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Let A be a generator of an exponentially stable operator semigroup in a Banach space, and let 𝐶(𝑡) (𝑡 ≥ 0) be a linear bounded
variable operator. Assuming that ∫𝑡

0
𝐶(𝑠)𝑑𝑠 is sufficiently small in a certain sense for the equation 𝑑𝑥/𝑑𝑡 = 𝐴𝑥 + 𝐶(𝑡)𝑥, we derive

exponential stability conditions. Besides, we do not require that for each 𝑡
0
≥ 0, the “frozen” autonomous equation 𝑑𝑥/𝑑𝑡 =

𝐴𝑥 + 𝐶(𝑡
0
)𝑥 is stable. In particular, we consider evolution equations with periodic operator coefficients. These results are applied

to partial differential equations.

1. Introduction and Statement of
the Main Result

In this paper, we investigate stability of linear nonautono-
mous equations in a Banach space, which can be considered
as integrally small perturbations of autonomous equations.
The stability theory of evolution equations in a Banach
space is well developed, compare and confare with [1] and
references therein, but the problem of stability analysis of
evolution equations continues to attract the attention of
many specialists despite its long history. It is still one of
the most burning problems, because of the absence of its
complete solution. One of the basic methods for the stability
analysis is the direct Lyapunov method. By that method,
many strong results were established, compare and confare
with [2, 3]. But finding the Lyapunov functionals is usually a
difficult mathematical problem. A fundamental approach to
the stability of diffusion parabolic equations is the method
of upper and lower solutions. A systematical treatment of
that approach is given in [4]. In [5], stability conditions are
established by a normalizing mapping. Note that a normal-
izing mapping enables us to use more complete information
about the equation than a usual (number) norm. In [6],
the “freezing” method for ordinary differential equations is
extended to equations in a Banach space. About the recent
results, see the interesting papers [7–11]. In particular, in [7]
the Perron-Bellman theorem for evolutionary processes with

exponential growth in Banach spaces is investigated. In the
paper [8], a Rolewicz’s type theorem of in-solid function
spaces is proved. Dragan andMorozan [9] established criteria
for exponential stability of linear differential equations on
ordered Banach spaces. Paper [10] deals with the stability
and controllability of hyperbolic type abstract evolution
equations. Pucci and Serrin [11] investigated the asymptotic
stability for nonautonomous wave equations.

Certainly, we could not survey the whole subject here
and refer the reader to the previously listed publications and
references given therein.

Let 𝑋 be a complex Banach space with a norm ‖ ⋅ ‖
𝑋
and

the unit operator 𝐼. For a bounded operator 𝐾, ‖𝐾‖ is the
operator norm.

Everywhere below 𝐴 is a linear operator in 𝑋 with a
domain Dom(𝐴), generating a strongly continuous semi-
group 𝑇(𝑡); that is, 𝐴 = lim

ℎ↓0
(1/ℎ)(𝑇(ℎ) − 𝐼) in the strong

topology, and 𝐶(𝑡) (𝑡 ≥ 0) is a linear bounded variable
operator mapping Dom(𝐴) into itself. Put 𝐵(𝑡) = 𝐴 + 𝐶(𝑡).
In the present paper, we establish stability conditions for the
equation as follows:

𝑑𝑢

𝑑𝑡
= 𝐵 (𝑡) 𝑢, 𝑡 ≥ 0. (1)

It should be noted that in the previously pointed papers it
is assumed that for each 𝑡

0
≥ 0, the “frozen” autonomous

equation 𝑑𝑥/𝑑𝑡 = 𝐵(𝑡
0
)𝑥 is stable. We do not require
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that condition. The aim of this paper is to generalize the
main result from the paper [12], which deals with finite
dimensional equations.

A solution of (1), for a given 𝑢
0
∈ Dom(𝐴) is a function

𝑢 : [0.∞) → Dom(𝐴) having a strong derivative, satisfying
(1) and 𝑢(0) = 𝑢

0
. We will investigate (1) as a perturbation of

the following equation:

𝑑V

𝑑𝑡
= 𝐴V, 𝑡 ≥ 0. (2)

Put

𝐽 (𝑡) := ∫

𝑡

0

𝐶 (𝑠) 𝑑𝑠,

𝑚 (𝑡) := ‖𝐴𝐽 (𝑡) − 𝐽 (𝑡) 𝐵 (𝑡)‖ , (𝑡 ≥ 0) .

