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As we all know, relevant data during software life cycle can be used to analyze and predict software reliability. Firstly, the major
disadvantages of the current software reliability models are discussed. And then based on analyzing classic PSO-SVM model and the
characteristics of software reliability prediction, some measures of the improved PSO-SVM model are proposed, and the improved
model is established. Lastly, simulation results show that compared with classic models, the improved model has better prediction
precision, better generalization ability, and lower dependence on the number of samples, which is more applicable for software

reliability prediction.

1. Introduction

Reliability is an important software quality characteristic
related to the probability that system works without failures
over a period of time in a certain environment. The estima-
tion or prediction of the reliability level is a very important
task. This level can be used to plan test, deployment, and
maintenance activities. To help in this task, the use of
modeling and prediction of software reliability are a crucial
issue.

Different types of software reliability prediction models
consider different elements of the software project, such as
the specification and codification of the programs, and are
usually based on characteristics of the testing activity. Some of
those models consider the time between failures [1-3]. Others
consider the coverage of a test criterion [4-7]. A criterion
can be viewed as a predicate to be satisfied by the test cases
and can be used to evaluate test sets [8]. The advantage of
models based on coverage is that they are independent of
the operation profile. However, models based on time are
most commonly used. Due to the general nonlinear function
mapping capabilities, artificial neural networks have received

increasing attention in time series forecasting [9-11]. These
works show that ANN nonparametric models present better
results than traditional ones. However, most of those works
explore only models based on time. In addition, the ANN
itself is filled with strong experience, the theory is not strict
or easily interpreted, and then it easily converges at the
local minimum point. So the application of artificial neural
networks is very limited for software reliability prediction.

Recently, a novel machine learning technique, called
support vector machine (SVM), has drawn much attention in
the fields of pattern classification and regression forecasting.
SVM was first introduced by Vapnik and his colleagues in
1995 [5]. SVM is a kind of classifier’s studying method on
statistic study theory. This algorithm derives from linear
classifier and can solve the problem of two kinds classifiers;
later this algorithm is applied in nonlinear fields; that is to say,
we can find the optimal hyperplane (large margin) to classify
the samples set. It is an approximate implementation to the
structure risk minimization (SRM) principle in statistical
learning theory, rather than the empirical risk minimization
(ERM) method [5].



Compared with traditional neural networks, SVM can
use the theory of minimizing the structure risk to avoid the
problems of excessive study, calamity data, local minimal
value, and so on. SVM has been successfully used for machine
learning with large and high-dimensional data sets. These
attractive properties make SVM become a promising tech-
nique. This is due to the fact that the generalization property
of an SVM does not depend on the complete training data
but only a subset thereof, the so-called support vectors. Now,
SVM has been applied in many fields [12-14]. However,
the essence of SVM training is solving convex quadratic
programming problems with linear equality constraint. The
classic methods for solving nonlinear programming, such as
the Newton method and quasi-Newton method, have large
computing. So the predicted effect is not so perfect.

In order to overcome the limitations of SVM mentioned
previously, the researchers apply particle swarm optimization
(PSO) to the training of the SVM [15, 16]. PSO is an
intuitive and easy-to-implement algorithm from the swarm
intelligence community. To replace the need for numeric
solvers, a PSO algorithm based on chaos searching (CPSO)
which improves the convergence speed and the abilities of
searching for the global optima is proposed and shown to be
feasible in solving the SVM quadratic programming problem,
but the research is fit for the large sample set, which is
ineffective for less sample data in early software reliability
prediction.

In this paper, based on analyzing classic PSO-SVM model
and the characteristic of software reliability prediction, we
propose concrete measures of the improved PSO-SVM model
and establish the improved PSO-SVM model. This paper
is organized as follows: Section 2 summarizes the classic
PSO-SVM model. Section 3 analyzes characteristic of soft-
ware reliability prediction and PSO-SVM applicability and
then proposes specific improved strategy. Section 4 describes
results of two compared simulation experiments. Finally,
Section 5 concludes the paper.

