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A key component to understanding etiology of complex diseases, such as cancer, diabetes, alcohol
dependence, is to investigate gene-environment interactions. This work is motivated by the follow-
ing two concerns in the analysis of gene-environment interactions. First, multiple genetic markers
inmoderate linkage disequilibriummay be involved in susceptibility to a complex disease. Second,
environmental factors may be subject to misclassification. We develop a genotype based Bayesian
pseudolikelihood approach that accommodates linkage disequilibrium in genetic markers and
misclassification in environmental factors. Since our approach is genotype based, it allows the
observed genetic information to enter the model directly thus eliminating the need to infer
haplotype phase and simplifying computations. Bayesian approach allows shrinking parameter
estimates towards prior distribution to improve estimation and inference when environmental
factors are subject to misclassification. Simulation experiments demonstrated that our method
produced parameter estimates that are nearly unbiased even for small sample sizes. An application
of our method is illustrated using a case-control study of interaction between early onset of
drinking and genes involved in dopamine pathway.

1. Introduction

A key component to prevention and control of complex diseases, such as cancer, hyper-
tension, diabetes, and alcoholism, is to study the independent, cumulative, and interactive
effects of genetic and environmental factors. This analysis has the potential to impact the
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understanding of the role of genetic influences under various environmental exposures, thus
providing valuable information to (1) better understand the biological pathways involved in
the disease and its progression, thus providingmajor clues to the underlying causes of alcohol
dependence; (2) design personalized interventions targeted to individuals with enhanced
vulnerability to the disease (the risk genes may help identify patients at higher risk long
before any symptoms occur); (3) gain critical understanding for drug discovery.

This work is motivated by the following two concerns in the analysis of gene-
environment interactions. First, complex diseases are caused bymultiple variants with small-
to-moderate effect sizes working in concert [1]. Most of the results of published genome-
wide association studies are based on single nucleotide polymorphism (SNP) analysis [2].
This approach may suffer from low power due to a large number of tests and small effect
sizes of individual SNPs. Furthermore, the true causal genetic marker is often not genotyped,
rather is captured through linkage disequilibrium (LD) with the typed markers. Since each
SNP has only partial linkage disequilibrium with the causal SNP, the observed effect size of
the typed SNP is lower than the effect size of the causal SNP. In light of this concern, we
propose to use a risk function that allows the genetic markers in linkage disequilibrium to
enter the model directly [3]. This model eliminates the need to estimate haplotype phase and
hence protects against bias due to the uncertainty that may arise due to the haplotype phase
ambiguity [4–8]. In addition, the computation burden can be significantly reduced since the
proposed approach uses genotype data directly. Second, many variables that are of interest
to biomedical researchers are subject to misclassification, for example, due to uncertainty
associated with a recall or a measurement at an individual level. Misclassification may result
in bias and loss of power to detect gene-environment interactions [9]. Oftentimes uncertainty
associated with these variables may not be avoided in practice. The loss of power prevents
the ability to discover gene-environment interactions in small studies or studies involving
analysis of subtypes of complex diseases.

An example of biomedical problem of gene-environment interactions is the analysis
of role of age when first got drunk in the etiology of alcohol dependence. The age at which
a person gets drunk for the first time may influence genes linked to alcoholism, making the
youngest drinkers most susceptible to severe problems [10]. Twin study found that when
twins started drinking early (age < 13 years old), genetic factors contributed greatly to risk
for alcohol dependence, at rates as high as 90 percent in the youngest drinkers [10]. Some
early-onset drinkers do not develop alcohol problems and some late-onset drinkers do, hence
it is important to investigate genetic and environmental influences that predispose for or
protect against alcohol dependence in these two groups. However, the definition of early age
of getting drunk is subject to misclassification due to uncertainty associated with the recall.