(3)

We say that (1) is exponentially stable if there is an 𝛼 =

const > 0, such that ‖𝑢(𝑡)‖
𝑋

≤ 𝑒
−𝛼𝑡

‖𝑢(0)‖
𝑋
(𝑡 ≥ 0) for any

solution 𝑢(𝑡) with 𝑢(0) ∈ Dom(𝐴). Now we are in a position
to formulate the main result of the paper.

Theorem 1. Let

‖𝑇‖
𝐿
1 := ∫

∞

0

‖𝑇 (𝑡)‖ 𝑑𝑡 < ∞, (4)

sup
𝑡≥0

(‖𝐽 (𝑡)‖ + ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) 𝑑𝑠) < 1. (5)

Then, (1) is exponentially stable.

The proof of this theorem is divided into a series of
lemmas which are presented in the next section. To the best
of our knowledge, Theorem 1 is new even in the case of
bounded operators. In Section 3 we consider particular cases
of Theorem 1. In Section 4, the previously pointed results
are applied to a partial differential equation. For the brevity,
we restrict ourselves by a scalar equation with the periodic
boundary condition, but our results enable us to consider
coupled systems of equations and other boundary conditions,
for example, the Dirichlet condition.

2. Proofs

We need the following simple result.

Lemma 2. Let 𝑤(𝑡), 𝑓(𝑡), and V(𝑡) (0 ≤ 𝑡 ≤ 𝑎 ≤ ∞) be func-
tions whose values are bounded linear operators. Assume that
𝑤(𝑡) is integrable and 𝑓(𝑡) and V(𝑡) have integrable derivatives
on [0, 𝑎]. Then, with the notation 𝑗

𝑤
(𝑡) = ∫

𝑡

0
𝑤(𝑠)𝑑𝑠, one has

∫

𝑡

0

𝑓 (𝑠) 𝑤 (𝑠) V (𝑠) 𝑑𝑠

= 𝑓 (𝑡) 𝑗
𝑤
(𝑡) V (𝑡)

− ∫

𝑡

0

[𝑓
󸀠
(𝑠) 𝑗
𝑤
(𝑠) V (𝑠)+𝑓 (𝑠) 𝑗

𝑤
(𝑠) V
󸀠
(𝑠)] 𝑑𝑠, (𝑡 ≤ 𝑎) .

(6)

Proof. Clearly,
𝑑

𝑑𝑡
𝑓 (𝑡) 𝑗

𝑤
(𝑡) V (𝑡)

= 𝑓
󸀠
(𝑡) 𝑗
𝑤
(𝑡) V (𝑡) + 𝑓 (𝑡) 𝑤 (𝑡) V (𝑡) + 𝑓 (𝑡) 𝑗

𝑤
(𝑡) V
󸀠
(𝑡) .

(7)

Integrating this equality and taking into account that 𝑗
𝑤
(0) =

0, we arrive at the required result.

Let 𝑉(𝑡) be the Cauchy operator to (1); that is,𝑉(𝑡)𝑢(0) =
𝑢(𝑡) for a solution 𝑢(𝑡) of (1).

Lemma 3. One has
(𝐼 − 𝐽 (𝑡)) 𝑉 (𝑡)

= 𝑇 (𝑡) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) [𝐴𝐽 (𝑠) − 𝐽 (𝑠) 𝐵 (𝑠)] 𝑉 (𝑠) 𝑑𝑠.

(8)

Proof. As it is well known,

𝑉 (𝑡) − 𝑇 (𝑡) = ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝑠) 𝑉 (𝑠) 𝑑𝑠, (9)

compare and confare with [13]. Thanks to the previous
lemma, one has

∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝑠) 𝑉 (𝑠) 𝑑𝑠

= 𝑇 (0) 𝐽 (𝑡) 𝑉 (𝑡) − ∫

𝑡

0

[(
𝑑𝑇 (𝑡 − 𝑠)

𝑑𝑠
) 𝐽 (𝑠) 𝑉 (𝑠)

+𝑇 (𝑡 − 𝑠) 𝐽 (𝑠) 𝑉
󸀠
(𝑠) ] 𝑑𝑠.

