received the one-hop reply messages from its neighboring nodes stores the tentative kNN

result by adding the information on nodes that replied with the one-hop reply messages.
If the number of nodes included in the tentative kNN result exceeds k, the information on nodes
that are not kNNs from the query point is removed from the tentative result, and the procedure
continues to step 11.

5. Mp determines the radius of the estimated kNN circle, R, which contains kNNs with high proba-
bility, based on the tentative kNN result by the following equation:

R = α · l ·
√

k

n′ . (1)

For determining R for the first time, l is the radius of the communication range, n′ is the number
of nodes included in the tentative kNN result (including Mp), and α is a margin for safely setting
the estimated kNN circle. After the second time, (returned from step 10), l′ is the distance from
the farthest node to the query point in the tentative kNN result and n′ and α are same. As Eq. (1)
shows, R is set based on the density of nodes acquired by the global coordinator.

6. Mp broadcasts a local query message to its neighboring mobile nodes. In the message, the requested
number of kNNs is set as k, the radius of the estimated kNN circle is set as R, the query point is set
as that in the received query message, and the global coordinator’s ID and location are respectively
set as Mp and its location.

7. Each mobile node, Mq, that received the local query message the first time stores the identifier of
the source node as its EXP parent. If Mq is within the estimated kNN circle, it sets the waiting
time, WT, for sending a reply by the following equation:

WT = β ·
(
R

r

)
·
(
1− a

R+ b

)
. (2)

a is the distance between Mp and Mq, b is the distance between the query point and Mp, β is a pa-
rameter decided by a system designer to prevent collisions of messages, and r is the communication
range. As Eq. (2) shows, WT decreases as the distance between Mp and Mq increases.
At the same time (without WT), Mq broadcasts a local query message to its neighboring mobile
nodes.
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If Mq has already received a local query message before or it is not within the estimated kNN
circle, it discards the message and does nothing.

8. The node that has set the minimum WT starts to transmit a reply message (after WT) attached with
the information on itself including its location to its EXP parent. This attached information is also
called the tentative kNN result.

9. Each node that received the reply message (from its EXP child) updates the tentative kNN result
attached in the reply message by adding the information on itself. If the number of nodes whose
information is included in the tentative kNN result exceeds k, the information on the node which
is the farthest from the query point is removed from the tentative kNN result.
When WT has passed, it transmits a reply message attached with the updated tentative kNN result
to its EXP parent if it is not the global coordinator. Then, the procedure returns to step 8. Otherwise,
if it is the global coordinator, the procedure continues to step 10.

10. When WT has passed, the global coordinator, Mp, behaves as follows. If the number of nodes
included in the tentative kNN result exceeds k, or the times of retransmitting the local query ex-
ceeds T , the procedure goes to step 11. Otherwise, the procedure returns to step 5, i.e., the global
coordinator re-estimates R and re-does the same process.

11. Mp replies with the tentative kNN result as the final result to the query-issuing node using the
geo-routing method described in Section 3.1, where the query point is set as the location of the
query-issuing node. If Mp or a relaying node incidentally knows a node on the query path from the
query-issuing node to the global coordinator, it forwards the kNN result to the node and the kNN
result is sent back to the query-issuing node along the query path. If some nodes along the query
path do not connect with their parents due to link disconnection, they again transmit the kNN result
using the geo-routing method.

By using this method, the radius of the estimated kNN circle can be appropriately estimated because
it is calculated based on the density of nodes near the query point. Therefore, unnecessary transmissions
of queries and replies can be suppressed.

4.5. Forwarding kNN query and replying with result: Query Log (QL) method

The behaviors of the query-issuing node, Ms, and mobile nodes that receive the query message are as
follows.

