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Heavy metals are widely recognized as being hazardous to human health and environmentally aggressive. The literature reports
different approaches for lead removal, for example, water hyacinths. Heavy metal sorption isotherm modeling represents an
important tool towards the study of equilibrium conditions. Fractional calculus represents a novel approach and a growing research
field for process modeling, based on derivatives of arbitrary order. Recently, a novel isotherm based on fractional calculus was
proposed for lead sorption using water hyacinth (Eichhornia crassipes). This paper reports a general procedure on error analysis
and its influence onparameter estimation. It was applied tomathematicalmodels based on fractional differential equations, focusing
on a heavy metal novel isotherm sorption model. Parameter variance was calculated by using two different approaches (with the
complete Hessian matrix and with a simplified Hessian matrix), and joint parameter confidence regions were generated, being
successfully able to show that the fractional nature of the model is statistically valid.

1. Introduction

Heavy metals are widely recognized as being hazardous to
human health and environmentally aggressive, being contin-
uously generated by different chemical plants.The use of lead
in the battery industry [1] is an important example. The liter-
ature reports different approaches for heavy metals removal,
such as chemical precipitation [2], ion exchange [3], and
electrochemical [4] and water hyacinths [5]. Mathematical
models represent an essential tool for in-depth process stud-
ies, design, optimization, and control [6]. Therefore, heavy
metal sorption isotherm modeling represents an important
way towards the study of equilibrium conditions, which play
a key role in sorption process design. The most common
approach for this task consists in the use of classical models
[7], such as Langmuir, Freundlich, and Redlich-Peterson
among others, followed by proper parameter estimation and
model discrimination analysis.

Fractional calculus represents a novel approach and a
growing research field for process modeling, being based on

derivatives of arbitrary order [8–14]. The literature reports a
broad range of applications, concerning systems engineering
[15], diffusion processes [16], heat transfer [17], solid mixing
[18], biological systems [19], and fluid mechanics [20] among
others [21]. Recently, dos Santos et al. [22] proposed a novel
isotherm based on fractional calculus for lead sorption using
water hyacinths (Eichhornia crassipes).The reported isotherm
can successfully predict equilibrium concentrations of lead
between the aqueous solution and the water hyacinth after.
The model was validated using synthetic effluent [1]. It is
important to highlight that the proposed model also leads
to better performances when compared to classical models
(Langmuir, Freundlich, and Redlich-Peterson), which were
used for sake of comparison.

Error analysis represents a crucial step in model valida-
tion and further applications [23]. Recently, Joshi et al. [24]
presented a detailedmodel analysis concerning classical sorp-
tion models. Regarding fractional-calculus-based models,
Gabano and Poinot [25], Khemane et al. [26], and Isfer et al.
[15] report the calculation of parametric variance.
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It is important to state that one may identify a mathemat-
ical model of fractional order for a given set of experimental
data [27]; however, only a precise error analysis can ensure
that the derivative is in fact fractional. If the variance of
the estimated fractional order of the derivative is large
enough, the fractional order can be statistically regarded as
integer order for a given confidence level. Consequently, the
analysis of parameter joint confidence region becomes an
essential tool, as the region indicates, for a given confidence
level, the possible set of parameters that could generate
the experimental data [28]. To the best of our knowledge,
the generation and analysis of joint confidence regions
have not yet been reported for models based on fractional
calculus. This paper reports a detailed study on an error
analysis procedure applied to mathematical models based
on fractional differential equations. After the development
of a theoretical framework concerning parameter estima-
tion, parameter variance estimation and joint confidence
region determination, the fractional model proposed by
dos Santos [22] was used as a case study for validation
purposes.

2. Theoretical Framework

2.1. Mathematical Model. Further details regarding the
experimental data set can be obtained from dos Santos and
Lenzi [1]. It needs to be highlighted that experimental data
was normalized in the interval [0, 1] for proper parameter
estimation [22, 29]. The mathematical model used in this
workwas firstly proposed by dos Santos et al. [22] for describ-
ing the lead equilibrium sorption. According to the authors, a
large number of experimental results on equilibrium systems
dealing with heavy metals have the following behavior: when
the heavy metal concentration in the aqueous phase is low,
the equilibrium concentration in the solid phase may largely
change for a given modification in the concentration of the
fluid phase. On the other hand, for higher concentrations of
the heavymetal in the fluid phase, the equilibrium concentra-
tion in the solidmay be less sensitive, indicating some kind of
saturation. These features resemble to a certain degree in an
exponential behavior, obtained, for example, from first-order
differential equations. Consequently, an exponential model
for heavymetal sorption isotherm, as given by (1), can explain
some normalized experimental results, where parameters 𝜃
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Therefore, by using fractional calculus, the previous
model can be generalized to (2), by considering a fractional
order 𝜃
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for the differential equation. One can note that