(10)

But 𝑑𝑇(𝑡 − 𝑠)/𝑑𝑠 = −𝐴𝑇(𝑡 − 𝑠). In addition,𝑉󸀠(𝑠) = 𝐵(𝑠)𝑉(𝑠).
Thus,

∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐶 (𝑠) 𝑉 (𝑠) 𝑑𝑠

= 𝐽 (𝑡) 𝑉 (𝑡) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) [𝐴𝐽 (𝑠) − 𝐽 (𝑠) 𝐵 (𝑠)] 𝑉 (𝑠) 𝑑𝑠.

(11)

Now, (9) implies the required result.

Let,
𝜁 (𝑡) := inf

ℎ∈𝑋;‖ℎ‖=1

‖(𝐽 (𝑡) − 𝐼) ℎ‖ . (12)

Lemma 4. Let condition
inf
𝑡≥0

𝜁 (𝑡) > 0 (13)

hold. Then, ‖𝑉(𝑡)‖ ≤ 𝑧(𝑡), 𝑡 ≥ 0, where 𝑧(𝑡) is a solution of the
following equation:

𝑧 (𝑡) =
1

𝜁 (𝑡)

× [‖𝑇 (𝑡)‖ + ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) 𝑧 (𝑠) 𝑑𝑠] , 𝑡 ≥ 0.

(14)
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Proof. Thanks to the previous lemma,

‖(𝐼 − 𝐽 (𝑡)) 𝑉 (𝑡)‖

≤ ‖𝑇 (𝑡)‖ + ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) ‖𝑉 (𝑠)‖ 𝑑𝑠.

(15)

Hence

𝜁 (𝑡) ‖𝑉 (𝑡)‖

≤ ‖𝑇 (𝑡)‖ + ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) ‖𝑉 (𝑠)‖ 𝑑𝑠.

(16)

Thenby thewell-known (comparison) Lemma 3.2.1 from [14]
we have the required result.

Let

𝜂
0
:= sup
𝑡≥0

1

𝜁 (𝑡)
∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) 𝑑𝑠 < 1. (17)

Then (14) implies

sup
𝑡

𝑧 (𝑡) ≤ sup
𝑡≥0

‖𝑇 (𝑡)‖

𝜁 (𝑡)
+ sup
𝑡

𝑧 (𝑡) 𝜂
0
. (18)

Due to the previous lemma we get the following.

Lemma 5. Let conditions (13) and (17) hold. Then

sup
𝑡≥0

‖𝑉 (𝑡)‖ ≤ sup
𝑡≥0

‖𝑇 (𝑡)‖

(1 − 𝜂
0
) 𝜁 (𝑡)

. (19)

Proof of Theorem 1. Assume that

𝑗 (𝑡) := ‖𝐽 (𝑡)‖ ≤ 𝑞 < 1, (𝑞 = const; 𝑡 ≥ 0) , (20)

then 𝜁(𝑡) ≥ 1 − 𝑗(𝑡). If

𝜂
1
:= sup
𝑡≥0

1

1 − 𝑗 (𝑡)
∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) 𝑑𝑠 < 1, (21)

then 𝜂
0
≤ 𝜂
1
< 1 and thanks to the previous lemma, (1) is

stable. But condition (5) implies that

𝑗 (𝑡) + ∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) 𝑑𝑠 < 1 (22)

or

1

1 − 𝑗 (𝑡)
∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖𝑚 (𝑠) 𝑑𝑠 < 1, (𝑡 ≥ 0) . (23)

Thus (5) implies the inequality 𝜂
1
< 1, and therefore, from

(5), condition (21) follows. This proves the stability. To prove
the exponential stability we use the well-knownTheorem 4.1
[13, p. 116] (see alsoTheorem 2.44 [1, p. 49]). It asserts that the
finiteness of the 𝐿1-norm of 𝑇 implies the inequality

‖𝑇 (𝑡)‖ ≤ 𝑀𝑒
−𝛼𝑡

, 𝑡 ≥ 0, (24)

where 𝑀 = const ≥ 1, 𝛼 = const > 0. So for 0 < 𝜖 < 𝛼, the
semigroup 𝑇

𝜖
(𝑡) generated by 𝐴 + 𝐼𝜖 satisfies the inequality

‖𝑇
𝜖
(𝑡)‖ ≤ 𝑀𝑒

−(𝛼−𝜖)𝑡, 𝑡 ≥ 0, and therefore it also has a finite
𝐿
1-norm. Substitute the equality