1. Ms specifies the requested number of kNNs, k, and the query point. If Ms has some query logs, it
attaches the query logs (L) that satisfy the following condition:

∀i {L.t � L(i).t ∪ L.d � L(i).d}. (3)
Here, L(i) is the i-th query log, L(i).t is the time interval between the query-issuing time of the
current query and that for L(i), and L(i).d is the distance between the query point of the current
query and that for L(i). This condition shows that only query logs of queries issued recently and
near the query point of the current query can be used to determine the estimated kNN circle.
Because all query logs under this condition are attached to the query, they can be used to select
query logs for estimating the radius of the estimated kNN circle. Although the size of the query
message is slightly large since some query logs are attached, this condition can prevent many query
logs from being attached.
Ms transmits a kNN query message to the global coordinator using the geo-routing method de-
scribed in Section 3.1. In the query message, the query-issuing node’s ID and location are respec-
tively set as Ms and its location, the requested number of kNN is set as k, the query point is set
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as the location specified by the query, and the query log list is set as the list of query logs each
of which contains the information on the query point, the query-issuing time, the requested num-
ber of kNN, k_past, and the distance from the query point to the k_past-th nearest node of the
corresponding query.

2. During geo-routing, if Mt that received the query message has some query logs, it adds some of
the query logs to the query log list in the query message, which are chosen by using the method
described in step 1, and broadcasts the message.

3. Through the process described in Section 3.1, the global coordinator, Mp, is selected. If the query
log list in the received query message is empty and Mp does not store any query logs that satisfy
condition (3), it performs steps 2 to 9 in Section 4.4, and the procedure continues to step 4. Other-
wise, Mp determines the radius of the estimated kNN circle by using query logs in the query log
list and that are stored on Mp. First, the estimated kNN circle, R, for each of the query logs that
satisfy condition (3) is calculated by the following equation:

R′ = l′ ·
√

k

k_past
. (4)

R =

√
R′2 +

d

γ
+

t

θ
. (5)

We call the query corresponding to the query log previous query. k_past is the requested number
of kNNs in the previous query, l′ is the distance from the query point to the k_past-th nearest node
in the previous query, d is the distance between the query point of the current query and that of the
previous query, t is the time interval between the query-issuing time of the current query and that
of the previous query, and γ and θ are weighting parameters to adjust the impact of d and t. R′ in
Eq. (4) is set based on the density of nodes in the query log. When the query point of the previous
query is farther than that of the current query, and when the query-issuing time of the previous
query is older, as shown in Eq. (5), R increases. This is effective in preventing the accuracy of the
query result from decreasing by an error estimation of the estimated kNN circle.
Then, the query log that has the smallest R among all the query logs is selected, and its R becomes
the radius of the estimated kNN circle. Then, steps 6 to 9 in Section 4.4 are performed, and the
procedure continues to step 4.

4. When WT has passed, the nearest node from the query point, Mp (the global coordinator) behaves
as follows. If the number of nodes included in the tentative kNN result exceeds k, or the times of
retransmitting the local query exceeds T , the procedure continues to step 5. Otherwise, it performs
steps 5 to 9 in Section 4.4 again, i.e., the global coordinator re-estimates R and re-does the same
process. Here, l′ in step 5 is set to R determined in step 3.

5. Mp replies with the tentative kNN result as the final result to the query-issuing node using the
geo-routing method (same as step 11 in Section 4.4).
During geo-routing, Ms, Mp, and the relaying nodes store the information on the query result as a
query log, which contains the query point, the query-issuing time, the requested number of kNNs,
k, and the distance from the query point to the k-th nearest node.

Since the QL method determines the radius of the estimated kNN circle using the stored information
on previous queries, it does not require extra message exchanges. Moreover, it can estimate the node
density in a wider area than the OH method, which estimate the node density based on the number of
one-hop neighbors. To reduce errors in estimation, the QL method gives higher priority to queries in the
query log list that are newer and specify the query point closer to that of the current query.
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5. Simulation experiments

In this section, we explain the results of simulation experiments regarding the performance evalua-
tion of our proposed methods. For the simulation experiments, we used the network simulator Qual-
Net5.2 [22].

