Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 583193, 13 pages
http://dx.doi.org/10.1155/2013/583193

Research Article

Hindawi

A New Piecewise-Spectral Homotopy Analysis Method for
Solving Chaotic Systems of Initial Value Problems

H. Saberi Nik,' Sohrab Effati,' Sandile S. Motsa,” and Stanford Shateyi3

! Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
2 School of Mathematics, Computer Science and Statistics, University of KwaZulu-Natal, Private Bag X01, Scottsville,

Pietermaritzburg 3209, South Africa

? Department of Mathematics, University of Venda, P Bag X5050, Thohoyandou 0950, South Africa

Correspondence should be addressed to Stanford Shateyi; stanford.shateyi@univen.ac.za

Received 30 September 2012; Revised 14 February 2013; Accepted 25 February 2013

Academic Editor: Trung Nguyen Thoi

Copyright © 2013 H. Saberi Nik et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An accurate algorithm for solving initial value problems (IVPs) which are highly oscillatory is proposed. The proposed method is
based on a novel technique of extending the standard spectral homotopy analysis method (SHAM) and adapting it to a sequence of
multiple intervals. In this new application the method is referred to as the piecewise spectral homotopy analysis method (PSHAM).
The applicability of the proposed method is examined on the differential equation system modeling HIV infection of CD4" T
cells and the Genesio-Tesi system which is known to be chaotic and highly oscillatory. Also, for the first time, we present here
a convergence proof for SHAM. We treat in detail Legendre collocation and Chebyshev collocation. The method is compared to
MATLAB’s ode45 inbuilt solver as a measure of accuracy and efficiency.

1. Introduction

This paper introduces a new method for solving highly
oscillatory and chaotic initial value problems (IVPs). The
new method extends, for the first time, the application of
the spectral homotopy analysis method [1, 2] to IVPs. The
spectral homotopy analysis method was developed by Motsa
et al. [1, 2] for solving nonlinear boundary value problems
(BVPs) over finite intervals. It has been successfully been
applied to other BVPs arising mainly in fluid mechanics-
related problems [3-6]. In the previously cited applications
the SHAM method was applied to problems which possess
smooth solutions over small regions. For rapidly oscillating
chaotic systems over very large regions, the SHAM may not
give accurate results. The current work seeks to develop a new
method that will be valid for rapidly changing solutions over
all regions, small, medium-, and large sized. A simple way of
ensuring the validity of the approximations for large intervals
and for all functions is to determine the solution in a sequence
of equal intervals, which are subject to continuity conditions
at the end points of each interval.

Recently, in an effort to increase the radius of convergence
of some analytical methods of approximations, multistage or
piecewise approximations have been developed for solving
IVPs over general intervals. This multistage approach seeks to
implement the standard approximation method on sequences
of subintervals whose union makes up the domain of the
underlying problem. The effect of this piece-wise (multistep)
approach is to accelerate the convergence of the approximate
solution over a large region and to improve the accuracy
of the parent approximate method of solution, particularly
over rapidly oscillating regions. Examples include the, mul-
tistage homotopy analysis method [7], piecewise homotopy
perturbation methods [8], multistage Adomian decomposi-
tion method [9, 10], multistage differential transformation
method, [11, 12], and multistage variational iteration method
[13]. Because, these methods attempt to obtain analytical
solutions at each interval they involve time-consuming and
tedious computational operations and if too many small
intervals are considered, as may be the case when dealing
with highly oscillatory systems, the analytical integration
process will be too much to handle even with the use of



symbolic scientific software. For this reason, focus is now
shifted towards multistage methods which use numerical
integration techniques such as the piecewise iteration method
[14] which uses spectral collocation methods.

This work examines the applicability of a method that
blends the piecewise implementation technique with the
spectral homotopy analysis method. For this reason, the
proposed method is called the piecewise homotopy analysis
method (PSHAM). The validity of the method is tested
against two initial value problems of practical importance,
namely, the mathematical models of HIV infection of CD4"
T cells and the Genesio-Tesi system. Chaotic dynamics of
the Genesio-Tesi system were introduced in [15]. Since then,
the system has been used as one of the benchmarks for
testing the validity of new and existing methods of solving
IVPs. Approximate analytical or numerical methods that
have been used to find solutions of the Genesio-Tesi system
include the differential transform method [16], the piecewise-
spectral parametric iteration method [14], variational itera-
tion method (VIM), and the multistage VIM [17].