𝑢 (𝑡) = 𝑦 (𝑡) 𝑒
−𝜖𝑡 (25)

into (1). Then we obtain the equation

̇𝑦 = (𝐵 (𝑡) + 𝐼𝜖) 𝑦. (26)

Denote the Cauchy operator of (26) by 𝑉
𝜖
(𝑡). Repeating our

above arguments with 𝑉
𝜖
(𝑡) instead of 𝑉(𝑡) and the equation

𝑥̇ = (𝐴 + 𝐼𝜖)𝑥 instead of (2), due to Lemma 5 we can assert
that 𝑉

𝜖
(𝑡) is bounded. Now (25) implies

‖𝑉 (𝑡)‖ ≤ 𝑒
−𝜖𝑡sup
𝑡≥0

󵄩󵄩󵄩󵄩𝑉𝜖 (𝑡)
󵄩󵄩󵄩󵄩 , 𝑡 ≥ 0. (27)

This proves the theorem.

3. A particular Case of Theorem 1

To illustrate Theorem 1, consider the following equation:

𝑑𝑢

𝑑𝑡
= 𝐴𝑢 + 𝑐 (𝑡) 𝐶

0
𝑢, (28)

where 𝐶
0
is a constant operator and 𝑐(𝑡) is a scalar real piece-

wise continuous function bounded on [0,∞). So, 𝐶(𝑡) =

𝑐(𝑡)𝐶
0
. Without any loss of generality, assume that

sup
𝑡

|𝑐 (𝑡)| = 1, (29)

and with the notation

𝑖
𝑐
(𝑡) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑐 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (30)

we obtain

𝑚(𝑡) = ‖𝐴𝐽 (𝑡) − 𝐽 (𝑡) 𝐵 (𝑡)‖

≤ 𝑖
𝑐
(𝑡)

󵄩󵄩󵄩󵄩𝐴𝐶0 − 𝐶
0
(𝐴 + 𝑐 (𝑡) 𝐶

0
)
󵄩󵄩󵄩󵄩

≤ 𝑖
𝑐
(𝑡) (

󵄩󵄩󵄩󵄩𝐴𝐶0 − 𝐶
0
𝐴
󵄩󵄩󵄩󵄩 + |𝑐 (𝑡)|

󵄩󵄩󵄩󵄩󵄩
𝐶
2

0

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑖
𝑐
(𝑡) (

󵄩󵄩󵄩󵄩𝐴𝐶0 − 𝐶
0
𝐴
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐶
2

0

󵄩󵄩󵄩󵄩󵄩
) .

(31)

Due to (24),

∫

𝑡

0

‖𝑇 (𝑡 − 𝑠)‖ 𝑑𝑠 ≤ 𝑀∫

𝑡

0

𝑒
−𝛼𝑠

𝑑𝑠 ≤
𝑀

𝛼
, (𝑡 ≥ 0) . (32)

Thus, denoting

𝜃
0
= sup
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑐 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (33)

due toTheorem 1, we arrive at the following result.

Corollary 6. If the inequality

𝜃
0
(
󵄩󵄩󵄩󵄩𝐶0

󵄩󵄩󵄩󵄩 +
𝑀

𝛼
(
󵄩󵄩󵄩󵄩𝐴𝐶0 − 𝐶

0
𝐴
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐶
2

0

󵄩󵄩󵄩󵄩󵄩
)) < 1 (34)

holds, then (28) is exponentially stable.
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For example, let 𝑐(𝑡) = sin(𝜔𝑡) (𝜔 > 0). Then, 𝑖
𝑐
(𝑡) ≤ 2/𝜔

and

𝑚(𝑡) ≤
2

𝜔
(
󵄩󵄩󵄩󵄩𝐴𝐶0 − 𝐶

0
𝐴
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐶
2

0

󵄩󵄩󵄩󵄩󵄩
) . (35)

Thus, (34) takes the following form:

󵄩󵄩󵄩󵄩𝐶0
󵄩󵄩󵄩󵄩 +

𝑀

𝛼
(
󵄩󵄩󵄩󵄩𝐴𝐶0 − 𝐶

0
𝐴
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩
𝐶
2

0

󵄩󵄩󵄩󵄩󵄩
) <

𝜔

2
. (36)