In light of these concerns, we develop a Bayesian methodology for analysis of gene-
environment interactions in case-controls studies. Estimation and inference are based on a
pseudolikelihood function [3, 11, 12]. This pseudolikelihood function offers the following
advantages. One is that environmental variables measured exactly are modeled completely
nonparametrically. Furthermore, a priori information about the probability of disease can be
incorporated directly. The pseudolikelihood function exploits gene-environment indepen-
dence assumption which is a reasonable assumption in many practical applications. If the
gene-environment interaction is not significantly present in the population, then the
distribution of genotype can be specifiedwithin strata defined by an environmental covariate.
The proposed analysis is based on a pseudolikelihood function hence conventional Bayesian
techniques may not be applied directly. Validity of Bayesian techniques need to be examined
when the likelihood function is not a proper likelihood [13]. We followedMonahan and Boos



Journal of Probability and Statistics 3

[13] and Lobach et al. [3] to validate our Bayesian approach under this pseudolikelihood
function. Our Bayesian approach has the ability to shrink the parameter estimates towards
prior and hence reduce variability in parameter estimates. This property is essential when
environmental exposure is subject to misclassification, especially in studies with smaller
sample sizes, for example, of subtypes of complex disease. On the other hand, if sample size is
large enough, estimation and inference can be based on the asymptotic posterior distribution
that we derived which will ease the computational burden.

An outline of this paper is as follows. In Section 2 we introduce notation and formally
state the problem. In Section 2 we present the Bayesian model under various scenarios.
Section 3 describes asymptotic posterior distribution. Section 4 describes simulation exper-
iment. Section 5 describes application of the Bayesian model to the analysis of alcoholism
study. Section 6 gives concluding remarks.

2. Bayesian Model Based on Pseudolikelihood

2.1. Notation and Risk Function

Consider a sample consisting of n0 controls and nd cases at disease stage or type d = 1, . . . , K.
DefineD as the disease status. Following Lobach et al. [11], we pretend that this case-control
sample is collected using a simple Bernoulli scheme, where the selection probability of a
subject given disease status is proportional to nd/pr(D = d), d = 0, 1, . . . , K. Let R = 1
denote the indicator of whether or not a subject is selected into the case-control sample. All
participants of the study will have this selection status R = 1. The observed genetic data
consist of unphased genotypes G = (G1, . . . , GI) at I loci. Let Q(G; θ) be a model describing
Hardy-Weinberg equilibrium (HWE).

Let (T,Z) denote all nongenetic variables of interest. Suppose T is the set of factors
subject to misclassification, and Z is the set of variables observed exactly. We assume
that the observed genetic data does not contain any additional information on disease
status and the true environmental covariate given the genetic variable of interest. Let X
denote the error-prone version of T . Suppose the misclassification process is defined by
the following parametric structure pmiss(x | T,G,Z,D, ξ). This model is general enough to
capture differential misclassification. The joint distribution of the environmental factors in
the underlying population can be specified in the following form pT |Z(t | z, ξ)fZ(z). While T
may be a vector of factors, for simplicity of presentation in what follows we suppose that T
is a factor.

Given the environmental covariates T and Z, genotype data G, the risk of disease in
the underlying population is given by the following polytomous logistic model:

pr(D = k ≥ 1 | G, T, Z) =
exp

{
βk0 +mk

(
G, T, Z; β

)}

1 +
∑K

j=1 exp
{
βj0 +mj

(
G, T, Z; β

)} , (2.1)

where m(•) is a function of known form parameterizing the risk of disease in terms of
parameters β. For the ith marker, denote the two alleles by Mi and mi, with frequencies PMi

and Pmi , respectively. Following Lobach et al. [3], we define the following dummy variables
and two risk models: genotype effect model and additive effect model.
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Define the following dummy variables:

Ai =

⎧
⎪⎪⎨

⎪⎪⎩

1, if Gi = MiMi,

0, if Gi = Mimi,

−1, if Gi = mimi,

Bi =

⎧
⎪⎪⎨

⎪⎪⎩

−P 2
mi
, if Gi = MiMi,

PMiPmi , if Gi = Mimi,

−P 2
Mi

, if Gi = mimi.
(2.2)

Notice that Ai + 1 is the number of allele Mi at the ith marker, and hence Ai can be
used to model the allele or additive effect ofMi. Let pr(g; θ) be a parametric form of the joint
distribution of the observed genetic markers. In the following, we provide two examples of
function mk(·) using the genotype information G = (G1, G2, . . . , GI).