parameter 𝜃
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where 𝜀
0
is the 0th-order Epsilon function defined by Pod-

lubny [30], which uses the Mittag-Leffler function; 𝑚
𝑖
𝑖 =

{1, . . . , 4} and 𝑛
𝑖
𝑖 = {1, . . . , 3} are dummy variables. Details

regarding the Gamma function (Γ) can be found in the
appendix.

2.2. Parameter Estimation. Parameter estimation was carried
out using a genetic algorithm procedure as reported by Isfer
et al. [15]. More specifically, the initial population consisted
of 250 sets of values for parameters 𝜃 = {𝜃

1
; 𝜃
2
; 𝜃
3
}, which

iterated until the difference of each parameter 𝜃
𝑖
, the best set

of two consecutive iterations, was lower than 10−6. Crossover
and mutation probabilities were of 80% assuring a good
macroscopic search and of 10% assuring a good microscopic
(refinement), respectively. In order to avoid a local optimum
solution, estimation was performed using different initial
populations. Parameters 𝜃

1
, 𝜃

2
, and 𝜃

3
were estimated using

(3) as the objective function of the optimization problem,
representing a normalized quadratic error analysis [31].
Experimental variances were considered constant and equal
to 𝛿2

𝑦
𝐸 for all experiments and experimental covariances were

assumed equal to zero. Consequently, matrix [𝑉
𝑦
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(NE×NE)

is a diagonal matrix. According to Bard [32], 𝛿2
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𝐹OBJ = [(𝑦
𝐸
− 𝑦

𝑀
)
𝑇

]
(1×NE)

⋅ [(𝑉
𝑦
𝐸)

−1

]
(NE×NE)

⋅ (𝑦
𝐸
− 𝑦

𝑀
)
(NE×1)

= (
1

𝛿2
𝑦
𝐸

) ⋅

NE
∑
𝑖=1

( 𝑦
𝐸

𝑖
− 𝑦

𝑀

𝑖
(𝜃; 𝑥

𝑖
))
2

,

(3)

𝛿
2

𝑦
𝐸 =

NE
∑
𝑖=1

( 𝑦
𝐸

𝑖
− 𝑦

𝑀

𝑖
(𝜃; 𝑥

𝑖
))
2

NE − NP
. (4)

2.3. Parameter Variance. According to Bard [32], for the
objective function defined by (3), the parametric variance
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It can be observed that matrix [𝐺
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obtained by using a sensitivity matrix [23], [𝐵]
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For linear estimation problems, TERM2 automatically van-
ishes. However, this is not the case for nonlinear problems,
but, according to Alberton et al. [23], this term can be
neglected in some scenarios. Therefore, the parametric vari-
ance matrix is usually approximated by
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2.4. Parameter Confidence Interval and Joint Confidence
Region. According to Himmelblau [33], parameter confi-
dence intervals can be obtained by using (11) for a given
confidence level of 100 ⋅ (1 − 𝛼)%, but the use different values
of 𝜌 has been reported. For a small number of experimental
data, the use of 𝜌 = 𝑡

(1 − 𝛼/2),(NE−NP), obtained from Student’s
𝑡-distribution, is recommended. On the other hand, 𝜌 =

𝑧
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, obtained from the normal distribution, can be used
for a large number of experimental data:
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Based on parametric variance, joint confidence region
also needs to be obtained. For a given confidence level, this
region provides the set of parameters that could actually gen-
erate the experimental data set. This is an important analysis
tool, as although a given set of parameter may be within the
confidence interval, it may not be inside the joint confidence
region [33]. Usually, these joint confidence regions can be
obtained by (12), which considers a linearization of the
estimation problem [28]. Thus, a key issue to be addressed
is concerns on the influence of the approach used to calculate
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matrix [𝑉
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It needs to be stressed that (12) is only an approximation
for nonlinear problems. A much more realistic approach