2. Traditional PSO-SVM
Characteristics Analysis

Traditional PSO-SVM model used PSO algorithm to opti-
mize the model parameters and kernel parameter of SVM and
improved the prediction accuracy by searching the optimal
parameters value. SVM classification was first proposed for
the second largest interval algorithm and then gradually
extended to the field of nonlinear regression. SVM nonlinear
regression prediction is similar to classification problems,
which are calculated according to the given decision function,
and then classify and predict. Regression problem retains the
main features of the largest interval algorithm, which is to
minimize a convex function, and the nonlinear function can
be got by studying the linear devices in the kernel feature
space; the difference is mainly reflected in a given data set.
Suppose that a given data set is {(x;,y)...,
(x5 ¥ (x5, )}, where x; € R", y, € R,i=1,2,3,...,1
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The original SVM problem can be expressed as

w€eR",beR

1
min [ (w,&) = %wTw + CZ (& +&)
i=1

st. (- ¢(x)+b) -y, <& +e
i=1,...,1

~(w-p(x;)+b)<&+e, i=1,...,1
&,67>0, i=1,...,1

)

Since the dimension of feature space is high, and the
objective function is nondifferentiable, in order to facilitate
the calculation, the dot product kernel function technology
and Wolf dual theory are introduced, which is transformed
into the dual problem. The original problem is transformed
into the dual quadratic programming problem. Specific
methods are firstly constructing the Lagrangian function
(such as type 2) and then calculating the partial derivative
of each variable; the result is substituted into the original
problem:
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Lagrange function requires w,b,&,&" to be minimized;
thus
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Function f(x) can be directly expressed as
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fx) =Y (af - @)K (x;,x) +b. (4)

i=1



Mathematical Problems in Engineering

When checking
“_j‘l;:yj‘i(“_f—@K(xi’xj)”' ®)
When checking
“_Zj:)’k‘i(“_f—ai)K(xvxj)‘s- (6)

When SVM solves nonlinear regression problems, the
nonlinear mapping ¢(-) makes feature space mapping into
high-dimensional feature space and then finishes linear
regression in high-dimensional space. In order to reduce
the sensitivity of the prediction error, the objective function
of nonlinear regression model is defined insensitive loss
function, and the slack variable ¢ is introduced to ignore the
fitting error of less than &, which ensures that the model is
the existence of global minimum and reliable generalization
sector optimization.

The original problem (1/ 2)w’ wis for the regularized part,
whose role is to make the function smoother to enhance
the generalization ability; &; and & reflect the training point

margin of error; Y'_, (§+&}) reflects the experience risk of the
model; error penalty factor C is the model parameters, which
determines the balance between the empirical risk and the
regularization parts.

Dual problem is the quadratic programming problem,
where K(x; - x;) = (¢(x;) - $(x;)) is called kernel function,
including linear kernel, polynomial kernel function, RBF
kernel function, and sigmoid kernel function. The RBF kernel
function can fully reflect the software reliability nonlinear
characteristics, which is used in the construction of predic-
tion model.

Consider RBF kernel function:

2
'xi - X;

K (xi,x~) = exp 202]| . 7)

J

When making PSO optimize C, & and ¢* in SVM model,
the population is constantly updating from the best local
position to the best global locations in the iterative process.
Assuming that the population size is m, the d dimensional
space position of the particle I is x; = {x;,x;,...> X2}
speed is v; = {v;;,v;5,...,v;4}, the optimal local location is
pbest; = {p;1, Pia>---> Pia}> and the best global position is
gbest = {g;, g5, ..., g4} Specific methods are as follows.