2.1.1. Genotype Effect Model (GEM)

The following specification of the risk function incorporates both additive and dominance
effects of genotype, as well as the multiplicative gene-environment interactions

mk

(
G, T, Z; β

)
= mk

(A,B, T, Z; β
)
= TβkT + ZβkZ +

I∑

i=1

AiβkAi

+
I∑

i=1

TAiβkATi +
I∑

i=1

ZAiβkAZi +
I∑

i=1

BiβkDi +
I∑

i=1

TBiβkDTi +
I∑

i=1

ZBiβkDZi.

(2.3)

In this formulation, the regression coefficients βkAi and βkDi model risk due to the additive
and dominance effect, respectively [14, 15]. The remaining terms capture the multiplicative
gene-environmental interaction.

2.1.2. Additive Effect Model (AEM)

Suppose that the dominance effect is not significantly present in the model (2.3). In this situ-
ation, the risk function takes the following form:

mk

(
G, T, Z; β

)
= mk

(A, T, Z; β
)
= TβkT + ZβkZ +

I∑

i=1

AiβkAi +
I∑

i=1

TAiβkATi +
I∑

i=1

ZAiβkAZi.

(2.4)

2.2. Pseudolikelihood

Let us denote κk = βk0+log(nk/n0)−log(πk/π0), k = 1, 2, . . . , K, and κ̃ = (κ1, . . . , κK)
T . In addi-

tion, let β̃0 = (β10, . . . , βK0)
T , Ω = (β̃T0 , β

T ,ΘT , κ̃T )
T
, B = (ΩT , ηT )T , and υ = (ηT , ξT )T . Define

S(k,g, t, z;Ω) =
exp

[
1(k≥1)(k)

{
κk +mk

(
g, t, z; β

)}]

1 +
∑K

j=1 exp
{
βj0 +mj

(
g, t, z; β

)} pr(g;Θ). (2.5)
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We assume that G and (X,Z) are independently distributed in the underlying pop-
ulation. Only changes in notation are needed to model genotype and environment within
strata thus relaxing gene-environment independence assumption. An example of gene-
environment dependence is polymorphisms in nicotine metabolism pathway that may regu-
late the degree of addiction to nicotine, thus creating gene-environment interaction. Further-
more, these polymorphisms may interact with smoking status while being involved in lung
cancer [16]. We suppose that the type of genetic covariate measured does not depend on the
individual’s true genetic covariate, given disease status, environmental covariates and the
measured genetic information. Furthermore, we suppose that the observed genetic variable
does not contain any additional information on disease status and true environmental
covariate given the genetic variable of interest.

Similarly to Lobach et al. [11], we propose to use the following pseudolikelihood func-
tion in place of the likelihood function to estimate the parameters:

LPseudo
(
k,g, x, z;Ω, η, ξ

) ≡ pr(D = k, G = g, X = x | Z = z, R = 1)

=
∑

t∗ S(k,g, t
∗, z;Ω)pmiss(x | k,g, t∗, z; ξ)fT

(
t | z;η)

∑K
k∗=0

∑
t∗
∑

g∈G
∫
S(k∗,g, t∗, z;Ω)fT

(
t∗ | z;η)

,
(2.6)

where G is the set of all possible genotypes in the population. Lobach et al. [12] proved
that maximization of LPseudo, although not the actual retrospective likelihood for case-
control data, leads to consistent and asymptotically normal parameter estimates. Observe that
conditioning on Z in LPseudo allows it to be free of the nonparametric density function fZ(z),
thus avoiding the difficulty of estimating potentially high-dimensional nuisance parameters.

2.3. Bayesian Analysis Based on Pseudolikelihood

Since in our setting the retrospectively collected data is analyzed as if they were coming from
a random sample, function (2.6) is not a real likelihood function and hence the traditional
Bayesian analysis is not technically correct. Conventional approaches to validity of posterior
probability statements follow from the definition of the likelihood as the joint density of
observations.