4. Equations with Periodic
Boundary Conditions

Consider the problem

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

=
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
+ (−𝑏
0
+ 𝑐 (𝑡) 𝑎 (𝑥)) 𝑢 (𝑥, 𝑡) , (0 ≤ 𝑥 ≤ 1) ,

(37)

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) , (𝑡 ≥ 0) , (38)

with a positive constant 𝑏
0
and a real differentiable function

𝑎(𝑥); 𝑐(𝑡) is the same as in the previous section.
Take𝑋 = 𝐿

2
(0, 1), where𝐿2 = 𝐿

2
(0, 1) is theHilbert space

of real functions 𝑓, ℎ defined on [0, 1]with the scalar product

(𝑓, ℎ) = ∫

1

0

𝑓 (𝑥) ℎ (𝑥) 𝑑𝑥, (39)

and the norm ‖ℎ‖ = √(ℎ, ℎ). Set

Dom (𝐴) = {𝑓 ∈ 𝐿
2
: 𝑓
󸀠
∈ 𝐿
2
; 𝑓 (0) = 𝑓 (1)} , (40)

𝐴𝑢 (𝑥) =
𝑑𝑢 (𝑥)

𝑑𝑥
− 𝑏
0
𝑢 (𝑥) (𝑢 ∈ Dom (𝐴)) , (41)

then we have

(𝐴𝑢, 𝑢) = ∫

1

0

(
𝑑𝑢 (𝑥)

𝑑𝑥
− 𝑏
0
𝑢 (𝑥)) 𝑢 (𝑥) 𝑑𝑥

= ∫

1

0

(
𝑑𝑢 (𝑥)

𝑑𝑥
− 𝑏
0
𝑢 (𝑥)) 𝑢 (𝑥) 𝑑𝑥

= ∫

1

0

(
1

2

𝑑𝑢
2
(𝑥)

𝑑𝑥
− 𝑏
0
𝑢
2
(𝑥)) 𝑑𝑥

=
1

2
(𝑢
2
(1) − 𝑢

2
(0))

− 𝑏
0
∫

1

0

𝑢
2
(𝑥) 𝑑𝑥 = −𝑏

0
∫

1

0

𝑢
2
(𝑥) 𝑑𝑥.

(42)

Let V = V(𝑡, 𝑥) be a solution of (2) with 𝐴 defined by (41).
Then, we obtain

𝑑

𝑑𝑡
(V, V) = (V̇, V) + (V, V̇) = (𝐴V, V) + (V, 𝐴V) = 2 (𝐴V, V)

≤ −2𝑏
0
(V, V) .

(43)

Hence, (𝑑/𝑑𝑡)‖V‖ ≤ −𝑏
0
‖V‖. Thus, ‖𝑇(𝑡)‖ ≤ 𝑒

−𝑏
0
𝑡. In addition,

𝐶
0
𝑢(𝑥) = 𝑎(𝑥)𝑢(𝑥),

(𝐴𝐶
0
− 𝐶
0
𝐴) 𝑢 (𝑥) =

𝑑 (𝑎 (𝑥) 𝑢 (𝑥))

𝑑𝑥
− 𝑎 (𝑥)

𝑑𝑢 (𝑥)

𝑑𝑥

= 𝑎
󸀠
(𝑥) 𝑢 (𝑥) , (𝑢 ∈ Dom (𝐴)) .

(44)

Due to condition (34), we obtain the following.

Corollary 7. If the inequality

𝜃
0
(|𝑎 (𝑥)| +

1

𝑏
0

(
󵄨󵄨󵄨󵄨󵄨
𝑎
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨
+ |𝑎 (𝑥)|

2
)) < 1, (0 ≤ 𝑥 ≤ 1)

(45)

holds, then (37) is exponentially stable.

For example, let 𝑐(𝑡) = sin (𝜔𝑡)(𝜔 > 0). Then 𝑖
𝑐
(𝑡) ≤ 2/𝜔

and (45) takes the form

|𝑎 (𝑥)| +
1

𝑏
0

(
󵄨󵄨󵄨󵄨󵄨
𝑎
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨
+ |𝑎 (𝑥)|

2
) <

𝜔

2
, (0 ≤ 𝑥 ≤ 1) . (46)
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[7] C. Buşe, “On the Perron-Bellman theorem for evolutionary
processes with exponential growth in Banach spaces,” New
Zealand Journal of Mathematics, vol. 27, no. 2, pp. 183–190, 1998.
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