Mathematical models play a significant role in studying
epidemic and viral dynamics. Viral models are valuable to
help us improve the understanding of both diseases and var-
ious drug therapy strategies against them. In 1993, Perelson
et al. [18] proposed an ODE model of cell-free viral spread
of human immunodeficiency virus (HIV) in a well-mixed
compartment such as the bloodstream. This model consists
of four components: uninfected healthy CD4" T cells, latently
infected CD4" T cells, actively infected CD4" T cells, and
free virus. This model has been important in the field of
mathematical modelling of HIV infection, and many other
models have been proposed, which take the model of Perelson
etal. [18] as their inspiration. For numerically solving a model
for HIV infection of CD4" T cells, Ongun [19] has applied
the Laplace Adomian decomposition method, Merdan has
used the homotopy perturbation method [20], and Merdan
et al. [21] have applied the Padé approximation and the
modified variational iteration method [22]. More recently
Yuzbasi [23] used the Bessel collocation method for solving
the same problem. It is worth noting that in all these studies
results were given for solutions over small time intervals.
Thus, it may be concluded that these methods only offer
a good approximation to the true solution in a very small
regions. Liao [24] introduced the homotopy analysis method
(HAM) which has convergence controlling parameters to
improve accuracy of series solutions and increase the region
of convergence. The HAM was successfully used to solve
several nonlinear IVPs [24-28]. However, even the standard
HAM approach may not be suitable to resolve solutions
over very large intervals and for rapidly oscillating systems
which show chaotic behaviour. For practical purposes, results
obtained using the previously mentioned analytical methods
of approximation may not be very useful since, in addition
to the short-term behaviour of some systems, long-term
behaviour of the solutions may be required and insights into
chaotic systems may be sought. The multistage approach,
such as the one discussed in this paper, presents an important
strategy of addressing the limitations of some of the previ-
ously cited methods of solution.
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The rest of this paper is organized as follows: In Section 2
the basic description of the SHAM is presented. Section 3
presents existence and uniqueness of solution of SHAM
that give a guarantee of convergence of SHAM. Section 4
deals with the description and formulation of the piecewise-
SHAM. In Section 5, the numerical implementation of the
PSHAM to the Genesio-Tesi system and HIV infection of
CD4" T cells models is considered. In Section 6 we present
the main results and discussion of the numerical simulations,
and finally, the conclusion is given in Section 7.

2. Basic Idea behind the Spectral Homotopy
Analysis Method (SHAM)

For convenience of the interested reader, we will first present a
brief description of the basic idea behind the standard SHAM
[1, 2]. This will be followed by a description of the piecewise
version of the SHAM algorithm which is suitable for solving
initial value problems. To this end, we consider the initial
value problem (IVP) of dimension 7 given as

¥ (to) = YO) )
f:RxR" — R", 2)

vy =£(ty®),
y:R — R",

where the dot denotes differentiation with respect to t. We
make the usual assumption that f is sufficiently smooth for

linearization techniques to be valid. If y = (y;, 5,..., y,) we
can apply the SHAM by rewriting (1) as
Z [y O+ F, [y, 0] = ¢, ®), (3)

where £, is a linear operator which is derived from the
entire linear part of (1) and &, is the remaining nonlinear
component forr = 1,2,...,n.

The SHAM approach imports the conventional ideas of
the standard homotopy analysis method (HAM) by defining
the following zeroth-order deformation equations

(1 - q) ‘EZr [Yr (t; q) = Vro (t)]
= qh H, (1) {/, [Y, (569)] - ¢, (1)},

(4)

where g € [0,1] is an embedding parameter, Y,(¢;q) are
unknown functions, and %, and H,(t) are convergence con-
trolling parameters and functions, respectively. The nonlinear
operator ./, is defined as

VY, (9] = Z, [V, (59 + 7. [V, (59)]. (5

Using the ideas of the standard HAM approach (see e.g.,
[24-28]), we differentiate the zeroth-order equations (4) m
times with respect to g and then set ¢ = 0 and finally
divide the resulting equations by m! to obtain the following
equations, which are referred to as the mth order (or higher
order) deformation equations,

3r [yr,m (t) = XmYrm-1 (t)] = hrHr (t) Rr,m—l’ (6)
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where
e 1 N9 4,0
rm—1 (m_ 1)! aqm—l q;o’
(7)
_]0, m<,
KXm = {1, m> 1.

