Scientific Programming 21 (2013) 17-42 17
DOI 10.3233/SPR-130361
I0S Press

A parallel ghosting algorithm for the flexible
distributed mesh database

Misbah Mubarak *, Seegyoung Seol, Qiukai Lu and Mark S. Shephard

Scientific Computation Research Center, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
E-mails: {mubarm, seols, lug3, shephard}@rpi.edu

Abstract. Critical to the scalability of parallel adaptive simulations are parallel control functions including load balancing,
reduced inter-process communication and optimal data decomposition. In distributed meshes, many mesh-based applications
frequently access neighborhood information for computational purposes which must be transmitted efficiently to avoid parallel
performance degradation when the neighbors are on different processors. This article presents a parallel algorithm of creating and
deleting data copies, referred to as ghost copies, which localize neighborhood data for computation purposes while minimizing
inter-process communication. The key characteristics of the algorithm are: (1) It can create ghost copies of any permissible
topological order in a 1D, 2D or 3D mesh based on selected adjacencies. (2) It exploits neighborhood communication patterns
during the ghost creation process thus eliminating all-to-all communication. (3) For applications that need neighbors of neighbors,
the algorithm can create n number of ghost layers up to a point where the whole partitioned mesh can be ghosted. Strong and
weak scaling results are presented for the IBM BG/P and Cray XE6 architectures up to a core count of 32,768 processors. The
algorithm also leads to scalable results when used in a parallel super-convergent patch recovery error estimator, an application

that frequently accesses neighborhood data to carry out computation.

Keywords: Ghost entities, mesh database, neighborhood communication, massively parallel architectures

1. Introduction

Unstructured mesh methods, like finite elements and
finite volumes, effectively support the analysis of com-
plex physical behaviors modeled by partial differential
equations over general three-dimensional domains. In
many cases, the ability to solve problems of practical
interest requires the use of billions of spatial degrees
of freedom and thousands of implicit time steps. Prob-
lems of such size can only be solved by distributing the
mesh on massively parallel computers. As analysis is
performed on a massively parallel computer with dis-
tributed meshes, consideration must be given to inter-
process communication and synchronization to ensure
the efficiency of such parallel computations.

In a distributed unstructured mesh, most of the com-
munications are within a set of neighboring processors.
That is, the analysis code accesses adjacent mesh en-
tities to compute parameters needed during the com-
putation. Therefore, it is important to cluster elements

*Corresponding author: Ms. Misbah Mubarak, Scientific Compu-
tation Research Center (SCOREC), Rensselaer Polytechnic Institute,
110 8th St, Troy, NY 12180, USA. Tel.: +1 518 951 0857; E-mail:
mubarm @rpi.edu.

or mesh entities in a way to minimize the number
of adjacent mesh entities belonging to different pro-
cessors, thus minimizing communication [9]. Even
then, specific operations for example, mesh smooth-
ing, calculating error estimate and local geometric re-
construction (e.g. subdivision surfaces) requires data
from mesh entities internal to neighboring processors.
One means to support providing this data that min-
imizes communication overheads, is by the addition
of copies of the data, referred to as ghost copies, as
needed on neighboring processors. The basic purpose
of a ghost copy is to localize the data for computation
on partition boundaries. The ghosting algorithm pro-
vides an application with the complete parallel neigh-
borhood information in a partitioned mesh which can
speed-up repeating calculations. If the ghost data be-
comes invalid due to ghost values change, ghost data
must be updated [16]. Some applications like parallel
mesh smoothing [11] and parallel error estimation [37]
may require a single ghost layer which comprises of
mesh entities adjacent to the partition boundary enti-
ties. In some cases, applications like local error estima-
tion on high order discretization, or parallel geomet-
ric approximation improvement [34], more than one

1058-9244/13/$27.50 © 2013 - IOS Press and the authors. All rights reserved

18 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

layer of ghost entities can be required; the new ghost
layer consists of neighboring mesh entities of the pre-
vious ghost layer. To support the application require-
ments, the ghosting algorithm presented in this paper
can ghost up-to n ghost layers. In addition to direct
unstructured mesh applications, the ghosting methods
presented here can be used for other applications where
topological adjacency information can be used to co-
ordinate the sharing of neighborhood information. An
example of this type under current development are
particle-in-cell methods [30,32] where copies of parti-
cle data for neighbors is critical.

For distributed meshes, it is useful to define a com-
ponent which defines both a specification for an API
and an abstract data model that specifies the seman-
tics of the data passed through the interface. The ad-
vantage of a component based approach is that the fo-
cus is on interfaces rather on data structures or file for-
mats. This allows any application using the component
to use another implementation of the same compo-
nent API, as all implementations comply with the same
component-based functionality. iMeshP is a parallel
unstructured mesh component developed by the Inter-
operable Technologies for Advanced Peta-scale Sim-
ulations (ITAPS) [17], which provides the functional-
ity to create, query and modify a parallel distribution
of a mesh. The Flexible distributed Mesh DataBase
(FMDB) is an iMeshP compliant distributed mesh
management system that provides a parallel mesh in-
frastructure capable of handling general non-manifold
models while effectively supporting parallel adaptive
analysis [27,28]. The ghost creation/deletion algorithm
presented in this paper is developed for FMDB as part
of the iMeshP specification for effectively supporting
ghost entity creation, retrieval and deletion.

This paper describes a parallel N-layer ghost cre-
ation and deletion algorithm that utilizes neighbor-
hood communication to create up to n ghost layers
(n > 1). To the best of our knowledge, this is the first
paper that describes the ghost creation and deletion
algorithms with a detailed performance analysis on
massively parallel architectures up to a core count of
32,768 MPI processes. The contribution of this paper
is: (1) It presents an efficient ghost creation and dele-
tion algorithm by utilizing neighborhood communica-
tion methodology [23] to reduce the message passing
overheads; (2) The algorithm has been shown to scale
for massively parallel architectures like Blue Gene/P
and Cray XE6 up to a core count of 32,768 processors;
(3) The usage of the algorithm has been demonstrated

in massively parallel meshing applications i.e. the par-
allel error estimation procedure with a weak scaling
study on a high scale of 32,768 MPI processes. The
organization of the paper is as follows: Section 2 pro-
vides information about distributed mesh representa-
tion which is essential in understanding the ghosting
algorithm. Sections 3 and 4 discuss the design and im-
plementation of N-layer ghost creation and deletion
algorithms. Section 5 presents strong and weak scal-
ing results of the ghosting algorithm followed by an
N-layer efficiency analysis on two massively parallel
architectures i.e. Cray XE6 and IBM BG/P up to a core
count of 32,768. Section 6 describes the application
of ghosting in parallel super-convergent patch recovery
(SPR) based error estimation.

2. Distributed mesh representation

The process of ghost creation/deletion is dependent
on having a topology-based mesh database that an-
swers basic queries about mesh entities and their topo-
logical adjacencies [3]. For the ghost creation/deletion
algorithm, we use the Flexible Distributed Mesh
Database (FMDB) [27,28]. FMDB is a distributed
mesh management system which effectively supports
parallel adaptive analysis and makes parallel mesh in-
frastructure capable of handling general non-manifold
models. This section gives a description of FMDB,
its abstract data model and meshing terminologies fol-
lowed by a description of the parallel mesh component,
iMeshP.

The mesh is a collection of mesh entities with con-
trolled size, shape and distribution. The relationships
of entities of a mesh are defined by topological adja-
cencies, which form a graph of the mesh [3]. Unstruc-
tured meshes are effectively described using a topology
based representation in which the members of the hi-
erarchy of topological entities of regions, faces, edges
and vertices are defined plus adjacencies that describe
how the mesh entities connect to each other. There are
many options in the design of mesh data structure in
terms of which entities are explicitly represented and
which connectivities are stored [27]. If a mesh repre-
sentation stores all 0 to d dimension entities explicitly,
where an entity dimension can be a vertex, edge, face
or a region, then it is a full representation. Complete-
ness of adjacency indicates the ability of a mesh repre-
sentation to provide any type of adjacencies requested
without involving an operation dependent on the mesh

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 19

size such as the global mesh search or mesh traver-
sal. Regardless of whether the representation is full or
reduced, if all adjacency information is obtainable in
O(1) time, the representation is complete, otherwise, it
is incomplete.

We assume a full and complete representation
through out this paper. Implementations with reduced
complete representations using all the same overall al-
gorithms are possible, with the addition of some com-
plexities within the mesh database API functions [27].

In a distributed mesh representation, the mesh do-
main is decomposed into a number of parts, or sub-
domains where each part holds a subset of a mesh.
Each part is treated as a serial mesh with addition of
mesh part boundaries for entities that are on inter-part
boundaries. The mesh entities on part-boundaries are
shared by more than one part. In distributed meshes,
each processor holds one or more mesh parts. In this
paper, we use the mapping of one mesh part assigned to
each MPI process. Due to the evolving nature of adap-
tive methods, load imbalance can be introduced into
the solution process which makes it critical to dynami-
cally load balance the mesh entities. To effectively sup-
port mesh adaptation, FMDB supports dynamic entity
migration and load balancing procedures [27].

To handle the requirements of distributed mem-
ory applications, the ITAPS parallel mesh component,
iMeshP, provides a distributed representation [22]. The
abstract data model of iMeshP consists of the core con-
cepts and data structures to support distributed meshes
i.e.: (1) A mesh partition, which is responsible for map-
ping entities to parts and parts to processes; (2) Mesh
entities are owned by exactly one part where the owner
mesh entity has the right of modification; (3) Mesh
entities can be classified as an internal entity (an en-
tity not on inter-part boundary), a part-boundary entity
(an entity on inter-part boundary which are shared be-
tween parts) or a ghost entity (a non-part boundary en-
tity which is not owned by the part). A common in-
terface is built on top of this abstract data model to
support distributed mesh operations for example, cre-
ating and modifying partitions, create and delete ghost
entities, entity migration, determine an entity’s owner-
ship status etc. To support the ghost entity creation, re-
trieval and deletion functionality in FMDB as part of
the iMeshP specification, we have designed the ghost
creation and deletion algorithm presented in this paper.