5.1. Simulation model

The number of mobile nodes in the entire system is 400 (except in Section 5.7 setting on the number
of nodes as 800 nodes). These mobile nodes exist in an area of 800 × 800 m2 and their initial positions
are randomly selected. These nodes move according to the random walk model [3] where nodes select a
random direction and random speed from 0.5 to 1.0 m/sec every minute.1 We also conducted simulations
with other mobility models: the random waypoint and random waypoint models with a home area. In
the latter model, the entire area is partitioned into four square regions of equal size, and each node
selects its next destination either from the region in which it resides (90% probability) or from another
region (10%). The results show that our proposed methods achieve roughly the same performance in all
the three mobility models, and the differences in performance between our methods and comparative
methods are almost same in the three mobility models. Thus, we only show here the results with the
random walk model.

Each mobile node transmits messages using an IEEE 802.11b device whose data transmission rate is
11 Mbps. The transmission power of each mobile node is determined so that the radio communication
range becomes about 100 m. Packet losses and delays occur due to radio interference. We assume that
each node knows its current location. The query point specified by a kNN query is randomly selected
within the entire area, and α in Eq. (1), β in Eq. (2), γ in Eq. (5), and θ in Eq. (5) are respectively set to
1, 1, 0.01 and 10 based on our preliminary experiments. The requested number of kNNs, k, is randomly
selected from 1 to 100 by the query-issuing node.

We compare the performance of our proposed methods with that of two different methods. The first
method is the EXP method [12]. We assume that each node can know the total number of nodes, n, and
the area size. Thus, in the EXP method, R (radius of the estimated kNN circle) is determined by the
following equation:

R =

√
k · area
π · n . (6)

area is the area size (area = 800 × 800) and n is the total number of nodes. We adopt three different
values of n for the EXP method, n = 400, 200, and 800. It should be noted that the real number
of nodes in the simulations is 400 as described above. Here, we assume that each node in the EXP
method misunderstands the number of nodes when n = 200 and 800. These two cases respectively
represent situations in which nodes overestimate and underestimate the estimated kNN circle because
of the difference in node density between the entire area and the target region of kNN queries. From
this, we can verify the impact of misestimation of node density in the EXP method. In the graphs of the
experimental results, we show the results when n = 400, 200, and 800 as “EXP (just)”, “EXP (over)”, and
“EXP (under)”, respectively. The other method for comparison is called the “optimal method” (denoted
as “Optimal” in the graphs). In this method, we assume that the global coordinator completely knows

1We change the simulation setting on initial positions and movement of nodes in Section 5.5.
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Table 1
Message types and sizes

Type Size [B]
Neighbor searching (geo-routing) 48
Reply (geo-routing) 8
Query (OH and EXP methods) 56
Query (QL method) 64+32p
One-hop query 32
One-hop reply 32
Local query 64
Local reply 16+16q
Reply (OH and EXP methods) 32+16q
Reply (QL method) 60+16q
Ack to a received reply 16

the position of the k-th nearest node from the query point; thus, it can set the optimal search range
(i.e., estimated kNN circle) to acquire kNNs with the smallest traffic. After setting the search range,
it performs in the same way as the EXP method. Of course, this is an ideal method, which cannot be
implemented in reality. We show the performance of this method as the upper-bound of performance,
which is just a guideline.

After one minute passes since the simulation started, the query-issuing node is randomly chosen
among all nodes and it issues a kNN query. We repeat this process 1,000 times (i.e., 1,000 queries)
every 20 seconds and evaluate the following three criteria.

– Traffic
We examine the total volume of query messages and replies exchanged for processing a query.
Table 1 lists the size of each message used in our methods and the comparative methods, where p
denotes the number of query logs attached to a query and q denotes the number of nodes whose
information is included in the reply. We define “traffic” as the average total volumes for all queries
issued.