[28, 34] given by (13) which considers the intrinsic nonlinear
features of the estimation problem, leading to joint confi-
dence regions usually larger than the ones obtained by (12):
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2.5. Model Prediction Variance. Pinto and Schwaab [35]
report that the variance of the model predictions of the
experimental data used for parameter estimation is given
by (14). The main feature of this equation is that not only
experimental and modeling error themselves are taken into
account, but also the correlation between them is also
considered for the variance prediction:
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not used during parameter estimation, (15) needs to be used.
Only used data for parameter estimation contribute to the
correlation between experimental and modeling errors:

𝛿
2

𝑦
𝑀⊗

𝑖

= ([𝐵
⊗
]
(1×NP)

⋅ [𝑉
𝜃
]
(NP×NP)

⋅ [(𝐵
⊗
)
𝑇

]
(NP×1)

)

+ (𝛿
2

𝑦
𝐸) ,

(15)

where [𝐵⊗]
(1×NP)

is the model gradient vector given by (16)
and evaluated for 𝑥

𝑖
:

[𝐵
⊗
]
(1×NP)

= [
𝜕𝑦

𝑀

𝜕𝜃
1

𝜕𝑦
𝑀

𝜕𝜃
2

⋅ ⋅ ⋅
𝜕𝑦

𝑀

𝜕𝜃NP
] . (16)

2.6. Analytical Expressions. By using the definitions of 𝜀
0
and

theMittag-Leffler function, themathematical model given by
(2) can be rewritten as

𝑦
𝑀

𝑖
=

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

] . (17)

The objective function used for estimating the parameter
set 𝜃 = {𝜃

1
; 𝜃
2
; 𝜃
3
} is given by (18)

𝐹OBJ

=

NE
∑
𝑖=1

(𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))

2

.

(18)

The elements of matrix [𝐵]
(NE×NP)

and matrix [𝐵⊗]
(1×NP)

are given by

𝜕𝑦
𝑀

𝑖

𝜕𝜃
1

=

∞

∑
𝑗=0

[−
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗 + 1)

(𝜃
1
)
𝑗+2

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

] ,

𝜕𝑦
𝑀

𝑖

𝜕𝜃
2

=

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
(𝑗−1)

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ 𝑗

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

] ,

𝜕𝑦
𝑀

𝑖

𝜕𝜃
3

=

∞

∑
𝑗=0

[ ((−1)
𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗 + 1)

⋅ (ln (𝑥
𝑖
) − Ψ ((𝜃

3
) ⋅ (𝑗 + 1) + 1)) )

×((𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

] .

(19)
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The objective function gradient is given by

𝜕𝐹OBJ

𝜕𝜃
1

=

NE
∑
𝑖=1

(−2 ⋅(𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

])))

⋅
𝜕𝑦

𝑀

𝑖

𝜕𝜃
1

,

𝜕𝐹OBJ

𝜕𝜃
2

=

NE
∑
𝑖=1

(−2 ⋅(𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

])))

⋅
𝜕𝑦

𝑀

𝑖

𝜕𝜃
2

,

𝜕𝐹OBJ

𝜕𝜃
3

=

NE
∑
𝑖=1

(−2 ⋅(𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

])))

⋅
𝜕𝑦

𝑀

𝑖

𝜕𝜃
3

.

(20)
The elements of matrix [𝐺

𝑦
]
(NP×NE)

are obtained by

𝜕
2
𝐹OBJ

𝜕𝜃
1
𝜕𝑦𝐸

𝑖

= −2 ⋅ (

∞

∑
𝑗=0

[−
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗 + 1)

(𝜃
1
)
𝑗+2

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]) ,

𝜕
2
𝐹OBJ

𝜕𝜃
2
𝜕𝑦𝐸

𝑖

= −2 ⋅ (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
(𝑗−1)

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ 𝑗

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]) ,

𝜕
2
𝐹OBJ

𝜕𝜃
3
𝜕𝑦𝐸

𝑖

= −2 ⋅ (

∞

∑
𝑗=0

[ ((−1)
𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗 + 1)

⋅ (ln (𝑥
𝑖
) − Ψ ((𝜃

3
) ⋅ (𝑗 + 1) + 1)) )

×((𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

]) .