After obtaining solutions for (6), the approximate solu-
tion for each y,(t) is determined as the series solution

Yr (1) =Vr0 (t)+yr,1 (t)+yr,2 (&) +---. (8)

A HAM solution is said to be of order M if the previous
series is truncated at m = M, that is, if

M
Yo ) =) Yo (8). ©)
m=0

It should be emphasized that the HAM and SHAM
approach will be equivalent if the same linear operator &
is used. In the HAM implementation the linear operator
is usually chosen in such a way that the higher order
deformation equations (6) can be solved analytically and the
resulting solution conforms to the so-called rule of coefficient
ergodicity and a predefined rule of solution expression [24]. If
these requirements are adhered to then equations of the form
(6) constitute a system of decoupled differential equations
which can easily be integrated, especially with the use of
symbolic scientific software such as MATLAB, MAPLE, and
Mathematica. If the HAM solution does not converge to the
true solution of the underlying problem the convergence con-
trolling parameters %, and H,(t) may be adjusted to improve
convergence. In some cases even this intervention will not be
enough to guarantee convergence. The SHAM approach seeks
to remove all of the restriction of the HAM by making it more
flexible. In the SHAM application, the governing differential
equations are just separated into the linear and nonlinear
components as in (3). The linear operator is just chosen using
the linear part of the equation. The penalty for relaxing the
restrictions is that the resulting higher order deformation
equations will not be solvable analytically. That is, where the
“S” in the SHAM comes in. Spectral collocation methods
are used to solve the higher order deformation equations.
A suitable initial guess to start off the SHAM algorithm is
obtained by solving the linear part of (3) subject to the given
initial conditions; that is, we solve

L o] =¢,1),  ,0(0) = . (10)

If (10) cannot be solved exactly, the spectral collocation
method is used as a means of solution. The solution y, ,(t) of
(10) is then fed to (6) which is iteratively solved for y, , (t) (for
m=1,2,3,...,M).

3. Convergence Theorem of the Spectral
Homotopy Analysis Method

In this section, we give some definitions and theorems that
explain the convergence properties of the SHAM from a

functional analysis framework [29]. We remark that the
Newton’s iteration approach was used in [22] to address the
nonlinearities, whereas in this work we use the homotopy
analysis method approach to decompose the nonlinear terms.
In addition, our proposed method is applied in a series of
subintervals as opposed to the entire interval.

We begin by giving a brief description of the properties
of the Legendre polynomials, followed by the existence and
uniqueness properties of the solution of the SHAM and it’s
convergence properties.

3.1. Properties of Shifted Legendre Polynomials. The well-
known Legendre polynomials are defined on the interval
(-1,1) and can be determined with the aid of the following
recurrence formula [30]:

T (x)=1, T, (x) =x,
2j+1 j ) (11)
T () = AT 0= 25T ), 2

In order to use these polynomials on the interval x € (0,T)
we defined the so-called shifted Legendre polynomials by
introducing the change of variable x = (2t/T) — 1. Let the
shifted Legendre polynomials 7 j((2t/T) — 1) be denoted by
T 1,;(t). Then T, (t) can be generated by using the following
recurrence relation:

2j+1 (2t
T rjm (B) = i1 <F_1>9T,j(t)
. (12)
] _
—j+—19~T,j71 ®, j=12...,

where 7 1o(t) = land 7, () = (2t/T)~1. The orthogonality
condition is

T
| TnoTnwa=1s, 0
0

2i+1

where §;; is the Kronecker function. Any function y(t),
square integrable in (0,T), may be expressed in terms of
shifted Legendre polynomials as

y() =Y a,Tr; (1), (14)
j=0

where the coeflicients a; are given by

T
a':21+1j yO T (Odt, j=0,1,2,.... (15)
j T Jo ]

In practice, only the first (N + 1) terms of shifted Legendre
polynomials are considered. Hence we can write

N
y(®) =) aTr;(t). (16)
j=0

Now, we turn to Legendre-Gauss interpolation. We denote by
t?’ , 0 < j < N, the nodes of the standard Legendre-Gauss



interpolation on the interval (-1,1). The corresponding
Christoffel numbers are a)j\r,O < j < N. The nodes of the
shifted Legendre-Gauss interpolation on the interval (0,7
are the zeros of 7 iy, (t), which are denoted by t;{j, 0<j<
N. Clearly t?) = (T/2)(t§\r +1). The corresponding Christoftel
numbers are wIT\{j, = (T/Z)wé\]. Let 9(0,T) be the set of all

polynomials of degree at most N. Due to the property of the
standard Legendre-Gauss quadrature, it follows that for any
D € Pyna(0,T)