Before describing the ghosting algorithms, it is use-
ful to introduce some nomenclature in FMDB.

Mesh nomenclature
M an abstract model of the mesh.
M id the ith entity of dimension d in the
model M. The entity dimension d
of an entity is O for a vertex, 1 for an
edge, 2 for a face and 3 for a region.
set of entities on the boundary of
ME.
set of entities of dimension ¢ that
are adjacent to M Zd For example
{M7{MO°}} is the set of all vertices
that are adjacent to the region M 13
P [Mz-d] set of part id(s) where Mzd exists.
{Mzd{M 9};} The jth entity in the set of entities
of dimension ¢ in model M that are
adjacent to M f. For example
{M3{MO},} is the second vertex
adjacent to region M;.

{oMehy)

{MA{MI}}

The union of mesh entities over all the parts define the
complete mesh being operated in parallel [28]. Mesh
entities can be migrated between parts; that process
includes constructing/updating on-part and inter-part
mesh adjacencies. Figure 1 represents a 2D mesh dis-
tributed on four parts where solid lines show the part
boundaries. The vertex Mi0 is common to four parts
and on each part several edges like M Jl are common
to two parts. To keep the part boundary mesh entities
synchronized with their copies, mesh entities on part
boundaries must keep track of their duplicates. One
way to do this is to store remote copy and remote part
information for each part boundary entity.

Definition 1 (Remote part). A part where an entity is
duplicated.

For example in Fig. 1, M Jl is owned by part P and

it has a remote copy on part Fy. M]1 will keep informa-
tion on part P about the remote part Py where it has
been duplicated. Parallel methods are provided to de-
termine inter-part adjacency information for mesh enti-
ties (faces, edges and vertices) on the inter-part bound-
aries. These parallel methods develop communication
links among parts to provide remote copy and owner-
ship information of mesh entities that are duplicated
from other parts.

Definition 2 (Remote copy). Refers to memory loca-
tion of a mesh entity duplicated on a remote part p.

20 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

part
boundary

i entities

interior
entities

P,

Fig. 1. Distributed Mesh on four parts.

The memory location is the address where an entity
is duplicated on a remote part. For example, in Fig. 1,
MZO is duplicated on parts Fy, P, P, and P3. Part P
owns entity M 20 and M 20 stores the memory addresses
of its remote copies on rest of three parts. This keeps
the owner entity M, 10 on part Py synchronized with its
remote copies on other parts.

Mesh entities are owned by exactly one part where
ownership is the right to modify. Ownership of an en-
tity can be changed during the course of computation
due to re-partitioning of a mesh or due to migration op-
erations. For entities on part boundaries, the entity will
exist on several parts, one of which is designated the
owner. Within a part, a mesh entity can have one of the
three classifications.

e Internal Entity: An owned entity that is not on a
part boundary. For example, in Fig. 1, interior en-
tities are labeled. An interior entity does not have
a remote copy on other parts.

e Boundary Entity: A shared entity on a part bound-
ary. For example, in Fig. 1, MZ-0 is a part bound-
ary vertex which is owned by P| and has a remote
copy on other parts.

e Ghost Entity: A read-only copy of a non-owned
entity that is not a shared part boundary entity. For
example, Fig. 2 shows ghost faces Mf which are
created after the one layer ghost creation proce-
dure is applied.

Definition 3 (Neighboring parts). Part A neighbors
Part B if Part A has remote copies of entities owned by

part B or if part B has remote copies of entities owned
by part A.

For example, in Fig. 1, the neighboring parts of P
are P, P, and P; as Mi0 which is owned by F has
remote copies on Py, P, and P;. Within a part, the term
“copy” of an entity refers to either ghost entity or a part
boundary entity owned by a remote part.

It is also useful to define the notion of a partition
model entity and partition classification. A partition
model entity groups the mesh entities residing on the
same part and the partition classification provides a
mapping of the mesh entities to their partition model
entity.

Definition 4 (Partition model entity). A partition mod-
el entity, Pid, represents a group of mesh entities of di-
mension d that reside on the same mesh part.

Definition 5 (Partition classification). The unique as-
sociation of mesh topological entities of dimension d,
M¢ to the partition model entity P{.

3. Design of ghosting algorithm

The ghost creation and deletion algorithm can be ef-
fectively used to reduce communication costs in appli-
cations that need access to neighborhood data during
computation [20]. Previous work [2,7,19,35] has been
done to create ghost data through message-passing.
However, most of these approaches use MPI collective

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 21

PO 1-D Bridge
1
Edges M
J
<L
. 2-D Ghost
Part boundary entity >
M Faces M;
k
o
sospes
Interi 28380844 830080 33 288 194
+* p < & *é > ¢
nterior 1292990940990 91 128280004 29289 10904
. SRS * * \ 4 484 LSS OGO o roPb oot S48 44
Entlty seehee ok e so00d 3 200040 233
5 ¢ + 4444 drsodnsetd ceotodloveses .
* + L4 S 5Ee L4 SONRS S+ 576085 +S 4905504
M, ro 9IRS [+ ¢ 5 4We o ff% »
eoo0e 20922222220 voO 2SS 1221 ve 4 o oo -
100480000097 6008800000 0080084 PO 60080 V91 97 00000006144 0004
994 gosbssoodrssse 48880864 sobsssbohob0s0e
bl X t 4 + 404 & Rl d & 44
Qeee o Teg o e 444449 69+ YN OGS+ 4 4 +9/
1 14 SO 44 404 98B Nt3 (228888000 44 ¢4y, + 4
"S> 4 V P SEEed bbbt SEPPDE. Ao by B P
+* +* L abd L b sd ‘B s/
L oo bd o\ oo S0 66684 444444 1
z} —bdd o > Nt’ b lad +4 +*4
v seopooay Ngf+esos0eXb0e4 V
" d S 444444 O:y
i Vg

(a) Mesh without ghosting

(b) Mesh after 1-layer ghosting

Fig. 2. A distributed mesh on two parts. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130361.)

operations to exchange ghost messages and others do
not present the scaling data of the ghosting algorithms.
In general, the ghost creation and deletion process can
be applied to support any parallel meshing applications
whose operations rely heavily on inter-process data ex-
change and movements to reduce communication over-
heads. In the areas of finite element simulations, aside
from the parallel error estimation application, ghost-
ing can be used with parallel mesh smoothing, and
geometric reconstruction procedures, such as subdivi-
sion surfaces, to help eliminate extensive inter-process
communications.

The design requirements for the N-layer ghost cre-
ation/deletion algorithm follow those of the iMeshP
specification [16]. Ghost entities are copies of addi-
tional, non-part boundary entities which are requested
by an application to enable efficient computation.
A ghost entity is specified through a bridge entity and
a ghost entity can be either a mesh region, face or
an edge. Ghost regions are used to support a num-
ber of mesh-based applications, two common exam-
ples are: (1) Error estimation procedures like paral-
lel super-convergent patch recovery presented in Sec-
tion 6; (2) Parallel mesh smoothing operations to syn-
chronize smoothing of part boundary vertices. The
number of layers in the ghosting process are mea-
sured from the inter-part boundary. The first layer of

ghosts comprises of entities that are directly adjacent
to the part boundary entities. Entities in the next ghost
layer comprise of neighbors of the previous ghost lay-
ers through a bridge entity. Some applications like in-
terpolation subdivision surface scheme [34], in which
the whole patch of the mesh entities to be subdivided
is distributed on parts, require at-least two ghost lay-
ers. This section describes the design aspects of the V-
layer ghost creation/deletion algorithm.

3.1. Input and output parameters of ghost creation
process

Before describing the input parameters for ghost
creation, it is useful to describe the concepts of ghost
and bridge entities.

Definition 6 (Ghost entity vs. bridge entity). If M]l-’ is
a bridge entity and {M;?{Mg}i,b < g}, is not a null
set, then every entity M ig in the set is a ghost candidate.

An application must specify the following parame-
ters to initiate the ghost creation process:

e Ghost type “g”: g is the dimension of the ghost
entities where the ghost dimension can be a re-
gion, face or an edge in a 3D mesh.

22 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

e Bridge type “b”: b is the dimension of the bridge
entities where the bridge dimension can be a face,
edge or a vertex in a topological mesh representa-
tion.

o Number of layers “n”: n is the number of layers
of ghost entities. Layers are measured from inter-
part boundary of the mesh.

Bridge entities are on the boundary of higher order
mesh entities that are to be ghosted. Thus, the lowest
possible dimension of a ghost entity can be an edge
in which case the bridge dimension will be a vertex.
For example, Fig. 2 shows 1 ghost layer with bridge
edges (M]!) and ghost faces (Ml-z) which makes the
ghost dimension, bridge dimension and number of lay-
ers as 2, 1 and 1 respectively. The ghost creation algo-
rithm takes the ghost dimension, bridge dimension and
number of layers to be created and outputs a ghosted
mesh with ghost entities of ghost type “g” created us-
ing bridge entities of bridge type “b” with “n” layers
of ghost entities.

3.2. Ownership of ghosts

The iMeshP data model defines rules about the
amount of information that an implementation must
manage. To avoid excessive communication between
parts, whenever a ghost entity is created, the orig-
inal entity whose ghost is created, is designated as
the owner entity. The owner entity must locally store
information about all its ghost copies that exist on
other parts. The ghost copy must also store informa-
tion about its owner entity and the owning part. This
provides a mechanism to keep the owner entity syn-
chronized with their ghost copies on other parts and
vice versa [6,16]. By storing this information locally,
the following queries can be answered without involv-
ing remote communication between parts (i) the own-
ership information of a ghost entity or (ii) the informa-
tion about the ghost copies of an original entity.

3.3. Multiple ghost layers

Another feature of the ghosting algorithm is the abil-
ity to support multiple layers. When multiple layers are
requested by an application, the ghosting process starts
with the first (innermost) layer of ghosts adjacent to
the part boundary. After collecting entities for the first
layer, it collects entities for the second layer by treat-
ing the first layer of ghosts as part of the mesh for the
second layer. For multiple layers, it marks all bridge
and ghost entities already processed for the previous
layers. Care is taken that the same element is not added
as a ghost again, at this point the algorithm is required
to create only single copies of a ghost entity.