For simplicity of presentation we introduce new notation for this section only.
Monahan and Boos [13] introduced a definition based on coverage of posterior sets

that are constructed to contain the correct probability of including a parameter τ , if the
underlying distribution of τ is the prior p(τ) and the model f(Y | τ) of data Y is correct.
This approach has been used in gene-environment interaction setting [3]. For example, in the
one-dimensional case, the natural posterior coverage set functions are the one-sided intervals
I∗α = Rα(Y ) = (−∞, τ∗α), where τ∗α is α-percentile of the posterior f(Y | τ). Validity for such a
posterior means that all these intervals I∗α have the correct coverage α. In practice, it is often
challenging to verify the required probability analytically. Monahan and Boos [13] proposed
a convenient numerical method. Briefly, define τk, k = 1, . . . , m to be a sample generated
independently from a continuous prior p(τ). For each τk, let Yk denote a value generated
from f(Y | τk). In addition, for each k, define Hk to be a variable in the following form:

Hk =
∫ τk

−∞
f
(
τ | Yk

)
dτ. (2.7)
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This corresponds to posterior coverage set functions of the form (−∞, τkα ), where τkα is the
αth percentile point of posterior density f(τ | Yk). Monahan and Boos [13] argued that if the
distribution of Hk fails to follow the uniform distribution for any prior, then the likelihood
function cannot be a coverage proper Bayesian likelihood.

We propose to use the methodology described above to validate the likelihood
function and apply conventional MCMC techniques to estimate parameters. We note that
the method developed by Monahan and Boos is devised to invalidate a pseudolikelihood.
Therefore to validate a pseudolikelihood, we propose to consider a comprehensive set of
scenarios to examine coverage probabilities of posterior sets, and if these scenarios fail to
invalidate a pseudolikelihood, we suppose that it is valid.

2.4. Fully Bayesian Model

We consider the casewhen the environmental covariates (T,X), genetic variantG, and disease
status D are binary. Let pr(G = 1) = θ, pr(T = 1) = η. For simplicity of presentation, consider
an additive model. Define the vector of risk parameters B = (βt, βA, βB, βtA, βtB)

T . Consider
a multiplicative interaction and let m(t, g,B) = βtt + βAA + βtAtA + βBB + βtBtB. Make the
following definition:

S
(
d, g, t,B, θ) = exp

[
I(d≥1)(d)

{
κd +m

(
t, g,B)}]

1 + exp
{
β0 +m

(
t, g,B)} θg(1 − θ)1−g. (2.8)

If X is an observed environmental covariate prone to misclassification, denote the misclas-
sification probabilities as pr(X = 1 | T = 0) = ξ1 and pr(X = 0 | T = 1) = ξ0. Hence, the
distribution of misclassification process is fmem(x | t, ξ0, ξ1) = {xξ1 + (1 − x)(1 − ξ1)}(1 − t) +
{x(1 − ξ0) + (1 − x)ξ0}t.

On the risk parameters, we impose a normal prior withmean μB and covariancematrix
ΣB.

Similarly to the appendix in Fan and Xiong [14] and Lobach et al. [3], the following
expectations, variances, and covariances can be derived. E(Ai) = PMi − Pmi , E(Bi) = 0,
Var(Ai) = 2PMiPmi , Var(Bi) = P 2

Mi
P 2
mi
, Cov(Ai,Aj) = 2ΔMiMj , Var(Bi, Bj) = Δ2

MiMj
, i /= j. And

Cov(Ai, Bi) = 0 for all i and j;

VA = 2

⎛

⎜⎜⎜
⎝

PM1Pm1 ΔM1M2 · · · ΔM1MI

ΔM1M2 PM2Pm2 · · · ΔM2MI

...
... · · · ...

ΔM1MI ΔM2MI · · · PMIPmI

⎞

⎟⎟⎟
⎠

, VD =

⎛

⎜⎜⎜⎜⎜
⎝

P 2
M1

P 2
m1

Δ2
M1M2

· · · Δ2
M1MI

Δ2
M1M2

P 2
M2

P 2
m2

· · · Δ2
M2MI

...
... · · · ...

Δ2
M1MI

Δ2
M2MI

· · · P 2
MI

P 2
mI

⎞

⎟⎟⎟⎟⎟
⎠

.