Speed:
Vij (t+1) =w- vij () +¢ -1y (p,-j—xij) +¢ 1y (gj—x,-j).
(8)
Location:

where t is the current iteration number, ¢; and c, are the
acceleration factor, ¢, is own dependence on memory of

particles, ¢, is the impact of other particles on the particle
itself, which make each particle close to pbest and gbest, and
ry and r, are uniform distribution random numbers in (0, 1),
which is used to simulate the slight disturbance.

3. Model Applicability and
Improved Measures Analysis

The traditional PSO-SVM has many outstanding advantages,
which are adapted to software reliability prediction charac-
teristics, which are shown in Table 1.

Although traditional PSO-SVM prediction model has
many advantages, because of inherent weaknesses and defi-
ciencies of PSO and SVM algorithms, this paper proposes the
correspondent improved strategy to get the optimal software
reliability prediction model. The model shortcomings and
correspondent improved measures are shown in Table 2.

4. Improved Model

4.1. Block Population Initialized Measure. Particle swarm
optimization (PSO) is a global optimal search algorithm, so
this algorithm should quickly search to obtain the optimal
value. However, the traditional particle swarm is randomly
generated within the region in the whole population, which
cannot fully guarantee that it is dispersed throughout the
search space. If we can put search space into many blocks, it
will be able to improve the nonuniform status. The main idea
is that each particle is almost evenly distributed; assuming
that the number of particles is #, then the entire search space
is divided into n small areas:

Xy € [ + fi (b — ) s ap + froor (b — )]
k=1,2,...,D,

fi = (i—1) mod C”K,
(10)

D-1 Do
p=(G-1)-) f,c”7,
j=1

C:%:

where g, and b, are expressed in the range of values in k
dimension; then the initial position of particle i is

Xik =@ + fi (bk_ak)+%(bk_ak)'r’ (11)

where r is random number values in [0, 1].

4.2. Adaptive Inertia Factor Measure. Inertia factor w in
the PSO algorithm makes the particle velocity update with
historical memory, which adjusts history speed to the local
and global optimal speed in order to balance the relationship
between the global search ability and the local one. When
the iteration begins, the larger inertia weight can enhance the
global search capability; that is, the larger the search area,
in the latter, the smaller the inertia weight which can be
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TABLE 1: Model advantages and prediction characteristics.
Model advantages Prediction characteristics

The parameter C adjusts the ratio between configuration risk and experience risk,

avoiding the overlearning problems and improving the prediction model

generalization ability.

Less software reliability sample set

The slack variable is introduced to reduce the error sensitivity of prediction model.

The model transforms the original problem into a dual problem, making solving
process into a convex quadratic programming problem, getting the optimal solution

easily.

Complex prediction process

The kernel function is introduced, which makes multidimensional input space into
high dimensional space in order to solve multidimensional space problems.

More software reliability characteristic
parameters

The prediction process is operated in the high-dimensional space, which makes
original non-linear prediction problem transform into a linear problem, and then the

results are reduced to the nonlinear problem solution.

Nonlinear characteristics of software
reliability prediction

PSO is used to search the optimal solution of parameters to improve the overall

prediction accuracy.

It is difficult to get the optimal solution for the
software reliability prediction model
parameters.

TABLE 2: Model shortcomings and improved measures.

Model shortcomings

Improved measures

The model parameters and kernel parameter of SVM are random, which are not

conducive to search the optimal parameters, thereby reducing the prediction accuracy

and efficiency.

Block population initialized measure

PSO inertia factor is fixed, and the local and global search abilities are limited, which

reduces obtaining the optimal solution ability.

Adaptive inertia factor

PSO algorithm is easy to fall into local minimum in the latter prediction part.

Nonevolution number of mutation
strategies

When low-dimensional space transforms into high dimensional space and solves

quadratic programming problems, if the number of input spaces is high, computational

efficiency will be a new problem.