(21)

Finally, the elements of [𝐻
𝜃
]
(NP×NP)

result from

𝜕
2
𝐹OBJ

𝜕𝜃2
1

=

NE
∑
𝑖=1

((2 ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
1

)

2

)

− 2 ⋅ ((𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))

⋅

∞

∑
𝑗=0

[ ((−1)
𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

⋅ ((𝑗 + 1)
2

+ (𝑗 + 1)) )

× ((𝜃
1
)
𝑗+3

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

])) ,

𝜕
2
𝐹OBJ

𝜕𝜃2
2

=

NE
∑
𝑖=1

((2 ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
2

)

2

)

− 2 ⋅ ((𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))

⋅

∞

∑
𝑗=0

[

[

(−1)
𝑗
⋅ (𝜃

2
)
(𝑗−2)

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗

2
− 𝑗)

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]

]

)) ,

𝜕
2
𝐹OBJ

𝜕𝜃2
3

=

NE
∑
𝑖=1

((2 ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
3

)

2

)

− 2 ⋅ ((𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))

⋅

∞

∑
𝑗=0

[((−1)
𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗 + 1)

2

⋅ ((ln (𝑥
𝑖
) − Ψ ((𝜃

3
) ⋅ (𝑗 + 1) + 1))

2

−Ψ (1, (𝜃
3
) ⋅ (𝑗 + 1) + 1) ) )

×((𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

])) ,

𝜕
2
𝐹OBJ

𝜕𝜃
1
𝜕𝜃

2

=

NE
∑
𝑖=1

((2 ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
1

) ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
2

))

− 2 ⋅((𝑦
𝐸

𝑖
−(

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))
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⋅

∞

∑
𝑗=0

[− ((−1)
𝑗
⋅ (𝜃

2
)
(𝑗−1)

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

⋅ (𝑗 ⋅ (𝑗 + 1)) )

× ((𝜃
1
)
𝑗+2

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

])) ,

𝜕
2
𝐹OBJ

𝜕𝜃
1
𝜕𝜃

3

=

NE
∑
𝑖=1

((2 ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
1

) ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
3

))

− 2 ⋅ ((𝑦
𝐸

𝑖
− (

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))

⋅

∞

∑
𝑗=0

[ ((−1)
𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅ (𝑗 + 1)

2

⋅ (− ln (𝑥
𝑖
) + Ψ ((𝜃

3
) ⋅ (𝑗 + 1) + 1)) )

× ((𝜃
1
)
𝑗+2

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

])) ,

𝜕
2
𝐹OBJ

𝜕𝜃
2
𝜕𝜃

3

=

NE
∑
𝑖=1

((2 ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
2

) ⋅ (
𝜕𝑦

𝑀

𝑖

𝜕𝜃
3

))

− 2 ⋅((𝑦
𝐸

𝑖
−(

∞

∑
𝑗=0

[
(−1)

𝑗
⋅ (𝜃

2
)
𝑗

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖

(𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1)

]))

⋅

∞

∑
𝑗=0

[((−1)
𝑗
⋅ (𝜃

2
)
(𝑗−1)

⋅ 𝑥
((𝜃
3
)⋅(𝑗+1))

𝑖
⋅(𝑗 ⋅ (𝑗 + 1))

⋅ (ln (𝑥
𝑖
) − Ψ ((𝜃

3
) ⋅ (𝑗 + 1) + 1)) )

× ((𝜃
1
)
𝑗+1

⋅ Γ ((𝜃
3
) ⋅ (𝑗 + 1) + 1))

−1

])) .

(22)

Further details regarding Gamma (Γ) and Psi (Ψ) functions
can be found in the appendix.

3. Results

Heavy metal sorption processes involve a solid phase, which
in many scenarios consist in irregular and disordered struc-
tures; consequently, many classical models usually cannot
adequately explain observed experimental behavior. Towards
this, fractional calculus plays a key role inmathematicalmod-
eling of transport phenomena in irregular structure, mainly
due to memory effects as already reported in the literature
[36, 37]. It is important to note that the model proposed
by dos Santos et al. [22] presents a novel characteristic as
according to the value of parameter 𝜃

3
, the Epsilon function
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Figure 1: Experimental values versus model predictions.

turns into a different mathematical function; for example, if
𝜃
3
is equal to 1, an exponential form is obtained [30].
Table 1 presents a summary of the parameter estimation

procedure.The row EPSILON 1 presents the results consider-
ing (5) to calculate the parameter variancematrix.The results
in row EPSILON 2 considered (10) to calculate the parameter
variancematrix. Firstly, it can be seen that themodel reported
by dos Santos et al. [22] presents a very good correlation
coefficient and a low value of the objective function.