(2.9)

Define A = (A1, . . . , AI) and B = (B1, . . . , BI). Let OI be a I × I matrix with zero elements.
Based on the expectations and covariances described above, we have Cov(A,B) =

(
VA OI
OI VD

)
.

In the case when misclassification is large, the sampling distribution of risk parameter
estimates is likely to be skewed [11, 17]. However, because the shape of the normal
distribution is symmetric, this prior is likely to bring the sampling distribution of the
risk parameter estimates closer to normal. For the frequency parameters η and θ, we use
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noninformative uniform (0,1) priors. In this setting, the prior information imposed on θ is
noninformative. If a priori information is available about the genotype frequencies, it can be
specified using a corresponding distribution or HWE.

Then, the joint posterior distribution for the model unknowns is proportional to

n∏

i=1

∑1
t∗=0 S

(
di, gi, t

∗,B, θ)pmiss(xi | t∗, ξ0, ξ1)ηt∗(1 − η
)1−t∗

∑1
t∗=0

∑1
d=0

∑1
g=0 S

(
di, gi, t∗,B, θ

)
ηt∗
(
1 − η

)1−t∗

× |ΣB|−1/2 exp
{
−1
2
(B − μB

)TΣ−1
B
(B − μB

)
}
× I(0,1)

(
η
) × I(0,1)(θ).

(2.10)

Note that in this formulation, we specify a known misclassification process. We recom-
mend performing sensitivity analysis to see whether parameter estimates change when
misclassification probabilities are specified slightly differently. Furthermore, we recommend
conservative setting when LD is set to be zero as a priori.

3. Asymptotic Posterior Distribution

We now consider properties of an asymptotic posterior distribution based on the pseudolike-
lihood (2.6). MCMC techniques can be computationally challenging. Knowing the form of an
asymptotic posterior distribution would ease the computational burden.

For simplicity, we suppose that the parameter ξ that controls misclassification error
distribution is known, although this is not required. Denote Θ0 and Θ̂n to be values that
maximize prior and pseudolikelihood, respectively. Let Ψ(d, g, x, z,Θ, ξ) be the derivative of
log{Li(d, g, x, z,Θ, ξ)} with respect to Θ and

Λ =
∑

d

nd

n
E
{
Ψ
(
D,G,X,Z,Ω, η, ξ

) | D = d
} × E

{
Ψ(D,G,X,Z,Ω, η, ξ) | D = d

}T
. (3.1)

Furthermore, if p(Θ) is the prior distribution of the vector of parameters, define l(Θ) to be the
derivative of log{p(Θ)}with respect to Θ. Then define

Ln(Θ, ξ) =
n∑

i=1

Ψ(Di,Gi, Xi, Zi,Θ, ξ) (3.2)

and matrices

I(Θ) = −E
[
∂{Ln(Θ, ξ)}

∂(Θ)

]
; J(Θ) = −E

[
∂{l(Θ)}
∂(Θ)

]
. (3.3)
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Bernardo and Smith [18] showed that under suitable regularity conditions the posterior
distribution of vector of parameters Θ̂n converges to normal N(M,Σ) distribution. Mean
vector and covariance matrix can be consistently estimated as follows:

M̂n = Σ̂−1
n

{
I
(
Θ̂n

)
Θ̂n + J(Θ0)Θ0

}
,

Σ̂n =
{
I(Θ̂n) + J(Θ0)

}−1
.

(3.4)

It can be easily seen that n−1∂{Ln(B̂, ξ)}/∂BT is a consistent estimate of I(Θ). Alternatively,
if Σ̂ is the sample covariance matrix of the termsΨ(Di,Gi, Xi, Zi, B̂, ξ), then Σ̂ + Λ̂ consistently
estimates I(Θ).

Note that the posterior distribution has precision equal to the sum of precision
provided by the observed data and the prior precision matrix. This formulation suggests
an approximation, namely, that for large n, prior is small compared to the one provided by
the observed data. Hence, with a large sample size, one can reduce computational burden by
using the asymptotic distribution and using precision provided by the observed data while
specifying the posterior distribution.