Figure 3(a) demonstrates an initial 2-part mesh be-
fore the application of ghost creation procedure. Fig-
ure 3(b) and (c) shows the same 2-part ghosted mesh
with one and two layers of ghost regions (bridge ver-
tices) surrouding the part boundaries.

3.4. Communication pattern

In shared memory systems, data read/write opera-
tions are straight-forward as the processes share the
same address space whereas in distributed systems,
each process has its own address space and data com-
munication is performed through message-passing.
Adaptive meshes can have billions of elements and the
analysis procedure for such large meshes may require
a million or more compute cores. In the past, most of
the massively parallel architectures such as IBM Blue
Gene series [15], Cray series (like Cray XTS5 and Cray
XE®6 [5]) have effectively supported distributed mem-
ory paradigm. Recently with systems like IBM Blue
Gene/Q [12] and Cray XC30 [21], the possibilities of
using a hybrid paradigm comprising of threads and
message-passing are being evaluated. We are currently
working to support a hybrid paradigm for FMDB.
The usage of hybrid memory paradigm in FMDB will

2% 2% o¥

Fig. 3. One and two layer ghost creation on an electromagnetic mesh divided in two parts. (a) Partitioned mesh without ghosting. (b) Mesh
after 1-layer of ghost regions. (c) Mesh after 2-layers of ghost regions. (Colors are visible in the online version of the article; http://dx.doi.org/

10.3233/SPR-130361.)

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 23

eliminate the overhead of duplicating data within the
parts residing on the same compute node. With hybrid
paradigm in place, the ghosting algorithm will only
be required for part boundaries between parts that re-
side on different MPI process. We further anticipate
that there will be no need of ghost creation/deletion
among parts that reside on the same compute node due
to shared memory access. In this paper, we evaluate the
ghosting algorithm with distributed memory paradigm
as it is effectively supported by most massively parallel
architectures.

In distributed mesh applications, most of the inter-
part communication involves neighboring MPI proces-
sors. The ghost creation and deletion algorithms is
based on a distributed memory paradigm [1,10] where
ghost entities are created by sending ghost creation
messages to its neighboring parts. For large meshes
having billions of elements, the number of ghost cre-
ation messages can be considerably large which may
cause increased latency if the communication is not op-
timized. Communication during ghost creation can be
optimized by avoiding unnecessary collective commu-
nication operations and by buffering small messages.
For this purpose, the ghosting algorithm uses IPCom-
Man [24], a general purpose communication package
built on top of MPI that provides neighborhood com-
munication by eliminating large number of small mes-
sage through message packing. For readers interested
in the distinguishing aspects of the neighborhood com-
munication and message packing in parallel meshes,
details are presented in [23,24]. Previous experiments
concerning the scales of meshes on parallel machine
are also discussed in this work.

As a mesh entity of dimension > 0 is bounded by
lower dimension entities, these lower dimension enti-
ties are also carried along for ghost creation at desti-
nation parts. One tempting approach is to carry along

all the lower dimension downward adjacent entities of
a ghost. For example, if the ghost dimension is region,
then its downward adjacent faces, edges and vertices
can also be carried to destination parts. Doing so intro-
duces extra communication overhead as the number of
ghost creation messages will increase significantly. To
avoid this situation, the ghosting algorithm only takes
the top-dimension entity to be ghosted and its down-
ward adjacent vertices to the destination part. At the
destination parts, local copies of missing adjacencies
are created using vertex information.

3.5. Mesh entity and ghost information

A mesh entity in FMDB is a data structure which
stores information such as its geometric classification,
partition classification and remote copy information.
To relate the ghost information with the mesh entity
data structure, we store the ghost information in an in-
dependent data structure and link it to the mesh entity
data structure using an index number. This way, a mesh
entity’s ghost information is retrieved in O(1) time us-
ing the ghost index number.

Figure 4 shows the class diagram that describes the
relationship of the ghost information with the mesh
entity data structure. A mesh entity can be a vertex,
edge, face or a region. A mesh vertex stores its co-
ordinates information (coords) and upward adjacency
information (up_adj). An edge and a face both store
upward and downward adjacency information (up_adj
and down_adj resp.). Faces and regions also store
their topology information (topo). A region only stores
downward adjacency information (down_adj) as it has
the highest topological dimension. A mesh entity may
or may not have ghosting information but the ghosting
information is always related to a mesh entity.

Entity

Ghost

= own_ent: mEntity* 1
= ghost_copies: vector<mEntity*>

belongs to_has | T€MOte_copies: vector<mEntity*>
0.*|m ptn_class: pmEntity*
= geom_class: pGEntity*

mVertex mEdge

N

mFace

= up_adj: vector<mEntity*>
= coords: double

= up_adj:vector<mEntity*>
= down_adj:vector<mEntity*>

mRegion

= topo: int
= up_adj:vector<mEntity*>
= down_adj:vector<mEntity*>

= topo: int
= down_adj:vector<mEntity*>

Fig. 4. Class diagram of mesh entity and ghosting information.

24 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

4. Implementation of ghosting algorithm

The computational model of the ghost creation and
deletion algorithm follow the FMDB model described
in Section 2. This section describes the algorithms used
in the implementation of N-layer ghost creation and
deletion. It also discusses the parallel aspects of the
algorithm i.e. mapping of parts to MPI processes and
how the global coordination is performed between the
parts.

4.1. Overview of ghost creation and deletion
algorithms

The input to the ghost creation algorithm uses a dis-
tributed mesh representation in which the mesh is di-
vided into mesh parts. Each mesh part is treated as a
serial mesh with addition of part boundaries for en-
tities that lie on the inter-part boundary. Each part is
mapped to a single MPI process. The communication
between the parts is done through message-passing.
Algorithm 1 presents the major steps required in the
ghost creation algorithm. The computation in Steps 1
and 2 is performed locally on a part (resp. MPI pro-
cess). Step 3 performs nearest-neighbor communica-
tion with neighboring parts using IPComMan neigh-
borhood communication package [23] to eliminate du-
plicate remote entities. Step 4 also exploits the neigh-
borhood communication patterns of IPComMan to cre-
ate ghost entities on neighboring parts. The ghost dele-
tion algorithm performs local computation to delete
any existing ghost entities. It does not require commu-
nication among parts for deleting ghost entities.

As ghost entities are created to localize the non part-
boundary data on neighboring parts, ghost entities may
become outdated after mesh modification operations
are performed. In such a case, following mesh modifi-
cation, synchronization may be performed among parts
to ensure that the distributed mesh is consistent and
valid across all parts. During mesh synchronization,
ghost entities that require an update, may be deleted
using the ghost deletion algorithm and then re-created
through the ghost creation procedure. This ensures that
the ghost data stays up-to-date after mesh modification.

4.2. Ghost creation algorithm

The ghost creation algorithm Create_Ghosts creates
ghost entities in a distributed mesh given the dimension
of ghost and bridge entities (g and b respectively) and
the number of ghost layers (n). The overall procedure
for ghost creation comprises of the following steps:

1. Collect entities of given ghost dimension “g” ad-
jacent to part boundary bridge entities of dimen-
sion “b” and determine the destination parts of
the “¢g” dimensional entities.

2. If the specified number of ghost layers is more
than 1, process next ghost layer such that the
ghost entities in previous layers are not added
again.

3. For part boundary entities that exist on multiple
parts, more than one part can collect the same
part boundary entity (original entity or its remote
copy) for the same destination part. One round
of communication is carried out to eliminate any
duplicate ghost creation messages.

4. Exchange ghost entity information among parts,
create ghost entities on destination parts and up-
date ghost owner entities with ghost copy infor-
mation.

5. Store ghost information rule consisting of g, b
and n in the part so that the ghosting informa-
tion can be retrieved later during ghost deletion
process or mesh synchronization.

Figure 5(a) and (b) illustrates the example 2D parti-
tioned mesh to be used to demonstrate the working of
ghost creation and deletion algorithm throughout this
section.

Algorithm 1 shows the steps used for ghost cre-
ation given the parameters g, b and n. During the
ghost creation process, the entities collected for ghost-
ing are maintained in a vector entitiesToGhost where
entitiesToGhost[1 . . . n] contains entities to be ghosted
at each layer. The downward adjacent vertices that are
required for ghost creation are collected in
entitiesToGhost[0]. Each part maintains a separate
entitiesToGhost[0 . . .n] vector and every entity col-
lected for ghosting has a data structure ghostParts[M Z-g]
which is mapped to M ig . To keep track of the destina-
tion parts of a ghost entity, the data structure ghostParts
holds the destination part IDs of Mig . This way, the
destination part of a ghost entity can be efficiently re-
trieved in O(1) time without carrying out any form of
search operation.

For simplicity of notation, we use (1) Premore to de-
note a remote part (2) Z[M Z-d] to denote the set of re-
mote copies of an entity Mld

4.2.1. Step 1: Ghost collection for first layer
Algorithm 1, Step 1 collects ghost candidates adja-
cent to part boundary bridge entities in the first layer.

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 25

Py

M3 Mg

Py

(©

Fig. 5. Example of 2D ghost creation procedure with 1-layer of ghost
faces. (a) Initial mesh. (b) Mesh during 1-layer ghosting. (c) Mesh
after 1-layer ghosting.

Definition 7 (Destination part rule for 1st layer ghosts
M), I (M7 {M"};},b < g,and p € ZIM]], p ¢
%[MZ:‘}] then p € ghostParts[Mig].

An entity, Mig is collected for ghost creation using
Definition 7. If one of the bridge entities MJI-’, that is on

the boundary of ghost candidate Mig , has a copy on a
remote part p but the ghost candidate M, ig has no copy
on p then M ig will be ghosted on remote part p.

Algorithm 2 collects ghost entities for the first layer.

For the example mesh (Fig. 5), Table 1 shows the
contents of entitiesToGhost after Step 1. Contents of
ghostParts[MZd] are enclosed in brackets along with
each entity in Table 1.