Transforming SVM into LSSVM

enhanced local search ability, which is conducive to better
local search. If we can prolong the former and latter search
times, we will improve the overall algorithm performance, so
the adaptive weight update method is as follows:

6
t
W= Wi + (Whax — Winin) X €XP (—20 X <t ) ) . (12)
max

Suppose that w,,,, Wy, are 0.9 and 0.1. The corresponding
inertia weight curve is shown in Figure 1.

In the previous table, the curve expresses the relationship
between the power of (¢/¢,,,,)- and w. Compared with other
values, when the power is 6, the particle search time is the
longest. The method makes the inertia weight a larger value
in the iterative initial time, and smaller in the latter, which
extends the global and local search times, strengthens the
search ability, and balances the global search ability and local
search ability.

4.3. Nonevolution Number of Mutation Measures. Mutation
mechanism comes from the genetic algorithm, which is
mainly used to overcome the problem of converging at local
minimum in the iterative process. Standard PSO is easy
to converge at local optimal solution in high-dimensional
function optimization problems, and nonevolution number

of the particles can determine whether it is entering into the
local optimal solution. Therefore, if nonevolution number
and mutation operators can be introduced into the PSO, they
will be selection criteria as the mutation time in order to
overcome the local minimum problem. Specific strategies are
as follows.

(1) Calculate the fitness changing rate (abbreviated as
FCR hereinafter): the FCR is the fitness changing rate
of p, (history optimal particle position) between the
current iteration and the previous M times (M = 1):

F Slope = ! (Pg (t)) 7 (Pg ¢- M)) . (13)

f(p,®)

(2) Count nonevolution number: in the beginning of the
evolution, the non-evolution number is stop time;
the fitness changing threshold value is slope value;
non-evolution limit is MaxStep; mutation probability
is p,,. In the iterative process, the non-evolution
number is determined by the fitness changing rate, as
follows:

F Slope < Slope value stop time = stop time + 1
(14)

F Slope > Slope value stop time = 0.
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FIGURE 1: Adaptive inertia weight curve.

If non-evolution number is more than the limit
(MaxStep), the algorithm may be stopped, and we can do
mutation operation based on the mutation probability:

Pgi (F+1) = pgi (£) + 0.5 X7 X pg; (), 15)

where r is the random number in [0, 1]. The improvement
makes the particles continue to approach the global optimum
when converging at local minimum in training.

4.4. LSSVM Measure. Least squares support vector machine
(LSSVM) has the two main deformations. Firstly, the least
squares linear system is introduced as a loss function, which
makes equality constraints replace inequality ones in SVM;
secondly the quadratic programming solving replaces linear
equations, which avoids insensitive loss function and greatly
improves the learning efficiency and the training accuracy.
The standard SVM problem can be simplified as follows:

min J(w,&) = %wTw + Ciflz
i=1 (16)

st. y=¢(x;) w+b+§ +e.

It should be noted that the one equality constraint in
LSSVM is used instead of the two inequality constraints in
SVM; the corresponding objective function C ZLI(&- +&5)
can also be replaced by C Y &’ Based on the standard
method of transforming into dual problem in SVM, LSSVM

5
TABLE 3: Experimental data.
SN LOC FO FI PATH FAULTS
1 29 4 1 4 0
2 29 4 4 2
3 32 2 2 2 1
4 33 3 27 4 1
5 37 7 18 16 1
6 41 7 1 14 4
7 55 1 1 12 2
8 64 6 1 14 0
9 69 3 1 8 1
10 101 4 4 12 5
11 120 3 10 22 6
12 164 14 10 221 11
13 270 9 1 80 17

can be converted into the dual problem through the deriva-
tion

1 . 1
2 b+e 0
1 K(xl,x1)+z ... K(x,x,) @ | |n
: , : ;
1 K(x,x) . K(x,,x,)+ = n n
c
(17)
Decision function is
n
f () =Y &K (x;x) +b. (18)
i=1

As solving linear equations, b in the decision function can
be obtained through the equation, which can greatly reduce
the computation and the model is more simple.