4. Simulation Experiments

We investigated the case of small n0 = n1 = 350 and large (n0 = n1 = 1,500) sample sizes.
We validated the pseudolikelihood function using methodology described by Mona-

han and Boss [13] in a few scenarios by varying sample size, effect size, and misclassification
probabilities. In 96% of cases that we considered, the Kolmagorov-Smirnov test failed to reject
the null hypothesis that the sample of Hk (2.7) comes from the uniform (0,1) distribution
at the 0.05 significance level. Hence, we concluded that the pseudolikelihood is valid for
subsequent analysis. Hence, we proceeded to estimating parameters.

We implemented Metropolis-Hastings algorithm in the following setting. On the risk
parameters B, we imposed a normal N(Bmean,ΣB) prior, where Bmean is equal to the pseudo-
MLE estimates. To examine sensitivity of the estimates to this specification, we considered a
case when Bmean is a vector of zero values. Covariance matrix was specified as a diagonal
matrix with diagonal elements equal to 32. Alternatively, we specified the corresponding
matrix according to the known structure that is a function of LD. In all of these scenarios,
the results we obtained were comparable. Table 1 presents results based on Bmean = (0, 0, 0)
and covariance matrix with diagonal elements equal to 32.

To examine performance of our approach, we performed two simulation experiments.
In the first experiment, we investigated performance of Bayesian method compared to
pseudo-MLE. The goal of this experiment was to examine the ability of Bayesian approach
to shrink the parameter estimates towards prior when misclassification causes the estimates
to have skewed distribution. In the second experiment, we examined performance of the
asymptotic posterior distribution.

Experiment 1. We generated the true environmental variables T from a binomial distribution
with pr(T = 1) = 0.5. The misclassification probabilities are pr(X = 0 | T = 1) = 0.20 and
pr(X = 1 | T = 0) = 0.25. We simulated three genetic markers in LD corresponding toΔ = 0.03
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Table 1: Biases and root mean squared errors (RMSEs) of risk parameters for the naive approach that
ignores existence of misclassification and the proposed method in the case when pr(D = 1) is known and
when it is estimated. The results are based on 500 samples of 1,500 cases and 1,500 controls. Genotype is
simulated at the three marker loci with PMi

= 0.25, i = 1, 2, 3, with linkage disequilibrium corresponding to
ΔMiMj

= 0.03. The environmental covariate (X) is binary and measured with error with misclassification
probabilities being 0.20 for exposed and 0.25 for nonexposed subjects. The data is simulated and analyzed
under the genotype effect model.

Parameter True value Naive analysis Pseudo-MLE MCMC
Bias RMSE Bias RMSE Bias RMSE

κ 0.484 0.481 0.231 −0.054 0.020 −0.032 0.013
βX 0.693 −0.351 0.132 0.014 0.039 0.008 0.021
βA1 0.406 0.257 0.073 −0.011 0.016 −0.003 0.009
βA2 0.789 0.194 0.046 −0.003 0.015 −0.002 0.006
βA3 0.693 0.283 0.089 −0.005 0.016 −0.003 0.008
βAX1 0.916 −0.425 0.193 0.039 0.046 0.017 0.025
βAX2 0.693 −0.317 0.113 0.038 0.041 0.023 0.021
βAX3 1.099 −0.515 0.282 0.039 0.058 0.019 0.032
βD1 0.262 0.299 0.133 0.026 0.152 0.009 0.368
βD2 0.095 0.258 0.105 0.005 0.099 0.003 0.039
βD3 0.693 0.231 0.092 0.018 0.128 0.008 0.087
βDX1 1.099 −0.495 0.326 0.018 0.301 0.006 0.093
βDX2 0.916 −0.413 0.235 0.006 0.208 0.005 0.121
βDX3 1.099 −0.486 0.313 0.023 0.286 0.017 0.138
PMi

0.250 <0.001 <0.001 −0.001 <0.001 <0.001 <0.001
pr(X = 1) 0.500 0.003 0.001 <0.001 <0.001
pr(D = 1) 0.005 0.003 <0.001 <0.001 <0.001

and PMi = 0.25. In the study with 1, 500 cases and 1, 500 controls, we generated a binary
disease status according to the following logistic model:

logit
{
pr(D = 1 | G,X)