JT(D(t)dtz gjj1®<§(t+l)>dt

0
TY T
= 5%‘”%(5@”)) 17)

N
Y@ (7).
=0

Definition 1. Let (u, v); and ||v||; be the inner product and
the norm of space LZ(O, T), respectively. We introduce the
following discrete inner product and norm:

N
(v = Yu(try)v(tn;)enp  Wiew = )7
" (18)
From (17), for any @y € P,y,1(0,T),
(@) = (@ ‘//)T,N’ (19)
where A = -1,0,1 for the Legendre-Gauss interpolation,

the Legendre Gauss-Radau interpolation, and the Legendre
Gauss-Lobatto integration, respectively.

Moreover, for the Legendre-Gauss integration and the
Legendre-Gauss-Radau integration,

¢l = Il

For the Legendre-Gauss-Lobatto integration, ||¢||7 # [|dl| 1y
usually. But for mostly used orthogonal systems in [0, T'], they
are equivalent, namely, for certain positive constants ¢ and c,,

alglr <[l < clél- (21)

¢ e Py(0,T). (20)

3.2. Existence and Uniqueness of the SHAM Solution. We
consider the initial value problem (IVP) of dimension # given
as

y(t) =y,
f:RxR" — R",

y(t) =£f(ty(®),
y:R — R",

(22)

where the dot denotes differentiation with respect to t. We
make the usual assumption that f is sufficiently smooth for
linearization techniques to be valid, rewriting (22) as

Zy®Ol+ A [y®]=¢@), (23)
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where & is a linear operator which is derived from the
entire linear part of (22) and ./ is the remaining nonlinear
component.

Let us define the nonlinear operator .4 and the sequence
{Yn}ziO as

Ay O] = Y Ne Do 15 3 » (24)
k=0
Y, = yo
Y=y +
(25)

Yo=Y+ttt

Using the ideas of the HAM approach [24], we obtain the
following equation, which is referred to as the mth order (or
higher order) deformation equation:

LY () = XY O] = BRH (O R, [y )], (26)

subject to the initial condition

Ym (0) =0, (27)
where
Ry (Fnet) = Z [l + Vot [Yor 1o 5 Y]
~(I=Xmo®. .
Therefore,
Zn O] =rHO{Z [n] + #o - B},
Zn® -y O] =hrHO{ZL [n]+ 1},
Ly -y, O] =HO{Z ]+ 42}, (29
L ) = Yoot O] = BH 0L [y ] + Vi) -
Upon summing these equations, we have
Z [y (O] = RH () {23 (3] + zﬂk —¢ (t)} . (30)
and from (25) we obtain
Z Y (O =Y,y ()]
=hH O{L [Vl + N [Voa] - 9 (0} o
subject to the initial condition
Y,, (0) = 0. (32)
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Consequently, the collocation method is based on a solution
YN(t) € Py, (0,T), for (31) such that

7 [v (#7) = Yo (1)
= (1) 1 [V (170)]
+ 4 [ ()] - o™ ()} (34)

subject to the initial condition

(33)

YN (0) = 0. (35)

Definition 2. A mapping f of space L*(0, T) into itself is said
to satisfy a Lipschitz condition with Lipschitz constant y if for
any z and 2%,

|f z0) - f(z50)| <ylz-27]. (36)

If this condition is satisfied with a Lipschitz constant y such
that 0 <y < 1 then f is called a contraction mapping.

Theorem 3 (Banach’s fixed point theorem). Assume that K is
a nonempty closed set in a Banach space V, and further, that T :
K — K is a contractive mapping with contractivity constant
y, 0 <y < 1. Then the following results hold.

(i) There exists a unique Y € K such thatY = T(Y).

(i) For any Y, € K, the sequence {Y, };o, C K defined by
Y, = T(Y,), convergestoY [29].

Theorem 4 (existence and uniqueness of solution). Assume
that £(t,y(t)) in the initial value problem (IVP) (22) satisfies
condition of (36); then (33) has a unique solution.
Proof. From (33) we have
2 [V, ()]
= (14 nH (1)) 2 [Vl (6]

()] -0 ()} G7)

0<k<N,

+hHY (0 ) {7 [V

YN (©) =0, m=>0.