– Response time
We examine the time from transmitting a query message by the query-issuing node until receiving
the kNN result. We define “response time” as the average times for all queries issued.

– Accuracy of query result
We examine the ratio of the number of kNNs whose information is included in the kNN result
acquired by the query-issuing node to the requested number of kNNs, k. We define “accuracy of
query result” as the mean average precision (MAP) value which measures the performance of the
result with a ranking [18]. MAP is an average of the average precision (AP) for each query. AP and
MAP are determined by the following equations.

APi =
1

k

k∑
j=1

g

j
· e (7)

MAP =
1

querynum

querynum∑
i=1

APi (8)

APi is the AP on the i-th issued query, g is the number of nodes that are included in the query result
among the top-j nearest nodes, querynum is the total number of issued queries (i.e., 1,000 in this
simulation), and e is determined by the following equation:

e =

{
1 (j-th nearest node is included in kNN result).
0 (otherwise). (9)
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Fig. 2. Impact of number of re-estimations in OH method.

Thus, MAP becomes higher as the query-issuing node obtains the information on nodes closer to
the query point.

5.2. Impact of number of re-estimations of R

In our methods, the number of re-estimations of R occurring in processing a kNN query affects the
performance. Therefore, we first explain the results of simulations where the maximum number of re-
estimations of R (denoted as T ) is set to 0 (no re-estimation), 1 (up to one re-estimation) and 2 (up to
two re-estimations).

5.2.1. OH method
First, we examine the performance of the OH method when varying the number of re-estimations of R.

Figure 2 shows the simulation results. In the graphs, the horizontal axis indicates the requested number
of kNNs, k, and the vertical axes indicate the traffic in Fig. 2(a), the response time in Fig. 2(b), and the
accuracy of query result in Fig. 2(c).

From Fig. 2(a), when k is smaller than 10, the traffic does not increase rapidly as k increases. This
is because the global coordinator can acquire the information on more than k nodes by one-hop replies
since it has at least 10 neighboring nodes. This fact can be confirmed from the results where there are
no differences in traffic when T = 0, 1, and 2. When k is larger than 20, the traffic for T = 1 and T =
2 is much larger than that for T = 0. This is because retransmissions of queries and replies occur due
to misestimation of R, which increase traffic. This suggests a disadvantage with the OH method, which
estimates the density of nodes only from the information on one-hop neighbors. When k is large, the
search range increases (larger than the communication range); thus, errors in estimation also increase.
The traffic for T = 1 and T = 2 is almost the same, which shows that kNNs can be acquired by
re-estimating R only once in most cases.

From Fig. 2(b), when k is smaller than 10, the response time is very short in all cases. This is because
the global coordinator can acquire the information on more than k nodes by one-hop replies as men-
tioned. Moreover, the response times for T = 1 and T = 2 are longer than that for T = 0 because it
takes time to acquire the information on remaining kNNs after performing re-estimations of R.

From Fig. 2(c), the OH method where T = 0 can maintain high accuracy of the query result when k
is small. However, the accuracy decreases as k increases. This is because, as mentioned above, errors
in estimation of the estimated kNN circle increase as k increases, and the search range increases. In the
OH method, where T = 1 and T = 2, the accuracy of query result remains high regardless of k (better
than that for T = 0). This shows the effectiveness of re-estimating R. The accuracy of query result is
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Fig. 3. Impact of number of re-estimations in QL method.
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Fig. 4. Impact of k_past in query logs.

almost the same for T = 1 and T = 2. Since the traffic and the response time increase as T increase, we
can conclude that the number of re-estimations of R should be at most once.

5.2.2. QL method
We also examine the performance of the QL method when varying the number of re-estimations of R.

Figure 3 shows the simulation results. In the graphs, the horizontal axis indicates the requested number
of kNNs, k, and the vertical axes indicate the traffic in Fig. 3(a), the response time in Fig. 3(b), and the
accuracy of query result in Fig. 3(c).