4.2.2. Step 2: Process next layer

If the number of layers specified for ghosting is
more than one, subsequent ghost layers are added af-
ter the first layer. For the next layer, entities of di-
mension g that share a bridge entity with any M qu €
entitiesToGhost[n — 1] are collected for ghost creation.
To make sure that the same entity is not added more
than once for ghosting, a visited tag is set for each M, qu
marked for ghosting (see Algorithm 2, Step 2). Setting
visited tags for bridge entities cuts down the computa-
tion time of the algorithm as the same entity is not pro-
cessed again when computing subsequent ghost layers.

For an entity M ;Z in the second to nth layer, desti-
nation parts are decided using Definition 8 where an
entity M ,f that shares a bridge entity Mf’ with one
or more ghost candidates of the previous ghost layer
(Mlg ... M}2) is also ghosted to the destination parts
of those ghost candidates (Mlg . ME). Algorithm 3
gives the pseudo code for Nth layer entity collection
that decides destination parts using Definition 8. As
an example, the 1-layer ghost creation in Fig. 5 is ex-
tended for two layers in Fig. 6 which shows ghost en-
tity collection for two layers. The second layer bridge
vertices are depicted by blue circles around them.

Definition 8 (Destination part rule for nth (n > 1)
layer ghost M{). If { M {M"};} where {MP{M9};}
o AMP{MIV) st {MIY, ... {MI}y, € entities
ToGhost[n — 1], then ghostParts[M Ig] = ghost
Parts[{M9};1U - - - U ghostParts[{ M9},].

For example, in Fig. 6, as M22 (first layer ghost)
shares a common bridge entity Mg with Mf (sec-
ond layer ghost), the ghostParts[Mzz] will be added
to ghostParts[M, Z]. Table 2 gives the contents of vec-
tor entitiesToGhost after Step 2. Contents of ghost
Parts[MZd] are enclosed in brackets along with each
entity in Table 2.

26 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

Algorithm 1. Create_Ghosts(M, g, b, n)

Data: distributed mesh M, ghost dimension g, bridge dimension b, number of ghost layers n

Result: Creates ghosts on the distributed mesh M
begin

/* Step 1: collect ghost entities in the first layer */

getGhostEnts(M, g, b, n, entitiesToGhost);

/* Step 2: Process next ghost layer if n>1 */

for lyr < 2 ton do

processNLayers(M, g, b, lyr, entitiesToGhost);

end for

/* Step 3: Do one round of communication to eliminate duplicate remote

entities */
removeDuplicateEnts(M, entitiesToGhost[0]);
/* Step 4: Exchange entities and update ghost information %/
exchangeGhostEnts(M, g, entitiesToGhost);
/* Step 5: Store ghost information in the part x/

ghostRule — [g,b,n]
end

4.2.3. Step 3: Eliminate duplicate entities

A part boundary entity exists on multiple parts so
many parts can collect it for ghost creation to the same
destination part. For this reason, Table 1 and Table 2
have duplicate vertex entries marked by a *. Once all
ghost entities and their downward adjacent vertices
are collected for ghosting, one round of neighborhood
communication needs to be performed among the pro-
cess neighborhood to eliminate duplicate ghost cre-
ation messages. The communication step introduces
minimal overhead as: (i) It is only performed for the
inner most ghost layer next to the part boundary as
this ghost layer may have duplicate part boundary en-
tities; (ii) It utilizes IPComMan neighborhood com-
munication which restricts the communication to a
set of neighboring processors. Algorithm 4 gives the
pseudo code for eliminating duplicate ghost creation
messages.

One round of communication is performed in Al-
gorithm 4 to determine duplicate ghost creation mes-
sages. If multiple parts intend to send ghost creation
message for Mzd to the same destination part p, after
this step only the part having minimum part id will
send the ghost creation message of Mld to p. For the
example mesh in Fig. 6, both P and P; collect M ? for
sending it to P, but after Algorithm 4 eliminates dupli-
cate entities, only P sends M ? to P,. Table 3 shows
the contents of entitiesToGhost after eliminating dupli-

cate entries for remote copies. Duplicate entities with
a * on them are no more there.

4.2.4. Step 4: Exchange entities and update ghost
copies

This step creates ghost entities on destination parts
by exploiting neighborhood communication pattern
and message packing features of IPComMan [23].
Mesh entities are exchanged by first exchanging ghost
vertices and then the ghost entities of dimension g.
Step 4 of Algorithm 1 creates ghost entities on desti-
nation parts. Algorithm 5 is the pseudo-code that ex-
changes the entities contained in entitiesToGhost. Af-
ter creating ghosts on the destination parts, ghost enti-
ties are assigned their owner entity and owning part ID
to synchronize them with their owner. Entities owning
the ghosts also receive back information about newly
created ghosts based on which they can keep a track of
their ghost copies. Algorithm 5 step 5.1 sends the mes-
sage to the destination parts to create new ghost en-
tities. For each M Zd collected for ghost creation, each
part which sends a message composed of the address
of MZd on the local part p and the information of Mzd
necessary for entity creation, which consists of

e Owner entity information (to notify the owner
about the ghost entity created).
e Owner part information.

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 27

Algorithm 2. getGhostEnts(M, g, b, n, entitiesToGhost)

Data: distributed mesh M, ghost dimension g, bridge dimension b, number of layers n, entitiesToGhost
Result: Collect first-layer entities to ghost in container entitiesToGhost
begin
/* Collect entities-to-ghost and their downward adjacent vertices */
/* Step 1 For every part boundary bridge entity Ml-b, check its upward
adjacent entity Mjg for ghosting */
foreach MZI’ on part boundary do
foreach Mf € {MP{MI}} do
/+x Step 1.1 If Mjg does not exist on a remote part p where Mlb
exists on p, collect Mjg for ghosting on p */
foreach part ID p € %[Mib] do
ifp ¢ %[Mjg] then
insert M 5.7 in entitiesToGhost[g];
insert p in ghostParts[M]‘7 1;
end if
end foreach
/% Step 2: Mark Mjg as visited (if multiple ghost layers) */
if n > 1 then
set M J{l < visited = true,
end if

end foreach
/+* Step 3: Mark the bridge entity as visited (if multiple ghost

layers) */
if n > 1 then
set Mzb < visited = true;
end if
end foreach
end
Table 1
Contents of vector entitiesToGhost after Step 1 “Collect ghost entities” of ghost creation algorithm
Ix0 Py P
entitiesToGhost[0] MD{2}, MO{1} MO2{2)", M9{0,2}, MO{1y", M9{0},
M0}, M 10,2} MQ{0. 1}, MJ{2}”
entitiesToGhost[1] M2{1,2) M3{0,2}, MZ{0,2}, ME{0,1}, M2{0},
M2{0,2} M2{0,1}
e Geometric classification information (so that the e Vertices information (if non-vertex).
created ghost entity also has the same geometric e Attached data (if any).
classification). Every non-vertex entity (edge, face or region) car-
e Topology information (whether the entity is a ver- ries along the vertex information as it is required to
tex, line segment, triangle, quadrilateral, hexahe- create a new non-vertex entity on the destination part.

dron, tetrahedron, prism or pyramid). For example, in Fig. 6, when M22 is sent to P, it takes

28 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

Algorithm 3. processNLayers(M, g, b, lyr, entitiesToGhost)

Data: M (distributed mesh), g (ghost dimension), b (bridge dimension), n (number of ghost layers),

entitiesToGhost

Result: Collects entities for ghosting nth layer
begin

/* Step 1 Process n—1th layer to get nth layer */

foreach M7 € entitiesToGhost[n — 1] do

/+* Step 1.1 For Mig, get its downward adjacent bridge entities */

foreach M} € {M7{M"°}} do

/* Step 1.2 If M,g is visited, continue with next bridge entity =x/

if M ,l; < visited == true then
continue;
end if

/* Step 1.3 For the downward adjacent bridge M,g, get upward
adjacent entities of dimension g. */

foreach MY € {Mp (M)} do

/* Step 1.4 If the upward adjacent entity Mjg is not visited,

update its ghostParts and collect it for ghosting */

if M]5 <+ visited == true then
continue;

end if

insert M jg in entitiesToGhost[n];

ghostParts| M]‘7] < ghostParts| M]5,7 1U ghostParts[M. ig 1;
/* Step 1.5 Set visited tag Mj‘g so that it is not processed

again
M]g < visited = true;
end foreach
end foreach

/* Step 1.6 Set visited tag of bridge entity M]g so that it is not

processed again
M,i’ < visited = true;
end foreach
end

%/

along address of M22 on P (owner entity information),
P; (owner part information), geometric classification,
topology information (triangle), address of MY, Mg
and M g (downward adjacent vertices) on the destina-
tion part P.

Step 4.2 creates a new entity MZd on P; for the
message A received on Py (sent in Step 4.1). The
newly created ghost entity updates information about
its owner entity and the part where owner entity ex-
ists. This information is extracted from the message re-
ceived. For example, Mz2 is created on P, using the

topology information, vertex coordinates and geomet-
ric classification from the message A. P, then adds the
address of M22 on Fj as its owner entity and sets F as
the owning part id of M22

Step 4.3 sends back the information of the newly
created ghost entity to its owner part. For example,
in Fig. 6, when M22 is created on P,, message B is
sent back to Py with the ghost information of M3 on
part Ps.

In step 4.4, the owner entities of ghost objects re-
ceive back the ghost information and update their ghost

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 29

P, P.
(] M31 2
0N\ 2
M, N M,y
N
AN
[8
oM
S
1 \\
M, 2 N
M, N
Ms!
M,
Py 2
M My
o«
A 2
\\ M, l\’l_;z
~ N\,
~
120N ~
Po . \\ M
I~ S
SoOME| s Mf
. ~
™ N
M2 M
. ~
~ 2 - o N
M Ms? S M, M:
~ ~ -
MY N, M2 Ml\‘ 2
2 o™ N
~ [~ \\
N
MM, M M s M
o . AR
My Mg’ N M M
~, ~
S -

()

Fig. 6. Example of 2D ghost creation procedure with 2 layers of
ghost faces. (a) Initial mesh. (b) Mesh during 2-layer ghosting. (c)
Mesh after 2-layer ghosting. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-130361.)

copies. For example, in Fig. 6, after 2-layer ghosting
process, M22 on P, will have the entries [(address of
M22 on Py, Py), (address of M22 on P, P,)] as its ghost
information.