Since f(t,z) satisfies the Lipschitz-continuous condition,
then there exists a constant y > 0 such that

F 62~ f () <y -], (39)

forallt € [0,T],and all z and z*.
Now, for the problem (23), we choose
d
LY ()] = 2Y +a @)Y,
(39)

N[Y ()] = -a(®)Y - f (1Y)

and ¢(t) =

0 where «(t) is an arbitrary analytic function.

Let ?Z(t) YN (t) - YN _,(t), then we have from (37) that

3[?5(%)] = (1+hH(£,))
Xg[ e l(tTk) Yo, (tIIYk)]
+hH (t?)k)

L ()] = [Yoa () [}

0<k<N, m=>1
(40)

< Y

or according to the definitions of L[Y (t)] and N[Y (¢)],
jt [Y’N (tTk)] +a(tyy) v
= (ren (850){ 5 [T (50 + (50 700}
i (15) L (4 s () + (550 ¥

-f (tTk’ :jz(t?k)) (tTk)YN }
<k<N, m=>1,
(41)
from where
d 1= d -
N (0] = (emr (0) & [7 ()]
+a(t1}fk)175,l (t?’k) — hH ()
{f (tTk’Ym l(tTk))
~f (t10 Yoz (t20))}
0<k<N, m>1.
(42)
It is obvious that ?:(0) = 0. clearly,
~N 2 ~N d /=N ~ d /=N
(7)) = 2<Ym,g (Ym)>T <2|7,|, = (7..) .
(43)

Furthermore, for any ¢ € [0, 77,

(?Z (t))2 - (?fn’ (T))2 - JtT %(?Z (x))zdx

N
m

(44)
< (7, (T))

Integrating the previously mentioned with respect to ¢ yields
that

dYN

dt "r (45)

721, ,

< T(?Z (T)) 2T||Y




from where

(TN ) > %"?Z ||; dt Tul - 4
Using (46) and (43) we have
||17Z”T < 4T||%17Z om0 (47)

Let o = max ;¢ yla(t)| and H = max;(o | H(t)|. Therefore,
a combination of (21), (36), and (43) results in
47, <o

— —Y
dat ™ dat ™

T,N

d ~-N
<(1+ |kl H) HEY’”‘I

<N
reyH|T

* (X”?Z”TN * “”?5*1 “TN (48)

d -N
<¢ (1+|hH) HEY”H

+eCy [T, |+ aalT, ],
ol
Using (47) and (48) results in

“?Z"T - 46,T (1 + |h| H) ll

1 - 4caT

(49)

4QT (e +cy|h| H) ” “
1 —4c,aT
where ¢ is a positive constant. Then, by (47) with m — 1,

instead of m and multiplying the resulting inequality by
(6,(1 + |A|H))/(1 — 4c,aT) > 0, we have

Cz(1+|h|H)|| “

402T(1 + |k H) ll
1 —4caT - (50)

1 —4caT

Subtracting (50) from (49), after simplifying, we obtain

=N
|7, <=
Therefore, if (¢, (1 + |A|H) + 46, T (o + cy|h|H)) /(1 — 4c,aT) <

<N
B < 1,then ||Y, |l — 0asm — o00. According
to Theorem 3, it implies the existence and uniqueness of
solution of (33). O

6 (1+|h|H) +4c,T oc+cy|h|H)||

1 - 4¢aT " - 1)

4. Piecewise-Spectral Homotopy
Analysis Method

It is worth noting that the SHAM method described previ-
ously is ideally suited for boundary value problems whose
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solutions do not rapidly change in behaviour or oscillate over
small regions of the domain of the governing problem. The
SHAM solution can thus be considered to be local in nature
and may not be suitable for initial value problems at very large
values of the independent variable t. A simple way of ensuring
the validity of the approximations for large ¢ is to determine
the solution in a sequence of equal intervals, which are subject
to continuity conditions at the end points of each interval. To
extend this solution over the interval A = '[to, tF], we divide
the interval A into subintervals A; = [, t'],i = 1,2,3,...,F
where t° < t! < -+ < tf. We solve (6) in each subinterval
Ai. Let yrl (t) be the solution of (6) in the first subinterval
[t%, 1] and let yi(t) be the solutions in the subintervals A ;

for 2 < i < F. The initial conditions used in obtaining the
solutlons in the subinterval A; (2 <i < F) are obtained from
the initial conditions of the subinterval A ;_;. Thus, we solve

Lo Vo O = XV O] =R HOR., ., te[t71]
(52)

subject to the initial condition
V() =0. (53)