It can also be observed that the parameter variance is
small when compared to the value of the parameter; con-
sequently, all the parameters can be considered significant.
This fact occurred independently of the approach used for
the calculations of the parametric variance. This conclusion
is also obtained after analyzing the parameter confidence
intervals calculated for 95% of confidence level, regardless of
the value used for 𝜌 in (11). It can be seen that all parameters
are significant as they are all statistically different from zero.
However, it is important to emphasize that for this nonlinear
parameter estimation study, the choice of the approach used
to calculate the parameter variance led to differences of one
order of magnitude for parameters 𝜃

1
and 𝜃

3
. Besides, some

interesting effects regarding parameter correlation showed
up; more specifically, by choosing the simplified approach,
correlation between parameters 𝜃

1
and 𝜃

3
and parameters 𝜃

1

and 𝜃
2
considerably increased.

Figure 1 presents the experimental values plotted against
the model predictions. Bar errors were obtained using (4) to
obtain an approximation of the experimental error and (14) to
obtain the error of the model predictions of the experimental
data used in the parameter estimation task. It can be observed
that model predictions are in good agreement with the
experimental values as the points are close to the straight
line, which indicates the ideal case that model predictions
are equal to the experimental values. Figure 2 presents a
comparison of experimental data and model predictions
plotted against the independent variable. As mentioned
before, experimental error was calculated using (4). Again,
one can see that the fractionalmodel adequately describes the
experimental data, especially for low concentrations of lead
in the aqueous solutions, where low variations cause large
variations in the lead concentration in the hyacinth. Besides,



Mathematical Problems in Engineering 7

Ta
bl
e
1:
Pa
ra
m
et
er

es
tim

at
io
n
re
su
lts

@
.

Pa
ra
m
et
er

𝛿
𝜃
𝑖

𝜃
𝑖
±
𝑡 (
1
−
(
𝛼
/
2
)
)
,(
N
E−

N
P)
⋅
𝛿
𝜃
𝑖

𝜃
𝑖
±
𝑧
(
1
−
(
𝛼
/
2
)
)
⋅
𝛿
𝜃
𝑖

[
[
𝑉
𝜃
]
]

[
[
𝑉
𝑟
𝜃
]
]

𝑟
𝐹
O
BJ

𝜃
1

0.
16
9

2
.6
6
⋅
1
0
−
3

0.
16
9
±
0.
01
1

0.
16
9
±
0.
00
5

[ [

7
.0
8
⋅
1
0
−
6
−
2
.0
2
⋅
1
0
−
6
−
5
.3
6
⋅
1
0
−
6

−
2
.0
2
⋅
1
0
−
6
3
.8
3
⋅
1
0
−
4

9
.3
7
⋅
1
0
−
5

−
5
.3
6
⋅
1
0
−
6
9
.3
7
⋅
1
0
−
5

2
.8
9
⋅
1
0
−
5

] ]

[ [

1
−
0
.0
3
9
−
0
.3
8

−
0
.0
3
9

1
0
.8
9

−
0
.3
8

0
.8
9

1

] ]

0.
99
9

1
.3
8
⋅
1
0
−
3

EP
SI
LO

N
1

𝜃
2

0.
88
4

1
.9
6
⋅
1
0
−
2

0.
88
4
±
0.
08
4

0.
88
4
±
0.
03
8

𝜃
3

0.
48
8

5
.3
8
⋅
1
0
−
3

0.
48
8
±
0.
02
3

0.
48
8
±
0.
01
0

𝜃
1

0.
16
9

3
.1
2
⋅
1
0
−
2

0.
16
9
±
0.
13
4

0.
16
9
±
0.
06
1

[ [

9
.7
4
⋅
1
0
−
4
−
1
.5
7
⋅
1
0
−
3
−
1
.3
4
⋅
1
0
−
3

−
1
.5
7
⋅
1
0
−
3
3
.3
1
⋅
1
0
−
3

1
.9
3
⋅
1
0
−
3

−
1
.3
4
⋅
1
0
−
3
1
.9
3
⋅
1
0
−
3

2
.0
5
⋅
1
0
−
3

] ]