From Fig. 3(a), the traffic is almost the same when T = 0, 1, and 2. From Fig. 3(b), the response times
for T = 1 and 2 are longer than that for T = 0. This is due to the same reason as that in Section 5.2.
However, the differences in response time are smaller than the result in Fig. 2(b).

From Fig. 3(c), the QL method, in which T = 0, can maintain high accuracy of query result even when
k is large (unlike the OH method). This shows the advantage of the QL method in using the information
on node density in a wider area than the OH method, obtained from query logs. The accuracy of query
result decreases as k becomes larger. This is because packet losses often occur due to message collisions
when the search range increases. In the QL method where T = 1 and T = 2, the accuracy of query
result remains high, which is similar to the case of the OH method. This shows the effectiveness of re-
estimating R. The accuracy of query result is almost same for T = 1 and T = 2. Since the traffic and the
response time increase as T increases, we can conclude that the number of re-estimations of R should
be at most once in the QL method, similar to the OH method.
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Table 2
Number of queries using query logs

x 0 10 20 30 40 50 60 70 80 90 100
� of queries using query logs 402 933 953 961 961 961 962 963 963 964 964

5.3. Impact of k_past in selected query logs

In the QL method, the global coordinator estimates the search range based on query logs attached to a
query, which are selected among query logs stored on nodes through which the query is transmitted. This
makes the global coordinator know the density of nodes in a wider area with a low traffic. Here, even if
two queries which respectively specify the same query point are issued at the same time, the densities of
nodes stored in their query logs are basically not same when k (k_past in query logs) specified by the
two queries is different. This is because ranges where the k_past nearest neighbors exist are different.

Therefore, in the QL method, k_past in query logs selected for estimation of the kNN circle affects the
performance, and we examine the impacts of k_past in selected query logs. For this aim, we conducted
a simulation where nodes transmitting a query select only query logs among those with k_past within
“the current k ± x”. The range of query logs, x, is varied from 0 to 100 in this simulation; when x is
0, query logs are selected among those with the same k_past as the current query, and when x is 100,
query logs are selected among all query logs.

Figure 4 and Table 2 show the simulation results. In the graphs, the horizontal axis indicates the range
of query logs, x, and the vertical axes indicate the traffic in Fig. 4(a), the response time in Fig. 4(b),
and the accuracy of query result in Fig. 4(c). In Table 2, each number in the lower column indicate
the number of queries which are processed by using query logs for kNN circle estimation out of 1,000
queries. In this subsection, the accuracy of query result is calculated only for queries processed by using
query logs for kNN circle estimation.

From Figs 4(a) and 4(b), the traffic and response time are large when x is 0. This is because the global
coordinator often overestimates the search range since it estimates it based on the density of nodes in a
few query logs whose k_past is the same as that of the current query. More specifically, since it does
not often happen that the query point and query-issuing time of the attached query logs are close to that
of the current, the search range tends to be estimated largely for safety especially for the case of x =
0, where only a few query logs are available. Table 2 shows that when x is 0, only less than half of all
queries (402) are processed by using query logs. This is because it often happens that nodes transmitting
a query do not store any query logs whose k_past is the same as that of the current query. Except for the
case of x = 0, the traffic and response time are nearly constant. This is because the global coordinator
can estimate the search range using enough number of query logs in most cases.

From Fig. 4(c), the accuracy of query result is slightly higher when x is 0. This is because the search
range tends to be estimated largely for safety. However, improvement of accuracy of query result is less
than 1% while the traffic and response time increase. Therefore, we can conclude that the performance
of the QL method is not sensitive to x (except for the case of x = 0). Based on this, in all simulations,
nodes use all query logs (i.e., x = 100) in the QL method.