The initial approximations for solving (8) are obtained as
solutions of the system

L[y, 0] = ¢, ®,

subject to the initial condition

yi)o (ti—l) _ yi—l (ti—l) ) (55)

The Legendre spectral collocation method is then applied
to solve (52)-(54) on each interval [+, ]. Before applying
the spectral method, it is convenient to transform the region
[, ] to the interval [1, 1] on which the spectral method
is defined. This can be achieved by using the linear transfor-

teltr] (54)

mation
Aoy (f 44!
() () 0
2 2
in each interval [f1,#] (for i = ., F). After the

transformation, the interval [#},#] is discretized using
the Legendre-Gauss-Lobatto (LGL) nodes. These points, x;,
j = 0,1,...,N, are unevenly distributed on [-1,1] and are
defined byxg = -1, xé\, =landforl < j < N-1, x; are
the zeros of Ly, the derivative of the Legendre polynomial of
degree N, L.

The Legendre spectral differentiation matrix D is used to
approximate the derivatives of the unknown variables yi)m )
at the collocation points as the matrix vector product

dy! N . 4 4 )
= YD (%) =DY,, j=01,, N, (57)
k=0

where D = 2D/t -t and Y., = [y,.(xp), ¥, (xh),
. y;)m (xEV)]T is the vector function at the collocation points
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x’] The matrix D is of size (N + 1) x (N + 1) and its entries
are defined [31, 32] as

'——N(l\i“), if j=k=0,
NOED e,
D., = - 58
() 1 9
— , if j#k,
Ly (t)tj—t
L 0, otherwise.

Applying the the Legendre spectral collocation method in
(52)-(55) gives
AY =0, Y (x") =Y (2, (69)
A [Yi,m - Xin,m—l] = hTRi,m—l’ Yi,m (xé\;l) = 0’
(60)

where A is an (N + 1) x (N + 1) matrix that comes from
transforming the linear operator Z using the derivative

matrix D, ®,, and Ri)m_ , are (N+1)x1 vectors corresponding

to the functions ¢, (t) and Ri)m_l , respectively, when evaluated
at the collocation points. We remark that, throughout this
paper, for simplicity, we have set the auxiliary function
H,(t) appearing in (52) to be 1. Thus, starting from the
initial approximation Y’;’O which is the solution of (59), the
recurrence formula

Y., = xuYsy + B ATR (61)

ram rm—1
can be used to obtain the solution yi(t) using (9) in the

interval [t',¢"']. The solution approximating y,(t) in the
entire interval [, £'] is given by

yr (), teltt]

2y, teltht
nw=1" ] (62)
yE@), te[tfL).

It must be noted that when F = 1, the proposed piecewise-
spectral homotopy analysis method (PSHAM) becomes
equivalent to the original SHAM algorithm.

5. Numerical Experiments

To demonstrate the applicability of the proposed piecewise-
spectral homotopy analysis method (PSHAM) algorithm as
an appropriate tool for solving nonlinear IVPs, we apply the
proposed algorithm to the Genesio-Tesi system [15] and a
nonlinear initial value problem that models dynamics of HIV
Infection of CD4" T Cells [18]. Both these examples exhibit
solutions which are chaotic and highly oscillatory over small
regions. Thus the standard SHAM approach would not be
suitable as a method of solving these problems. The results
obtained by the piecewise SLM are compared with the results
of the standard SLM approach and Runge-Kutta-generated
results.

5.1. Gensio-Tesi System. The Genesio-Tesi system [15] consid-
ered in this paper is given as follows:

dy

dtl‘ =7 »n (0=,

dy

dt2 =y »,(0) =y, (63)

dy;

2o -ty ol 0=,

In this example, the parameters used in the SHAM and
PSHAM algorithms are

4
dr D-I O
Z=l0o 2 -1 |, A=|0oD -I |,
dt cI bl D+al
c d—+61

¥

t
0 0
T -
- 0

i _ i i
Rr,m—l - 3r [yr,m—l] + Qr,m—l’

0
; 0
Qr,m—l = m-1 P
- Z Y1, 1,m-1-j
=0
(64)
With these definitions, the PSHAM algorithm gives

AY., = (X, +h)AY,,  +hQ, . (65)

Because the right-hand side of (65) is known, the solution can
easily be obtained by using methods for solving linear system
of equations.