[ [

1
−
0
.8
7
−
0
.9
5

−
0
.8
7

1
0
.7
4

−
0
.9
5
0
.7
4

1

] ]
EP

SI
LO

N
2

𝜃
2

0.
88
4

5
.7
6
⋅
1
0
−
2

0.
88
4
±
0.
24
7

0.
88
4
±
0.
11
2

𝜃
3

0.
48
8

4
.5
2
⋅
1
0
−
2

0.
48
8
±
0.
19
4

0.
48
8
±
0.
08
8

@
10
0⋅

(1
−
𝛼
)%

=
95
%
:𝑡
(
1
−
(
𝛼
/
2
)
)
,(
N
E−

N
P)
=
𝑡
0
.9
7
5
;(
5
−
3
)
=
𝑡
0
.9
7
5
;
2
=
4
.3
0
3
0
;𝑡
(
1
−
(
𝛼
/
2
)
)
,(
N
E−

N
P)
=
𝑡
0
.9
7
5
;(
5
−
2
)
=
𝑡
0
.9
7
5
;
3
=
3
.1
8
2
;a
nd

𝑡
(
1
−
(
𝛼
/
2
)
)
,(
∞
)
=
𝑧
(
1
−
(
𝛼
/
2
)
)
=
𝑧
0
.9
7
5
=
1
.9
6
.



8 Mathematical Problems in Engineering

0.25

0.55

0.85

0.25 0.55 0.85

Model
Experiment
Confidence interval

−0.05

−0.05

𝑌
-d

ep
en

de
nt

 v
ar

ia
bl

e
(le

ad
 co

nc
en

tr
at

io
n 

in
 th

e h
ya

ci
nt

h)

𝑋-independent variable
(lead concentration in the aqueous phase)

Figure 2: Isotherm behavior.

Figure 2 also presents the confidence interval limits (1 ⋅ 𝜎)
considering (15) to calculate the model prediction error and
using the complete Hessian to calculate [𝑉

𝜃
]
(NP×NP)

.

Parameter 𝜃
3
plays a key role in the model because, as

mentioned before, according to its value the equation can
assume a different form. Besides, it is the order of the frac-
tional differential equation (see (2)).Therefore, it is important
to prove that 𝜃

3
is statistically different from 1, otherwise

an integer order differential equation would be a model
with the same efficiency. Initially, this analysis considers the
confidence interval presented in Table 1. However, this may
not be enough, as the parameter joint confidence region
plays a key role. Figure 3 presents the region obtained by
(12) considering the parametric variance matrix obtained by
(5) (solid region) and considering the parametric variance
matrix obtained by (9) (wired region). One can observe that
𝜃
3
is different from 1; consequently, the use of fractional

order derivative is significant. Secondly, the approach used
for calculating the parameter variance significantly influences
the parameter confidence region as it can be seen by the
difference in size and shape of the ellipsoids. This is an
important consequence as a set of parameters which is inside
the wired region may be outside the solid region; therefore, it
may not be statistically significant.

Finally, it needs to be remembered that the joint con-
fidence regions shown in Figure 3 were obtained by a
simplified though useful approach. For nonlinear parameter
estimation problems, a more accurate parameter confidence
region is obtained by (13), which is presented by Figure 4.
It is essential to stress that the size and the shape of
the region may considerably change as (13) preserves the
nonlinear features of the problem, remembering that (12)
is somehow a linearization of (13). Moreover, it must be
emphasized that parameter 𝜃

3
is still lower than 1 (see Fig-

ure 4); consequently, themodel nature and experimental data
behavior can be adequately described by a fractional order
model.

It is important to analyze the variance of the model
predictions of future experiments, which can be obtained
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by (15). Figure 5 presents the variance predictions plotted
against the independent variable, that is, lead concentration
in the aqueous solution. The variances were calculated using
the different parametric variance matrixes; that is, Epsilon1
used (5) and Epsilon2 used (10). One can observe that
using (10) the variance of future experiments predictions
considerably changes. It must be remembered that, although
often used, (10) is an approximation of the calculation of
the parametric variance.Therefore, for nonlinear problems as
the one present in fractional calculus applications, (5) should
be chosen. It is also important to note that the minimum
values of variance are obtained for lower values of the
independent variable. For higher values, the variance tends to
increase.
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Figure 5: Variance behavior for different values of the independent
variable.

4. Conclusions

The availability of mathematical models plays a key role
in understanding heavy metal equilibrium phenomena. The
literature reports different approaches for modeling the
sorption process, particularly lead. Recently, a model based
on fractional calculus was proposed to describe experi-
mental data concerning lead sorption by hyacinths. This
paper reported the use of an error analysis procedure for
mathematical models based on fractional order differential
equations in order to show that the fractional order is in fact
fractional.