4.2.5. Store ghost rule

Ghost information is stored in the part so that the
ghosts that becomes outdated due to mesh modification
can be restored whenever the mesh is synchronized.
Step 5 stores the ghost rule composed of [g, b, n] in the
part. For the example mesh in Figs 5 and 6, every part
will store the ghost information [2, 0, 2].

4.3. Ghost deletion algorithm

The ghost deletion procedure takes the distributed
mesh as an input parameter and removes all ghost-
ing information within the mesh. As the ghost entities
are stored along with other mesh entities, one tempt-
ing approach for ghost deletion is to traverse the entire
mesh in search for ghost entities. However, the ghost-
ing algorithm stores all ghost information in a separate
data structure within the part. The ghost deletion algo-
rithm avoids traversing the entire mesh by accessing
and deleting ghost entities in constant time by utilizing
the ghost information stored in the part. Algorithm 6
is the pseudo code of the N-layer ghost deletion algo-
rithm. entitiesToRemove[0 . .. g] is an array that holds
the ghost entities and their downward adjacent entities
that are to be deleted. Step 1 and 2 of the algorithm
checks the ghosting information of the entity.

e If the entity M7 is a ghost itself, the algorithm
collects it for deletion. The downward adjacent
entities of MY are collected for deletion if they
were created during ghost creation. Care is taken
such that any part boundary downward adjacent
entities are not deleted.

o If the entity is owner of ghosts, then the algorithm
clears its ghosting information.

Step 3 of the algorithm deletes the ghost entities
from the mesh. It starts from the ghost dimension enti-
ties first as removing lower dimensional entities earlier
can create dangling references for its upward adjacen-
cies.

5. Performance results

This section demonstrates the strong scaling of the
ghosting procedure executed on very large meshes.
The ghost creation and deletion algorithm is applied to
a mesh with 133 million elements on a patient specific
abdominal aortic aneurysm (AAA) model (see Fig. 7).

30 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

Table 2
Contents of vector entitiesToGhost after Step 2 “Process next layer” of ghost creation algorithm
P Py P

entitiesToGhost[0] ~ MO(2), MO{1} MO{2}", MD{(0,2), MQ(1)", MO{0, 1},
M{0,2}, Mg{0,2}, MQ{0, 1}, MJ{0}"

M{0}

entitiesToGhost[1] ~ M?{1,2} M2{0,2}, M2{0,2}, M2{0}, M2{0,1}, M2{0,1}
M2{0,2

entitiesToGhost[2] MZ{0,2} M2{1}

Algorithm 4. removeDuplicateEnts(M, entitiesToGhost(d))

Data: M distributed mesh, entitiesToGhost[d]

Result: Eliminates duplicate ghost entity creation messages
begin
/* Step 1: For all part boundary entities collected in
entitiesToGhost([d], send a message to the parts having their remote
copies * /
foreach M g € entitiesToGhost[d] do
/* If Mg is not a part boundary entity, proceed with the next entity
*/
if M g is not on part boundary then
/+ Continue with next Mg € entitiesToGhost[d] */
continue;
end if
foreach destld € ghostParts| M g] do
foreach p € Z[M}!] do
send message A(address of M. g on p, destld) to p;
end foreach
end foreach
end foreach
/* Step 2: Receive message from other parts that are sending ghost
creation message of the same part boundary entity to destination
part ’‘destId’ %/
while part Premore receives message A from part p(address of M g on p, destld) do
/+ Step 3: Check if the remote part is also sending Mg to the same
destination destld. x/
if destld € ghostParts[M g] & ID(p) < ID(Premote) then
/+ Step 4:Part Pemote with minimum part id will send Mg to destld */

remove M g from entitiesToGhost[d];

end if
end while
end
The mesh is obtained through anisotropic mesh adapta- The scaling studies are applied on two massively
tion of a mesh obtained from previous adaptive cycles parallel architectures, Hopper, a Cray XE6 [5,14] at

[26,36]. National Energy Research Scientific Computing Cen-

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 31

Contents of vector entitiesToGhost[0] after Step 3 “Eliminate duplicate entities” of ghost

creation algorithm

Py

Py P

entitiesToGhost[0] M {2}, MJ{1}

M9{0,2}, M9(0,2}, MY{0,1}, MJ{0, 1}
MP2{0,2}, MJ {0}

Algorithm 5. exchangeGhostEnts(M, g, entitiesToGhost)

Data: M (distributed mesh), entitiesToGhost,n (number of ghost layers)
Result: Create ghost entities on destination parts and notify back their owners

begin
/* Step 4: Create ghost entities on destination parts for all entitites
in entitiesToGhost */
foreach d < 0 to n do
/+* Step 4.1: Send message with ghost information */
foreach Mid € entitiesToGhost[d] do
foreach part ID p € ghostParts[M id] do
send message A(address of MZd on p, owner of Mid, information of Mid) to p;
end foreach
end foreach
/+* Step 4.2: Receive message with ghost information */
while P01 receives message A(address of M, Zd owner of M, Zd information of M Zd) from part p do
create M Zd with information of M, Zd in message A;
P,n < owning part of MZd ;
/* Step 4.3:Notify the owner about ghost information */
send message B(address of Mld on Pnote, address of Mld on P,,,) to Py,
end while
/* Step 4.4: update ghost copy information on owner part x/

while P, receives message B(address of M ld on Premote, address of M ld on Pyyn) from Premore do
save the address of M, ,‘j on P, as for ghost copy on Prepmote;

end while
end foreach
end

ter and Shaheen, an IBM Blue Gene/P [15] at King
Abdullah University of Sciences and Technology. The
Blue Gene/P is a 32-bit architecture with four 850-
MHz PowerPC 450 CPUs per node, with three cache
levels, 4GB DDR2 SDRAM per node. It has five dif-
ferent networks: 3D torus with 425 MBps in each di-
rection, global collective with 850 MBps, global bar-
rier and interrupt, JTAG, and 10 Gigabit Ethernet (op-
tical). The Blue Gene/P’s MPI implementation uses
the Deep Computing Messaging Framework (DCMF)
as a low level messaging interface. It also has a 3D
torus topology for point-to-point communication and
its MPI implementation supports three different proto-
cols depending on the message size.

Hopper has 6384 nodes where each node is con-
figured with two twelve core AMD Magny Cours 2.1
GHz processors per node. It has a 32 GB or 64 GB
DDR3 1333 MHz memory per node. Each core has
its own L1 and L2 caches with 64 GB and 512 KB
resp. There is a 6 MB L3 cache shared between ev-
ery 6 cores on the Magny Cours processors. Hop-
per compute nodes are connected via a custom high-
bandwidth, low latency Gemini network with a 3D
torus topology which has a routing capacity of 168
GB/s and a bandwith of 9.8 GB/s per Gemini chip. The
Gemini network efficiently supports MPI with millions
of MPI messages per second and has an inter-node la-
tency on the order of 1 microsecond. The peak GFlop

32 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

Algorithm 6. deleteGhostEnts(M)

Data: a ghosted mesh M
Result: Deletes all ghost entities in the mesh
begin
/* Step 1: Collect the top-level ghost entity and its downward adjacent
entities (if they are not part boundary entities) */
foreach M 9 ¢ ghost information stored in the part do
if M g <— isGhost then
entmesToRemove[g] — M g.
foreach d < 0 to g do
foreach M{ € {Md{Mg }} where d < g do
if M, d ¢+ isGhost then
enttttesToRemove[d] — M2
end if
end foreach
end foreach

end if
/* Step 2: If the entity is owner of a ghost, clear its ghosting
information */

if MY < hasGhosts then
élear ghost information;
end if

end foreach

/+* Step 3: Delete the collected ghost entities x/
for d < g to 0 do
Remove M]gl € entitiesToRemove[d];
end for
end

" A‘vmmi‘"‘i\
‘ ,xum‘lk\\\\\-

\\\\ i

Fig. 7. Geometry and mesh of an AAA model (133 million test case) [26,36]. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130361.)

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

rate for each core is 8.4 GFlops/core making it 201.6
GFlops/node. By default, the compute nodes run a re-
stricted low-overhead operating system optimized for
high performance computing called “Cray Linux Envi-
ronment” [14].

All available cores per node on both machines were
used for the tests. For strong scaling results, the tests
were executed on 512 to 32,768 processors on each
supercomputer and scalability was measured using the
following equation. The scalability equation consists
of (1) nproc—pase: the number of base MPI processes.
For our scaling study, the number of base MPI pro-
cesses is 512. (2) timep,s.: execution time of algorithm
on base MPI processes 1,,oc_pase (i-€. €xecution time
on 512 processes for this study). (3) 7proc—ress: the num-
ber of processes used in the test case (for our study
it ranges from 1024 till 32,768). (4) time;.s: the al-
gorithm execution time on the number of processes
Nproc—test- The execution time is measured in seconds.

scalability = (Nproc—pase * tiMepase)

/(nproc—test * tiMesest) (1)

Table 4 demonstrates the execution time of ghost
creation algorithm with 1-layer on input parameters
{g = 3,0 = 0,numLayer = 1} (ghost dimension: re-
gion, bridge dimension: vertex). Table 5 demonstrates

Table 4

33

the execution time of ghost deletion algorithm with 1-
layer on the same input parameters. As the strong scal-
ing tests address a fixed-size problem, with the increase
in core count, a larger percentage of mesh entities
are between inter-part boundaries. This leads to grow-
ing number of entities being ghosted, and more inter-
processor communication is needed, whereas the parts
are being less loaded with mesh entities. This explains
why the scaling for ghost creation process starts falling
with increasing processor count (from 1024 processors
and onwards, the scaling factor decreases). There is a
superlinear scaling for the first step in the AAA mesh
as the entities to be ghosted decrease slightly (33.29 M
to 30.6 M) when stepping from 1024 to 512 parts. This
happened due to the fact that the ghosting process de-
pends on mesh partitioning, the number of ghost en-
tities is less if the mesh partitioning algorithm keeps
maximum adjacent entities on the same part [4,25].