5. The Flow Chart of the
Improved PSO-LSSVM Model

The flow chart of improved PSO-LSSVM prediction model is
shown in Figure 2; the dashed part expresses the improved
process of PSO-LSSVM model.

6. Simulation Comparison

In order to evaluate the performance of the new model
and compare it with the traditional model, the simulation
experiment is shown as follows. Here, taking a military
software system as an example, thirteen module indexes and
module defect number are shown in Table 3.

SN is module number; LOC is module size (the number of
line codes is units); FO is module output; FI is module input;
PATH is module control flow path; FAULTS is the number of
module defects.

In order to evaluate the prediction accuracy of the opti-
mization model, we carry out two experiments. Experiment
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FIGURE 2: The flow chart of improved PSO-LSSVM prediction model.

1: all 13 data samples are divided into two parts, where the
first 10 are as the training set, and the last 3 are as the test set.
Experiment 2: the first 6 are as the training set, and the last 3
are also as the test set to evaluate the model as a result.

After the training samples and test samples are normal-
ized [17], respectively, we input them into the BP network
model, the traditional PSO-SVM model, and the optimiza-
tion PSO-LSSVM model. Where BP prediction model uses
the momentum factors model, the hidden nodes of model
are 18; the training objective is 0.00001. In accordance
with the cross-validation algorithm and the depth search
algorithm, after 2 rounds of selection, the traditional PSO-
SVM prediction model parameter is C = 499, and the
nuclear kernel parameter is 0> = 5. Both the traditional
and the optimization PSO-SVM models make RBF as kernel
function. In the model training process, the error curve of BP
prediction model and the optimization PSO-LSSVM model
are shown in Figures 3 and 4, respectively.

We can see from the tables that the improved PSO-
LSSVM prediction model training error decreases rapidly,

TABLE 4: Prediction results.

Experiment True P Traditional Optimization
value PSO-SVM PSO-LSSVM
6 5.7204 6.2664 6.1009
1 1 10.1666 11.4748 11.1924
17 16.0432 17.6283 17.2037
6 5.2234 6.6326 6.1345
2 11 9.1998 12.3895 11.2078
17 14.586 19.0068 17.3257

and about 200 times training tends to stop; however BP
prediction model can meet the training requirements after
1733 times, which is significantly higher than the improved
PSO-LSSVM prediction model.

After training, the three methods get corresponding
prediction models applicable to sample data; therefore we
can input prediction sample data into each model to forecast.
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Because BP prediction model is greatly influenced by the
initial parameters, in order to reduce the randomness, we
calculate the average of 10 consecutive operations. Calculat-
ing the average percentage prediction error, the prediction
results are shown in Table 4; the comparing result is shown in
Table 5.

7. Conclusion

Because of using the optimized model parameters and kernel
parameters in the improved PSO-LSSVM prediction model,
the prediction accuracy is much higher than the traditional
PSO-SVM model and BP prediction model; as the number
of training samples decreases, the prediction accuracy of the
improved PSO-LSSVM model is significantly higher than
the traditional PSO-SVM model and BP model owing to its

7
TABLE 5: Prediction error comparing results.
Experiment BP Traditional Optimization
PSO-SVM PSO-LSSVM
4.66% 4.44% 1.68%
1 7.57% 5.22% 1.75%
5.62% 3.69% 1.21%
MPAPE 5.95% 4.45% 1.54%
12.94% 10.54% 2.24%
2 16.37% 12.62% 1.89%
14.20% 11.76% 1.93%
MPAPE 14.51% 11.64% 2.02%

good generalization performance in less training samples.
Thus, the improved PSO-LSSVM prediction model is better
than the traditional PSO-SVM and BP prediction models
in both training efficiency and prediction accuracy. Due to
the current situation that the prediction sample set is small
and the cost is high in software reliability prediction, the
proposed model has important practical significance, and it
may become the preferred prediction method for the less
samples prediction projects.
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