Parametric variance matrix was calculated by two dif-
ferent approaches, one considering the complete Hessian
matrix and the other considering a simplification of its
elements. It was observed that the use of the completeHessian
matrix leads to different results; consequently, the simplified
approach may not be recommended for some nonlinear
parameter estimation problems, such as the one reported
in this paper. Joint confidence regions played a key role in
the analysis of parameter confidence intervals, especially in
the order of the fractional differential equation. It is also
important to conclude that the fractional model considered
was in fact fractional, as the estimated order of the derivative
was higher than its error and also statistically different from
1, showing that the fractional nature of the model is valid.

Appendix

Gamma function is defined by Γ(𝑥) = ∫∞
0
𝑒
−𝑡
⋅ 𝑡
𝑥−1
𝑑𝑡 and Psi

function, and some properties can be obtained from Lebedev
[38]:

Ψ (𝑥) =
Γ

(𝑥)

Γ (𝑥)
, (A.1)

Γ

(𝑥) = ∫

∞

0

𝑒
−𝑡
⋅ 𝑡
𝑥−1
⋅ ln (𝑡) 𝑑𝑡, (A.2)

Γ

(𝑥) = ∫

∞

0

𝑒
−𝑡
⋅ 𝑡
𝑥−1
⋅ (ln (𝑡))2𝑑𝑡, (A.3)

Ψ (1, 1 + 𝑥) = Ψ (1, 𝑥) −
1

𝑥2
, (A.4)

Ψ (1, 𝑥) =
Γ

(𝑥)

Γ (𝑥)
− (Ψ (𝑥))

2
. (A.5)

Nomenclature

𝐹OBJ: Objective function

𝐹
1 − 𝛼

NP,(NE−NP): Value of 𝐹 distribution considering
(1 − 𝛼) as confidence level and NP and
NE−NP as degrees of freedom and
0 < 𝛼 < 1

NE: Number of experiments
NP: Number of parameters
𝑟: Correlation coefficient
𝑡
(1 − 𝛼/2),(NE−NP): Value of the Student 𝑡-distribution for a

confidence level of (1 − 𝛼/2) and
(NE−NP) degrees of freedom, where
0 < 𝛼 < 1

𝑥: Independent variable-lead
concentration in the aqueous solution

𝑦: Dependent variable-lead concentration
in the hyacinth

𝑧
(1 − 𝛼/2)

: Value of the normal distribution for a
confidence level of (1 − 𝛼/2), where
0 < 𝛼 < 1.

Greek Letters

𝜌: Dummy variable
𝛿
2: Variance
𝜃
𝑖
: 𝑖th parameter.

Superscript

–1: Inverse
𝑇: Transpose
𝑀: Model
𝐸: Experiment
#: Optimized or estimated value
⊗: Predicted value of the dependent variable of a given

future experiment.
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estimation of fractional models in the frequency domain using
set membership methods,” Signal Processing, vol. 92, pp. 1591–
1601, 2012.

[27] A. Almusharff and N. Nguyen, “A combination of time-scale
calculus and a cross-validation technique used in fitting and
evaluating fractional models,” Applied Mathematics Letters, vol.
25, no. 3, pp. 550–554, 2012.

[28] G. E. P. Box and W. G. Hunter, “A useful method for model-
building,” Technometrics, vol. 4, pp. 301–318, 1962.

[29] G. E. P. Box and P.W. Tidwell, “Transformation of the indepen-
dent variables,” Technometrics, vol. 4, pp. 531–550, 1962.

[30] I. Podlubny, Fractional Differential Equations, Academic Press,
New York, NY, USA, 1st edition, 1999.

[31] P. Englezos and N. Kalogerakis, Applied Parameter Estimation
for Chemical Engineers, Marcel Dekker, New York, NY, USA, 1st
edition, 2001.

[32] Y. Bard, Nonlinear Parameter Estimation, Academic Press, New
York, NY, USA, 1st edition, 1974.

[33] D.M. Himmelblau, Process Analysis by Statistical Methods, John
Wiley & Sons, New York, NY, USA, 1st edition, 1970.

[34] I. Guttman and D. A. Meeter, “On Beale’s measures of non-
linearity,” Technometrics, vol. 7, pp. 623–637, 1965.

[35] J. C. Pinto and M. Schwaab, Análise de Dados Experimentais. I.
Fundamentos de Estat́ıstica e Estimação de Parâmetros, Editora
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