5.2. HIV Infection of CDA™ T Cells [18] model. Of particular
interest to us is the model in [18], which is given by the
following system of differential equations:

d . +

% =s-ay +r ) (1 - %) —ky1ys,
dy
d_tz =ky ys = By (66)
dys

pr NiBys = vys
with the initial conditions

1) =r, »0)=r, y;(0)=rs (67)

In this model y,, y,, and y; denote the concentration
of susceptible CD4" T cells, infected CD4" T cells, and free
HIV virus particles in the blood, respectively. To explain
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TABLE 1: Numerical comparison between PSHAM and ode45 for the Genesio-Tesi system.

¢ »(t) »,(t) y5(t)
PSHAM ode45 PSHAM ode45 PSHAM ode45
10 0.549279 0.549279 —0.794566 —0.794566 —2.165635 —2.165635
20 5.582458 5.582458 —-0.637436 —0.637436 —8.466611 —8.466611
30 —1.358402 —1.358402 1.702324 1.702324 7.595114 7.595114
40 —0.234737 —-0.234737 —5.138959 —5.138959 1.042740 1.042740
50 5.405530 5.405530 0.923128 0.923128 -9.945397 -9.945397
60 —1.416682 —1.416682 —-0.050327 —-0.050327 7.152612 7.152612
70 0.709463 0.709463 —5.405633 —5.405633 —0.694185 —0.694185
6 8
A I
5 L
6 L 4
4 L
4 L 4
3 L
2+ 2t 1
B s
Q0 1
0 a
_2 L 4
_1 L
_2 L _4 L
-3 - -6 L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
O] (t)
(a) (b)
15
10 + E
5 L 4
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=
_5 L
_10 L 4
—-15 L L L L L L L
0 5 10 15 20 25 30 35 40

®

FIGURE 1: Comparison between the PSHAM (solid line) and ode45 results for the Genesio-Tesi system.

the parameters, we note that s is the source of CD4" T
cells from precursors, «, 3, and y are natural turnover rates
of uninfected T cells, infected T cells, and virus particles,
respectively, and T, is the maximum level of CD4" T cells
concentration in the body. Because of the viral burden on the

HIV infected T cells, we assume that « < f. The logistic
growth of the healthy CD4" T cells is now described by
r*y(1 = (1, + %)/ (Thhay))), and proliferation of infected
CD4" T cells is neglected. The term ky,y; describes the
incidence of HIV infection of health CD4" T cells, where
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FIGURE 2: Phase portraits of the Genesio-Tesi system using the PSHAM approach for ¢ = 6,b = 2.92,and a = 1.2.

TaBLE 2: Numerical comparison between PSHAM and ode45 for the HIV infection of CD4" T cells model.

; T(t) I(t) V(t)
PSHAM ode4b PSHAM ode4b PSHAM ode4b

10 578.75453 578.75453 828.60772 828.60772 668.80364 668.80364
20 305.69897 305.69897 771.63784 771.63784 750.17130 750.17130
30 42.97717 42.97717 775.28130 775.28130 983.92328 983.92328
40 19.26140 19.26140 507.15995 507.15995 697.41875 697.41875
50 74.75706 74.75706 369.55303 369.55303 481.63241 481.63241
60 175.14776 175.14776 570.19159 570.19159 646.31285 646.31285
70 50.72849 50.72849 593.99657 593.99657 768.95482 768.95482

k > 0 is the infection rate. Each of the infected CD4" T cell ~ In this example, the parameters used in the SHAM and
is assumed to produce N virus particles during its life time, =~ PSHAM algorithms are
including any of its daughter cells [21, 33]. Throughout this

paper, we set d
i (r"-a) 0 0
d
s=01, «=002 p=03, r'=3 y=24, Zr = 0 &Jr/’) 0 ’
(68) 0 N d
k =0.0027, T, =1500, N, =10. “Np oty
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FIGURE 3: Comparison between the PSHAM (solid line) and ode45 results for the HIV infection model.
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(69)

With these definitions, the PSHAM algorithm gives

AYi,m = (Xm + hr) AYi,m—l + hr [Qi,mfl - (1 - Xm) (D] .
(70)

Because the right-hand side of (70) is known, the solution can
easily be obtained by using methods for solving linear system
of equations.