5.4. Impact of requested number of nodes, k

Next, we compare our proposed methods with the optimal and the EXP methods. Figure 5 shows the
simulation results. In the graphs, the horizontal axis indicates the requested number of kNNs, k, and the
vertical axes indicate the traffic in Fig. 5(a), the response time in Fig. 5(b), and the accuracy of query
result in Fig. 5(c). In our proposed methods; the OH method and the QL method, T is set to 0.



Y. Komai et al. / k-nearest neighbor search based on node density in MANETs 399

From Fig. 5(a), as k increases, the traffic increases in all methods. This is because the searching
area for processing a kNN query and the data volume of the reply increase. The traffic in the EXP
method (just) is almost same as that in the optimal method. This is because the estimated kNN circle is
appropriately set when the density of nodes near the query point is the same as that in the entire area.
However, in the EXP method (over), the traffic becomes higher due to the overestimation of the kNN
circle, i.e., the search range is too large. On the other hand, in the EXP method (under), the traffic is
very small due to the underestimation of the estimated kNN circle, which can be seen from the result in
Fig. 5(c) where the information on only about half of kNNs is acquired. This result suggests that the EXP
method cannot appropriately estimate the search range (the estimated kNN circle) when the density of
nodes is different from that near the query point. In the OH method, the traffic is slightly larger than that
in the optimal method. This is because extra message exchanges are necessary to acquire the neighboring
nodes’ information. The traffic in the QL method is also slightly larger than that in the optimal method.
This is because the estimated kNN circle is sometimes set to much larger than the optimal range for
safety (e.g., when new query logs for queries issued near the query point cannot be found).

From Fig. 5(b), the response time in all methods increases as k increases. This is because in all
methods, the waiting time, WT, increases as the estimated kNN circle increases. In particular, since the
EXP method (over) overestimates the search range, it sets a longer WT than other methods. Meanwhile,
the EXP method (under) gives the shortest response time since the search range is the smallest, i.e., WT
is the smallest. In the OH method, the response time is very short when k is smaller than 20. This is
because the global coordinator can acquire the information on about 20 nodes by one-hop replies. When
k is large, the response time of the OH method is longer than that in the optimal method. This is because
the OH method requires at least two rounds of message exchanges; (i) to acquire the neighboring nodes’
information and (ii) to acquire the information on kNNs. The response time in the QL method is slightly
longer than that in the optimal method. This is because the estimated kNN circle is sometimes set to
much larger, as mentioned above.

From Fig. 5(c), the accuracy of query result is very high (nearly 1) in the QL, EXP (over), and optimal
methods. This suggests that the estimated kNN circle can be appropriately set in the QL method. In the
optimal method (though the estimated kNN circle is optimally set), the accuracy of query result slightly
decrease as k increases, which also occurs in our proposed methods and EXP method (over). This is
because many replies are sent back to the query-issuing node and collisions of messages often occur. In
the OH method, the accuracy of query result slightly decreases, but it can remain high with low traffic
by re-estimating R, as described in Section 5.2. On the other hand, the EXP method (just) gives lower
accuracy of query result. This is because R is sometimes set smaller than the optimal one when the
density of nodes near the query point is incidentally lower than that in the entire area. The accuracy of
query result in the EXP method (under) is much lower than other methods due to the underestimation of
R.

5.5. Impact of requested number of nodes, k, in skewed network

Finally, we change the simulation setting on distribution and movement of nodes and compare our
proposed methods with the optimal and EXP methods. We aim to examine the impact of skewed node
density on our methods. Specifically, the simulation area is partitioned into four square sub-areas with the
same size and 50, 150, 50, and 150 nodes are deployed in top-left, top-right, bottom-left, and bottom-
right sub-areas, respectively. Nodes move according to the random walk model [3] in their own sub-
areas, where each node selects a random direction and random speed from 0.5 to 1.0 m/sec every minute.
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Fig. 5. Impact of requested number of kNNs, k.
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Fig. 6. Impact of requested number of kNNs, k, in skewed network.