For the ghost deletion algorithm, once again the
number of mesh entities to be deleted grow with in-
creasing processor count which leads to reduced scal-
ability. Only in the case of 1024 processors, when the
number of ghost entities to be deleted slightly decrease
from ghost entity count at 512 processors, there is a
super-linear scaling.

It can be seen from Table 4 that the Cray was able
to perform ghost creation faster than BG/P; one rea-

1-layer ghost creation execution time (s) on Cray XE6 and Blue Gene/P (N/proc is number of MPI processes, E/ghosted

is the number of ghost entities created)

Test case Machine N/proc 512 1024 2048 4096 8192 16384 32768
E/ghosted 33.29M 30.6M 40.19M 5234M 68.29M 87.98M 1I5M
Cray XE6 Time (s) 30.88 11.86 7.87 5.36 3.53 2.31 1.67
Scaling 1 1.30 0.98 0.72 0.55 0.49 0.30
AAA 133M
E/ghosted 33.29M 30.6M 40.19M 5234M 6829M 87.98M 1I5M
Blue Gene/P Time (s) 134.09 49.80 34.22 23.01 15.07 9.95 7.01
Scaling 1 1.34 0.98 0.73 0.56 0.42 0.30
Table 5
1-layer ghost deletion execution time (s) on Cray XE6 and BG/P (E/deleted is the number of ghost entities deleted)
Test case Machine N/proc 512 1024 2048 4096 8192 16384 32768
E/deleted 3329M 30.6M 40.19M 52.34M 6829M 87.98M 115M
Cray XE6 Time (s) 1.65 0.61 0.42 0.25 0.16 0.10 0.06
Scaling 1 1.35 0.98 0.825 0.65 0.51 0.43
AAA 133M
E/deleted 33.29M 30.6M 40.19M 52.34M 6829M 87.98M 115M
BG/P Time (s) 4.00 1.67 1.05 0.71 0.47 0.27 0.2
Scaling 1 1.19 0.95 0.71 0.53 0.46 0.31

34

son for this is the difference in processor speed (2.1
GHz vs. 850 MHz). Another factor that comes into
play is the nature of the ghost creation process which is
communication intensive, Cray has 24 cores/compute
node (vs. 4 cores/compute node of BG/P), so much
of the communication is carried out within the same
node resulting in faster data exchange. As the ghost
deletion process employs no communication, it can be
seen from Table 5 that Cray performs approximately
2.4 times faster than BG/P which is solely due to the
difference in processor speed.

Figure 8 shows how scalability varies as the num-
ber of ghost entities, being created, increase. Figure 9
compares scalability with ghost entities deleted. As the
number of cores get doubled, the ghost entities to be
created and deleted also increase which brings down
the strong scaling factor.

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

To test the performance of N-layer ghost creation
algorithm with different number of layers, the AAA
test case was executed on 1024 processors on Cray
XE6 and BG/P with number of layers from 1 to 5.
Table 6 demonstrates the execution time of N-layer
ghost creation algorithm in seconds with input param-
eters [g = 3,b = 1,n = 1...5] (ghost dimension:
region, bridge: edges). Table 6 shows how the number
of ghosted entities increase with increasing layer count
by an amount comparable to the number of entities in
the first layer. As the number of layer increases to 5,
the number of ghost entities reach close to the size of
the mesh. The efficiency of /N-layer ghost creation al-
gorithm denoted as E}, is based on the execution time
of creating 1 ghost layer on 1024 processors and the
increase in total number of ghost entities after ghost
layers are added, E/ghosted. It is calculated using

Strong Scaling on ghost creation (133M AAA)

160 160 == W= F/ghosted(Million)
s Scaling (Cray)
Ié\

120 P Ny ~ A 120 = «@ = Scaling (BG/P)
= ”~ ™ ” ~
) « “u, ” N
= ~ S~
= ", - =]
= 80 = — - 80 =
= - - -r‘. -§
kS, - “
g - -a - “"' —h)
= - B,
= 40 B = g = - ® 40

0
512 1024 2048 4096 8192 16384 32768
Number of cores

Fig. 8. An increase in Ghosted entities created per part lead to decreased ghost creation scalability on Cray XE6 and BG/P (test case: 133M air
bubbles mesh). (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130361.)

Strong Scaling on ghost deletion (133M A4A)

== B= F/deleted(Million)

160 160
A === Scaling (Cray)
10— 120
§ o £ Scaling(BG/P)
< 80 -g0 &
3
= A
S Vo g $— 40
0 0
512 1024 2048 4096 8192 16384 32768

Number of cores

Fig. 9. An increase in ghosted entities deleted per part lead to decreased scalability on Cray XE6 and BG/P (test case: 165M air bubbles mesh).
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130361.)

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 35

Table 6

N-layer ghost creation execution time (s) on 1024 processors (E/ghosted is the number of
ghost entities created, E, is the efficiency of N-layer ghost creation algorithm)

Test case Machine n=1 n=2 n=3 n=4 n=>5
E/ghosted 379M 57.6M 76.5M 93.TM
Cray XE6 Time (s) 16.2 21.55 26.12 30.8
En 1.21 1.15 1.52 1.58
AAA 133M
E/ghosted 37.9M 57M 76M 93.7M
BG/P Time (s) 64.80 87.1 105.67 122.70
En 1.19 1.36 1.49 1.59
Table 7
Weak scaling of ghost creation/deletion algorithms
N/Proc Mesh size tereate(s) tgei(s) Avg. ghosts/Proc S St_create St_del
32 265,872 0.45 0.18 2,547 1 1 1
256 2,126,662 0.49 0.19 2,889 0.88 0.92 0.95
2048 17,010,572 0.80 0.29 3,266 0.78 0.56 0.62
16384 136,084,576 0.61 0.21 3,370 0.76 0.76 0.86

Notes: tcreate is the execution time (s) to create ghost entities, ¢4, is the execution time (s) to delete
ghost entities, S is scaling result based on average number of ghost entities, St_creare and St_ge;
is scaling based on execution time of ghost creation and deletion algorithms.

_ (timepgge * (1+ 1 in E/ghosted))

timeres

Ey 2)

It can be seen that as the number of ghost layers
increase, the efficiency of the N-layer algorithm also
keeps on increasing by this measure. This is due to the
fact that as the number of ghost layers increase, the part
boundary entities diminish from the ghost candidates
as they are already handled in inner-most ghost layers
(mostly in the 1st ghost layer) and thus one additional
round of communication which is being done in Algo-
rithm 4 solely for part boundary entities is not carried
out which results in improved efficiency.

Table 7 presents the weak scaling results of ghost
creation and deletion algorithm on input type [g = 3,
b = 0], i.e. ghost regions, bridge vertices. The test case
used for the weak scaling study is the cube test case
shown in Fig. 10. The test series increases the number
of processors from 32 to 16,384 in multiple of 8 on
the Cray XE6 machine. The mesh size also varies in
multiples of 8 (app.) along with the increasing proces-
sor count. S¢; represents scaling of average number of
ghost entities per processor based on 1024 processors.

Avg. no. of ghosts on n/proc,,,,
Sa =

3)

~ Avg. no. of ghosts on n/proc,,,,

St_create and Si_ge) represent scalability of ghost cre-
ation and deletion algorithm based on the execution

Fig. 10. The CUBE test case (adapted mesh). (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-130361.)

time on 1024 processors. Scalability by execution time
can be calculated using Eq. (4)

Sy = timebase/timetest~ 4

The average number of ghost entities in Table 7
varies as number of ghosts are dependent on entity

36 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

neighborhood which is based on graph partitioning
and can be different in every case [4,25]. When the
processor count increases by a factor of 8, inter-part
boundaries will also increase proportionately but the
graph partitioning and load balancing algorithms will
try to keep adjacent entities on the same part to re-
duce inter-part communication. Table 7 shows a jump
of 0.31 s (resp. 0.10 s) in tereqre (resp. tge;) between
256 and 2048 processors. The time spent in ghost
creation/deletion is measured by taking the maximum
time among all processes. As the number of ghost cre-
ation messages (resp. ghost entities to be deleted) de-
pends on mesh partitioning and neighborhood, each
part will have variable work load assigned and the part
having greater ghost messages to process (resp. ghost
entities to delete) will take more time which effects the
scaling factor.

6. Usage example: Parallel Super-convergent
Patch Recovery (SPR) based error estimator

This section demonstrates the performance results
of the ghosting procedure applied to an application.
A weak scaling performance study is presented to
show that the ghosting algorithm, when applied to ap-
plications like SPR based error estimation, can scale
efficiently on massively parallel architectures using
high core count of 32,768 processors.

In a parallel adaptive finite element simulation, a
posteriori error estimation and correction indication
is an important component. A parallel error estima-
tion procedure has been developed based on the Super-
convergent Patch Recovery (SPR) scheme [37]. In the
error estimation procedure, a C° continuous gradient
field is recovered from the original C~! discontinuous
field, and the error is defined as the difference between
the recovered and original fields.

A key step of the recovery of a given nodal degree
of freedom (associated with a mesh vertex, MZQ) em-
ploys a local least-square fitting scheme over the patch
of elements (mesh regions {MlQ{M 3}1) surrounding
the node (or the mesh vertex M, io). Therefore, the com-
plete field information of the nodal patch is required.
In the context of a parallel analysis based upon a dis-
tributed mesh, a set of mesh vertices is characterized
as being located on mesh partition boundaries. Conse-
quently, the corresponding nodal patch of such a vertex
is distributed among several mesh partitions, thus not
complete within a local part. In order to form a com-
plete patch on a local mesh part, and in the meantime,
to avoid extensive communication cost between mesh
parts, the parallel SPR based error estimator was writ-
ten to take advantage of the ghosting functionality by
creating a layer of ghost mesh regions.

Algorithm 7 gives the steps for the error estima-
tion procedure using ghosting. Step 1 loads the mesh
and solution data and sets up the nodal field correctly.