6. Results and Discussion

In this section we present the results of the implementation of
the piecewise spectral homotopy analysis method (PSHAM)
described in the previous section on the Genesio-Tesi and
the HIV Infection of CD4" T cells model. Unless otherwise
specified, the results presented in this paper were generated
using M = 10 order of the PSHAM approximation with
N =20 collocation points in each [£71, '] interval. The width
of each interval was taken to be 0.1. We remark that the values
of N and M were chosen through numerical experimentation
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FIGURE 4: Phase portraits of the HIV model using the PSHAM approach.

by testing a few values that give converging results for the
governing parameters of the problems under consideration.
The convergence controlling auxiliary parameter used in
generating all the results was chosen to be £, -1. We
remark that the accuracy of the homotopy analysis derivative
methods, such as the one discussed in this paper, can be
improved by seeking an optimal value of %, using different
techniques. For instance, in the traditional homotopy analysis
method, Liao [24] proposed that the optimal value of  was
the one located in the flat region of the so-called A-curves.
More recently, Marinca and Herisanu [34] suggested the use
of the minimum of the square of the residuals to obtain the
optimal values of /. A detailed review of the various methods
for obtaining the optimal # can be found in [35]. Since the
PSHAM approach requires the implementation of the SHAM
in numerous intervals, it may not be practical to seek an
optimal value of % in every interval. Thus, for illustration
purposes i, = —1 was used in this paper, and it was found
that this value gives accurate results for all the parameters
considered in this paper. In order to assess the accuracy and
performance of the proposed PSHAM approach, the present
results are compared with those obtained with the MATLAB
inbuilt solver ode45. The ode45 solver integrates a system of

ordinary differential equations using explicit 4th&5th Runge-
Kutta (4,5) formula, the Dormand-Prince pair [36].

Table 1 gives a comparison between the present PSHAM
approximate results and the numerically generated ode45
for all the governing dependent variables of the Genesio-Tesi
system at selected values of time ¢. It can be seen from the
table that there is good agreement between the two results.

Figure1 gives the graphical profiles of the classes
Y1), y,(t), y5(¢) in the time interval [0, 40]. The initial con-
ditions used to generate the graphs are y,(0) = 0.2, y,(0) =
-0.3, and y5(0) 0.1. The PSHAM results are plotted
against the ode45 results (small dots). It can be seen from the
figure that there is good agreement between the two results.

In Figure 2, we give the various phase portraits of the
Genesio-Tesi problem using the PSHAM method. The phase
portraits are qualitatively similar to those obtained in [12]
wherein the multistage differential transform method was
used to solve the same problem. Numerical simulations using
ode45 yield exactly the same results.

In Table 2 we give a comparison between the present
PSHAM approximate results and the ode45 for all the
governing dependent variables of the HIV infection model
at selected values of time ¢. This was done with the standard
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parameter values given in (68) and initial values y,(0) =
0.1, ,(0) = 0, and y5(0) = 0.1. For this problem, in order
to get accurate results the order of the PSHAM used was
M = 25. We observe, again, that there is good agreement
between the two results. This confirms the validity of the
proposed PSHAM approach as a potential method for solving
initial value problems including those with chaotic behaviour.

Figure 3 gives a comparison between the PSHAM and
the ode45 results (small dots) for the variation of the classes
y1(8), y,(t), y5(¢) in the time interval [0, 100]. Again, excellent
agreement between the two results is observed. The graphic
illustrations depicted in Figure 3 indicate that our results are
qualitatively similar to other results from the literature (see
e.g., [12, 33]). In particular, we observe that for the selected
parameters the numerical simulations show the existence of
periodic solutions. Because of this periodic nature of the
solutions, it would be difficult to resolve the solutions for very
large time intervals using the standard SHAM approach.

Figure 4 is an illustration of the phase portraits of the
HIV infection model problem generated using the PSHAM
method. We observe that the graphical results in Figure 4
are qualitatively similar with the multistage differential trans-
form method results of [12].

7. Conclusion

In this paper we presented a new application of the spectral
homotopy analysis method in solving a class of nonlinear dif-
ferential equations whose solutions show chaotic behaviour.
The proposed method (referred to as the piecewise-spectral
homotopy analysis method (PSHAM)) of solution extends,
for the first time, the application of the SHAM to initial value
problems. The PSHAM accelerates the convergence of the
SHAM solution over a large region and improves the accuracy
of the method. The approximate PSHAM numerical results
were compared with results generated using the MATLAB
ode4b solver and excellent agreement was obtained. This
confirms the validity of the proposed PSHAM approach
as a suitable method for solving a wide variety of initial
value problems in practical applications including those with
chaotic behaviour.
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