This represents a situation where sub-areas with 150 nodes (dense sub-areas, 150/(400 × 400) 1/m2) are
much more dense than that with 50 nodes (sparse sub-areas, 50/(400 × 400) 1/m2). In our proposed
methods, T is set to 0, and γ and θ in Eq. (5) are respectively set to 0.1 and 1 based on our preliminary
experiments. Figure 6 shows the simulation results. In the graphs, the horizontal axis indicates the re-
quested number of kNNs, k, and the vertical axes indicate the traffic in Fig. 6(a), the response time in
Fig. 6(b), and the accuracy of query result in Fig. 6(c).

From Fig. 6(a), in the OH method, the traffic is much larger than that in Fig. 5(a). This is because the
estimated kNN circle is set larger than necessary due to an error in estimation when the query point is
set as a point in a sparse sub-area, which is near the border of a dense sub-area (i.e., the OH method
does not take into account the density of nodes in a dense area). On the other hand, the traffic in the QL
method is almost the same as that in Fig. 5(a). This shows that the QL method can set the estimated kNN
circle appropriately even in a skewed network where the density of nodes is not uniform.

From Fig. 6(b), in the OH method, the response time is longer than that in Fig. 5(b) when k is large.
This is because the waiting time, WT, increases as the estimated kNN circle increases.

From Fig. 6(c), the accuracy of query result is lower than that in Fig. 5(c) in all methods because geo-
routing sometimes does not work well in a sparse area. More specifically, a node that relays a message
sometimes cannot find any nodes closer to the query point than itself. In the OH method, the accuracy of
query result remains high, while it produces much traffic, as described above. On the other hand, in the
QL method, the accuracy of query result remains high, while the traffic is not so large. From these facts,
we can confirm that using query logs is effective in estimating the estimated kNN circle in a network
where the density of nodes is not uniform.
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Fig. 7. Impact of node speed.

5.6. Impact of node speed, v

We vary the maximum speed of nodes to examine the impact of node speed. Figure 7 shows the
simulation results. In the graphs, the horizontal axis indicates the maximum speed of nodes, v, and the
vertical axes indicate the traffic in Fig. 7(a), the response time in Fig. 7(b), and the accuracy of query
result in Fig. 7(c). In our proposed methods; the OH method and the QL method, T is set to 0.

From Figs 7(a) and 7(b), in the QL method, the traffic and response time slightly increase as v in-
creases. This is because the search range tends to be overestimated more since the density of nodes more
dynamically changes as the node speed increases. In the other methods, the traffic and response time are
nearly constant, regardless of nodes’ speed. This shows the size of the search range is almost same even
if nodes move faster.

From Fig. 7(c), the accuracy of query result slightly decreases due to more packet losses. However,
even if the max speed is 10 m/s, our methods still keep high accuracy of query result.

5.7. How to choose a method

As shown above, our proposed methods, the OH and QL methods, show different performance in
different situations, e.g., k and the density of nodes, and thus, which is the best method changes depend-
ing on a situation. More specifically, when k is small and the density of nodes is high, the OH method
outperforms the QL method. This is because the estimation based on the density of the global coordi-
nator’s neighboring nodes works well since the area where k nearest nodes exist is relatively small. In
addition, since more than k nodes are often neighbors of the global coordinator, the global coordinator
can acquire the information on k nearest nodes without setting the search range in the OH method. On
the other hand, when k is large and the density of nodes is low, the QL method outperforms because it is
useful to estimate the search range based on the density of nodes in a wider area. Therefore, the global
coordinator can select either the OH method or the QL method based on the size of k or the density of
nodes in order to effectively process a query.

To examine how to partially achieve this, we conducted an experiment where we introduce a new
system parameter switching-k as the border line of selecting the two methods. If the specified k is less
than switching-k, the OH method is chosen, i.e., the global coordinator estimates the search range based
on the density of the global coordinator’s neighbors. Otherwise, the QL method is chosen, i.e., the global
coordinator estimates the search range based on query logs.