Algorithm 7. Error_Estimator(M, F)

Data: Distributed Mesh M, Solution field data F'

Result: Calculate the error field, elemental error indicator and new desirable mesh size

begin
/* Step 1: Load the mesh and solution data, setup the nodal field
correctly %/
Mesh loading and field data setup;
/* Step 2: Create one layer of ghost regions with bridge vertices */
Create_Ghosts(M, REGION, VERTEX, 1);
/* Step 3: Conduct the on-part SPR procedure */

On-part (serial) SPR Procedure applied on M and F’;

/* Step 4: Calculate the error field, elemental error indicator and new
desirable mesh size using Equations 5, 7 and 6 */

Error field computation;

Elemental error indication and new mesh size calculation;

/* Step 5: Delete the ghost entities

deleteGhostEnts(M);
end

*/

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 37

Step 2 creates “1” ghost layer of mesh regions on part
boundaries using bridge dimension “VERTEX”. The
field data attached to the mesh entities is also carried
along with the ghosts. After the ghosting process is
done, it is guaranteed that each mesh vertex on any
local part (including the ones on part boundary) has
a complete local patch of elements on the same mesh
part. Therefore no extra inter-part communication is
required to form the local nodal patch.

In Step 3, each local mesh partition including the
ghosted entities is regarded as an independent serial
mesh since further communication is no longer needed.
For each non-ghosted mesh vertex on the local part,
the SPR procedure recovers the C* gradient field ¢*
based on the least-square fitting scheme over the com-
plete nodal patch [33]. Note that the ghosted mesh ver-
tices are not processed by the SPR procedure since
they are essentially duplicated copies of certain non-
ghosted entities on other mesh parts.

Step 4 calculates the error field, elemental error in-
dicator and desirable mesh size. As the exact solution e
is unknown, the error e, can only be estimated. In this
SPR based approach, the recovered solution €* is used
to replace the exact solution. The error field computa-
tion equation is done using the following Eq. (5) from
reference [33]:

ee el =e* -l 4)

After the error field computation, the elemental error
indication is carried out by integrating of the error over
the element domain. The desirable mesh size is calcu-
lated through an h-adaptive procedure based on Eq. (6)
from reference [33]:

new “urrent
hlew = peurrent o ., (6)

where A and hS"" denote the new and current
mesh sizes respectively. And the size scaling factor r¢
is computed based on the Eq. (7) from reference [33]:

2 20 %12 L
== € 2p
e e (L)
i lleell 7

=1

where d and p are respectively the dimension and poly-
nomial order of elements in the part mesh. e is an el-
ement in the mesh. The goal is to ensure the relative
percentage error in L, norm of the error in the selected
quantity n is below a given limit.

Due to the ghost layers, there is no inter-part com-
munication required in Step 4. After the error estima-

tion procedure is completed, Step 5 deletes the ghost
entities that were created as part of Step 2. With the ap-
plication of ghosting, the overall communication cost
of the parallel error estimator can be reduced to the
one-time ghosting process in Step 2 as there is no other
form of inter-part communication required.

Figure 11 gives the visualizations of the various
steps of the parallel SPR error indicator. The visual-
izations are demonstrated on a finite element based
electro-magnetic analysis example problem using Par-
aView [13].

A weak scaling study of the parallel SPR error esti-
mator was carried out on Hopper, Cray XE6 from 64
to 32,768 processors. The test case used for the study
is the electro-magnetic analysis example problem in
Fig. 11(a). Uniform mesh refinement was carried out
to generate partitioned meshes of desirable sizes (mul-
tiples of 8). Table 8 gives the weak scaling results of
the error estimator where S; represents its scalabil-
ity which is calculated using Eq. (4). The execution
time is the average time the error estimator procedure
spends in computation (Algorithm 7 Steps 2-5). Say,
represents the scaling of average number of ghost en-
tities per processor which is calculated using Eq. (3).
Once again, the weak scaling factor drops slightly as
the inter-part boundaries increase proportionately with
increasing processor count which subsequently cause
the average number of ghost entities per processor to
increase.

To further demonstrate the usefulness of the ghost-
ing algorithm applied to the parallel SPR error estima-
tor, a similar parallel SPR algorithm without ghosting
is also being developed. Algorithm 8 gives the outline
of the procedure.

As given in Algorithm 8, the SPR procedure with-
out ghosting is performed in two separate steps (Steps
2 and 4) in order to treat the interior and boundary
mesh vertices accordingly whereas there is just one
step of SPR in the algorithm with ghosting (Step 3 of
Algorithm 7). In terms of communication costs, two
rounds of inter-process communication are required to
collect the input and synchronize the output data of the
SPR calculation across part boundaries without ghost-
ing (Steps 3 and 5 of Algorithm 8), which is not as effi-
cient as the single step ghosting process (Step 2 of Al-
gorithm 7). Therefore, it is more advantageous to apply
ghosting procedure to the parallel SPR error estimator
in terms of computational performance.

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

EREAL_X
68.005

51.004

34.003

II?ODI

0.75000

(b)

partid
3.0000

0.00000

(©) (d)

partld
3.0000

0.00000

®

Fig. 11. SPR Error Estimation with ghosting applied on example electromagnetic mesh. (a) Initial mesh (Step 1). (b) Initial field data (Step 1).
(c) Mesh after 1-layer ghosting (Step 2). (d) Error field data after on-part SPR procedure (Step 3). (e) Size field data after Step 4 (error
field calculation and new desirable mesh size). (f) Mesh after Ghost deletion (Step 5). (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-130361.)

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 39
Table 8
Weak scaling of SPR Error Estimator Procedure (S, and Sayg are the scaling
results based on execution time and average number of ghosts resp.)
N/Proc Mesh size Time (s) Avg. ghosts/Proc. Spime Savg
64 61,8432 10.30 5,214 1 1
512 4,947,456 10.21 5,629 1 0.92
4,096 39,579,648 10.81 5,928 0.95 0.88
32,768 316,637,184 12.7 6,270 0.81 0.83
Algorithm 8. Error_Estimator_Without_Ghosting(M, F)
Data: Distributed Mesh M, Solution field data F'
Result: Calculate the error field, elemental error indicator and new desirable mesh size
begin
/* Step 1: Load the mesh and solution data, setup the nodal field
correctly %/

Mesh loading and field data setup;

/* Step 2: Perform the SPR procedure to the interior mesh vertices that

have complete on-part (local) patches
On-part (serial) SPR Procedure applied to /s on part interior;

/* Step 3: Collect field data across multiple parts to form complete

patches for part boundary mesh vertices
Migrate necessary field data associated with entities on remote mesh parts to the owner part;

*/

*/

/* Step 4: Perform the SPR procedure to the part boundary mesh vertices

after the complete patches are formed

Serial SPR Procedure applied to MYs on part boundary;
/* Step 5: Synchronize the recovered field data across the part

*/

boundaries

*/

Update the remote copies with the recovered field of the owner copies;
/* Step 6: Calculate the error field, elemental error indicator and new
desirable mesh size using Equations 5, 7 and 6 */

Error field computation;

Elemental error indication and new mesh size calculation;

end

7. Related work

ParFUM [19,35] is a parallel mesh database that
implements the classic node-element structure. Mesh
parts are called chunks and the communication be-
tween chunks is done implicitly through shared and
ghost entities. ParFUM allows the creation of ghost
layers on the boundary of each chunk so that applica-
tions can access solution data from its neighboring el-
ements. The ghosting process can be done through dif-
ferent bridging dimension (not only vertices). Multiple
ghost layers can be added by calling the same ghosting
routine repeatedly, which adds ghost layers one after
the other [18]. However, the algorithm only creates the

highest dimension ghost element and ghost nodes in a
mesh. Each time new elements are added or ghost ele-
ments are deleted, a round of communication is carried
out to update the ghosts or ghost owners.

The SIERRA’s FEM has mesh entities on the bound-
ary of a partition that can be shared with other parts,
although only one is chosen the owner of the en-
tity [29]. A mesh entity that resides in a process and
is not in the closure of the process’s owned subset
is termed a ghost mesh entity. Multiple independent
computations may require their own particular subsets
of parallel ghosted mesh entities. These computation-
specific ghosted subsets are mesh bulk data that is cre-
ated, owned, modified and destroyed by an applica-

40 M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

tion. SIERRA uses ghost entities in computations that
gather field data from an owned entity’s neighbors [8].

Reference [7] presents Liszt, a domain specific lan-
guage for constructing mesh-based PDE solvers. As
PDE solvers need to run on large distributed mem-
ory machines, the idea is to reduce synchronization be-
tween the nodes. For that, the ghost elements are cre-
ated with field data and when their field values become
stale, messages are exchanged between nodes to send
updated values during the computational phase of the
solver.

A ghost exchange method in a parallel mesh repre-
sentation is presented in [31]. Ghost exchange of faces
and regions are carried out for a library MOAB, used
for representing, querying and modifying structured
and unstructured meshes. Performance data for 32M
hex and 64M tet meshes is also presented.

Reference [2] presents a finite element formulation
for adaptive refinement of unstructured meshes to ac-
curately model plastic transition zones. For parallel
computation, the mesh is partitioned into sub-meshes
assigned to each processor and the mesh is a global
data structure such that (1) each element knows and
can access the elements with which it shares an edge,
(2) each vertex is able to access all the elements to
which it is adjacent, in some cases these elements are
owned by other processors. These two goals are ac-
complished by having ghost copies of the non-local el-
ements which can also be used for higher order ele-
ments. As each ghost element should have up-to-date
copies of the solution information, MPI scatter routines
are used to coordinate the updates to the ghost copies
and related data. The approach ghosts only top level
elements in a 3D mesh.

Most of above mesh libraries [2,7,19,35] use com-
munication to update the stale ghost copies which is
done through MPI collective communication. None of
the above libraries make use of message packing or
neighborhood communication to avoid collective op-
erations and communication overheads. Moreover, no
scalability results or performance data of the ghost cre-
ation and deletion algorithm are provided. Our ghost-
ing algorithm also minimizes communication costs
by localizing ownership information (Section 3.2). It
avoids the use of any search operations that traverse
the entire mesh. The above mesh libraries only appear
to support ghosting for top-level mesh entities for e.g.
regions in a 3D mesh or faces in a 2D mesh, our al-
gorithm gives flexibility to the application by creat-
ing ghosts of any topological dimension apart from the
top-level mesh entities. Some of the above libraries ap-

ply their ghosting procedures to access solution field
data from neighboring elements [29,35] though there
is no scalability data available to analyze their per-
formance. Some of the above libraries [2,7,19] appear
to support the creation of a single ghost layer only
whereas our ghosting algorithm can be used to create
multiple ghost layers.