Only in this experiment, we set the number of nodes as 800 because it shows clearer characteristics
than other setting. Figure 8 shows the simulation results. In the graphs, the horizontal axis indicates the
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Fig. 8. Impact of method selection.

switching-k, and the vertical axes indicate the traffic in Fig. 8(a), the response time in Fig. 8(b), and the
accuracy of query result in Fig. 8(c). In our proposed methods, T is set to 0 and 1.

From Figs 8(a) and 8(b), the traffic and response time are small when switching-k is around 50. This
shows that it is somewhat effective to switch between the OH and QL methods based on the value of
k. The traffic and response time slightly increase as T increases as described in Section 5.2. Here, the
traffic and response time show almost the same tendencies in both cases of T (T = 0 and 1), i.e., the
optimal value of switching-k is same regardless of T .

From Fig. 8(c), in the case of T = 0, the accuracy of query result is the highest when the switching-k
is 80. When the switching-k is small, the accuracy of query result decreases because the search range is
sometimes underestimated based on inaccurate past information on density of nodes in the QL method.
This shows that the OH method should be selected when k is small, i.e., the estimation based on the
density of the global coordinator’s neighbors works well. When the switching-k is significantly large,
the accuracy of query result also decreases. This is because when k is large, the density of nodes near the
global coordinator is no more reliable for estimation, i.e, the QL method outperforms the OH method.
The accuracy of query result where T = 1 is higher than that where T = 0, and is nearly constant
regardless of switching-k.

In summary, to efficiently reduce the traffic and response time in this simulation setting (e.g., the
number of nodes is 800), it is effective switching-k is set to 50 and the global coordinator re-estimates
the search range once if needed.

6. Conclusions

In this paper, we proposed two kNN query methods; the One-Hop (OH) method and the Query Log
(QL) method, for reducing traffic and also maintaining high accuracy of the query result in MANETs,
assuming that the density of nodes is not always uniform. In the OH method, the global coordinator
acquires its neighbors’ information (only one-hop nodes’ information) by exchanging messages to know
the density of nodes near the query point. If the number of neighbors exceeds k, the global coordinator
can reply with the information on kNNs to the query-issuing node. If not, the global coordinator sets the
radius of the estimated kNN circle based on the density of nodes within its communication range and
acquires the information on nodes within the estimated kNN circle. In the QL method, a node which
relays a reply for a kNN query stores the information on the query result to use it for determining the
estimated kNN circle for future queries. During query forwarding, the query-issuing and query-relaying
nodes attach some of the stored information to the query, which is used to estimate the density of nodes
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near the query point. Then, the global coordinator estimates the radius of the estimated kNN circle using
some of the attached information and acquires the information on nodes within the estimated kNN circle.
These methods can set the size of the estimated kNN circle more appropriately using the information
that is acquired during the query execution even if each node cannot know the information on the area
size and total number of nodes beforehand, and the density of nodes in the entire network is not uniform.

The experimental results show that our proposed methods produce similar traffic for processing kNN
queries as the optimal method and also achieve high accuracy of the query result. The EXP method,
which calculates the estimated kNN circle based on the average density of nodes, sometimes cannot
appropriately set the estimated kNN circle since the density of nodes near the query point is not always
the same as that in the entire area. In the OH method, when k is small, the estimated kNN circle can be
appropriately set; however, when k is large, i.e., the search range is large, the accuracy of the estimated
kNN circle decreases. In the QL method, the accuracy of the query result sometimes decreases because
the QL method estimates R based on the density of nodes using past query logs, which contain some
errors.

We also assumed that kNNs are the k nearest nodes from the query point (i.e., nodes are the targets
of search). We plan to extend our proposed methods to search general objects associated with locations
(e.g., location-based data).
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