8. Closing remarks

In distributed meshes, ghosting provides an appli-
cation with complete parallel neighborhood informa-
tion. We have presented a N-layer ghost creation and
deletion algorithm that provides ghost data for all di-
mensions (1D, 2D or 3D) in a distributed mesh. The
algorithm supports any number of ghost layers as
specified by the application. Strong and weak scal-
ing of the ghosting algorithm on two massively par-
allel architectures up to a core count of 32,768 pro-
cessors were presented. With a fixed problem size, as
the processor count increases, inter-part communica-
tion also increases while computational work load de-
creases, which in turn affects the number of ghost en-
tities. We have also presented the weak scaling re-
sults of the ghosting algorithm when applied to the
parallel SPR error estimating procedure on a core
count of 32,768 processors. The algorithm can fur-
ther be applied to reduce the communication require-
ments of other applications like parallel mesh smooth-
ing and geometric reconstruction procedures such as
subdivision surfaces.The algorithm implementation is
available as part of the FMDB implementation at
http://redmine.scorec.rpi.edu/projects/fmdb.

Additional efforts on scalability of ghosting algo-
rithm to take advantage of multi-threaded MPI pro-
cesses are desired. As HPC systems continue to grow
both in node count and core counts per node, a trend
of hybrid programming model that accounts for multi-
core nodes by using threads within MPI processes is
emerging. The motivation is to extend the ghosting al-
gorithm for multi-threaded MPI processes. This can
potentially lead to reduced memory consumption and
improved scalability. We believe that by incorporat-
ing a hybrid programming model with threads and
message-passing, we can significantly reduce the com-
munication requirements of the ghosting algorithm by
utilizing the on-node shared memory for accessing non
part-boundary neighborhood data. Another significant
aspect in improving scalability is to make an even
workload distribution during ghost creation and dele-

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database 41

tion. One step in this direction is to follow a round-
robin approach for distributing duplicate messages in-
stead of the static approach using minimum part ID as-
signment given in Section 4.2.3.

Acknowledgement

We gratefully acknowledge the support of this work
by the Department of Energy (DOE) office of Science’s
Scientific Discovery through Advanced Computing
(SciDAC) institute as part of the Inter-operable Tech-
nologies for Advanced Peta-scale Simulations (ITAPS)
program, under grant DE-FC02-06ER25769.

References

(1]

(2]

31

[4]

(3]

(6]

(71

(8]

(91

[10]

[11]

Argonne National Laboratory, The Message Passing Inter-
face (MPI) standard library, available at: http://www-unix.
mcs.anl.gov/mpi, 2011.

W.J. Barry, M.T. Jones and P.E. Plassmann, Parallel adaptive
mesh refinement techniques for plasticity problems, Advances
in Engineering Software 29(3-6) (1998), 217-225.

M.W. Beall and M.S. Shephard, A general topology-based
mesh data structure, International Journal for Numerical
Methods in Engineering 40(9) (1997), 1573-1596.

U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag,
R. Heaphy et al., Hypergraph-based dynamic load balancing
for adaptive scientific computations, in: 2007 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IEEE,
2007, p. 68.

Cray XEG6 system, available at: http://www.cray.com/Products/
XE/CrayXE6System.aspx, 2011.

K. Devine, L. Diachin, J. Kraftcheck, K.E. Jansen, V. Le-
ung, X. Luo, M. Miller, C. Ollivier-Gooch, A. Ovcharenko,
O. Sahni et al., Interoperable mesh components for large-scale,
distributed-memory simulations, Journal of Physics: Confer-
ence Series 180 (2009), 012011.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina,
M. Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy et al.,
Liszt: A domain specific language for building portable mesh-
based PDE solvers, 2011.

H.C. Edwards, A. Williams, G.D. Sjaardema, D.G. Baur and
W.XK. Cochran, SIERRA Toolkit computational mesh con-
ceptual model, Sandia National Laboratories SAND Series,
SAND2010-1192, 2010.

R. Espinha, W. Celes, N. Rodriguez and G.H. Paulino, Par-
TopS: compact topological framework for parallel fragmenta-
tion simulations, Engineering with Computers 25(4) (2009),
345-365.

LT. Foster, Designing and building parallel programs: con-
cepts and tools for parallel software engineering, Addison-
Wesley, 1995.

L. Freitag, M. Jones and P. Plassmann, A parallel algorithm for
mesh smoothing, SIAM Journal on Scientific Computing 20(6)
(1999), 2023-2040.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Gilge, IBM system blue gene solution: Blue gene/q applica-
tion development, IBM Redbook Draft SG24-7948-00, 2012.
A. Henderson, J. Ahrens and C. Law, The ParaView Guide,
Kitware Clifton Park, NY, 2004.

Hopper 2, Cray XE6 at NERSC, available at: http://newweb.
nersc.gov/users/computational-systems/hopper, 2011.

IBM guide to using Blue Gene/P, available at: http://www.
redbooks.ibm.com/abstracts/sg247287.html.

iMeshP Interface Documentation, available at: http://www.
itaps.org/software/iMeshP_html/index.html, 2011.

ITAPS: The Interoperable Technologies for Advanced Petas-
cale Simulations center, available at: http://www.itaps.org,
2011.

L.V. Kale, R. Haber, J. Booth, S. Thite and J. Palaniappan, An
efficient parallel implementation of the spacetime discontinu-
ous Galerkin method using charm++, in: Proceedings of the
4th Symposium on Trends in Unstructured Mesh Generation at
the 7th US National Congress on Computational Mechanics,
2003.

O.S. Lawlor, S. Chakravorty, T.L. Wilmarth, N. Choudhury,
1. Dooley, G. Zheng and L.V. Kalé, Parfum: A parallel frame-
work for unstructured meshes for scalable dynamic physics
applications, Engineering with Computers 22(3) (2006), 215—
235.

M. Mubarak, A parallel ghosting algorithm for the flexible dis-
tributed mesh database (FMDB), Masters thesis, School Rens-
selaer Polytechnic Institute, 2011.

W. Oed, Scalable computing in a hybrid system architecture,
in: High Performance Computing on Vector Systems 2008,
Springer, 2009, pp. 13-21.

C. Ollivier-Gooch, L. Diachin, M.S. Shephard, T. Tautges,
J. Kraftcheck, V. Leung, X. Luo and M. Miller, An interop-
erable, data-structure-neutral component for mesh query and
manipulation, ACM Transactions on Mathematical Software
(TOMS) 37(3) (2010), 29.

A. Ovcharenko, D. Ibanez, F. Delalondre, O. Sahni, K.E.
Jansen, C.D. Carothers and M.S. Shephard, Neighborhood
communication paradigm to increase scalability in large-scale
dynamic scientific applications, Parallel Computing (2012), to
appear.

A. Ovcharenko, O. Sahni, C.D. Carothers, K.E. Jansen and
M.S. Shephard, Subdomain communication to increase scala-
bility in large-scale scientific applications, in: Proceedings of
the 23rd International Conference on Supercomputing, ACM,
2009, pp. 497-498.

ParMETIS — Parallel Graph Partitioning and Fill-reducing Ma-
trix Ordering, available at: http://glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview, 2011.

O. Sahni, K.E. Jansen, C.A. Taylor and M.S. Shephard, Auto-
mated adaptive cardiovascular flow simulations, Engineering
with Computers 25(1) (2009), 25-36.

E. Seegyoung Seol and M.S. Shephard, Efficient distributed
mesh data structure for parallel automated adaptive analysis,
Engineering with Computers 22(3) (2006), 197-213.

E.S. Seol, FMDB: flexible distributed mesh database for paral-
lel automated adaptive analysis, PhD thesis, Rensselaer Poly-
technic Institute, 2005.

J.R. Stewart and H.C. Edwards, A framework approach for de-
veloping parallel adaptive multiphysics applications, Finite El-
ements in Analysis and Design 40(12) (2004), 1599-1617.

42

[30]

[31]

[32]

[33]

M. Mubarak et al. / A parallel ghosting algorithm for the flexible distributed mesh database

D. Sulsky, S.-J. Zhou and H.L. Schreyer, Application of a
particle-in-cell method to solid mechanics, Computer Physics
Communications 87(1) (1995), 236-252.

T.J. Tautges, J.A. Kraftcheck, N. Bertram, V. Sachdeva and
J. Magerlein, Mesh interface resolution and ghost exchange
in a parallel mesh representation, in: Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International, IEEE, 2012, pp. 1670-1679.
J.-L. Vay, P. Colella, J.W. Kwan, P. McCorquodale, D.B. Ser-
afini, A. Friedman, D.P. Grote, G. Westenskow, J.-C. Adam,
A. Heron et al., Application of adaptive mesh refinement to
particle-in-cell simulations of plasmas and beams, Physics of
Plasmas 11 (2004), 2928.

J. Wan, An automated adaptive procedure for 3D metal form-
ing simulations, PhD thesis, Rensselaer Polytechnic Institute,
New York, 2006.

[34]

[35]

[36]

[37]

J. Wan, S. Kocak, M.S. Shephard and D. Mika, Automated
adaptive forming simulations, in: Proceedings, 12th Interna-
tional Meshing Roundtable, Citeseer, 2003, pp. 323-334.

X. Zeng, R. Bagrodia and M. Gerla, GloMoSim: a library
for parallel simulation of large-scale wireless networks, ACM
SIGSIM Simulation Digest 28(1) (1998), 154-161.

M. Zhou, O. Sahni, H.J. Kim, C.A. Figueroa, C.A. Taylor, M.S.
Shephard and K.E. Jansen, Cardiovascular flow simulation at
extreme scale, Computational Mechanics 46(1) (2010), 71-82.

O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch re-
covery and a posteriori error estimates. Part 1: The recovery
technique, International Journal for Numerical Methods in En-
gineering 33(7) (1992), 1331-1364.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