}
= β0 + βtt +

3∑

j=1

βAjAj +
3∑

j=1

βBjBj +
3∑

j=1

βATjAjT +
3∑

j=1

βTBjBjT. (4.1)

To examine the case when genetic data is missing, we simulated a similar set of 1,500 cases
and 1,500 controls with 50% of genetic information missing completely at random. To
investigate a smaller study, we simulated 350 cases and 350 controls with the disease status
defined by the risk model with all βBj and βBTj set to 0. Results presented in Tables 1 and 2
illustrate that the proposed Bayesian approach produced parameter estimates that are less
variable and less biased. We examine the empirical distribution of parameter estimates based
on a small sample and found that it is skewed, which may be due to small sample size and
presence of misclassification. We observed this phenomena in our previous work [3, 11].
The Bayesian solution brings the advantage, that is, a symmetric prior can shrink parameter
estimates towards normal distribution. Furthermore, we presented performance of the naive
approach that ignores existence of misclassification.
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Table 2: Biases and root mean squared errors (RMSEs) of risk parameters obtained based on pseudo-MLE
and the proposed MCMC. The results are based on 500 samples of 350 cases and 350 controls. Genotype
is simulated at the two marker loci with PMi

= 0.25, i = 1, 2. The environmental covariate (X) is binary
and measured with error misclassification probabilities being 0.20 for exposed and 0.25 for nonexposed
subjects. The data is simulated and analyzed under the additive effect model and the LDmeasureΔM1M2 =
0.03.

Parameter True value Pseudo-MLE MCMC
Bias RMSE Bias RMSE

βX 1.099 0.035 0.392 0.013 0.236
βA1 0.406 −0.268 1.035 −0.079 0.397
βA2 0.789 −0.319 1.062 −0.085 0.372
βA3 0.693 −0.293 1.043 −0.092 0.365
βAX1 0.916 0.432 1.135 0.103 0.432
βAX2 0.693 0.391 1.047 0.085 0.481
βAX3 1.099 0.293 1.113 0.097 0.427

Table 3: Biases and root mean squared errors (RMSEs) of risk parameters obtained based on asymptotic
posterior distribution. The results are based on 500 samples of 1,500 cases and 1,500 controls. Genotype is
simulated at the two marker loci with PMi

= 0.25, i = 1, 2. The environmental covariate (X) is binary and
measured with error with misclassification probabilities being 0.20 for exposed and 0.25 for nonexposed
subjects. The data is simulated and analyzed under the additive effect model and the LDmeasureΔM1M2 =
0.03.

Parameter True value Bias Estimated SE SE

βX 0.693 0.010 0.032 0.039
βA1 0.406 −0.005 0.012 0.015
βA2 0.789 −0.004 0.011 0.014
βA3 0.693 −0.004 0.016 0.016
βAX1 0.916 0.023 0.045 0.044
βAX2 0.693 0.019 0.061 0.058
βAX3 1.099 0.020 0.052 0.054
βD1 0.262 0.016 0.431 0.410
βD2 0.095 0.009 0.052 0.063
βD3 0.693 0.013 0.099 0.100
βDX1 1.099 0.011 0.013 0.015
βDX2 0.916 0.013 0.025 0.027
βDX3 1.099 0.016 0.027 0.030

Experiment 2. We examined performance of estimation based on the derived asymptotic
posterior in the simulation setup described in Experiment 1 corresponding to n1 = n2 = 1, 500.
Results presented in Table 3 illustrate that the parameter estimates are nearly unbiased. More-
over, estimated variances of parameter estimates are very close to the observed variability
with one exception, namely, βx. Variability of βx may be inflated due to the misclassification
in environmental exposure.
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5. Analysis of Alcohol Dependence

The Collaborative Studies on the Genetics of Alcoholism (COGA) is a nine-center nation-
wide study that was initiated in 1989 and has had as its primary aim the identification of
genes that contribute to alcoholism susceptibility and related characteristics [19–21]. COGA
is funded through the National Institute on Alcohol Abuse and Alcoholism (NIAAA). The
focus of this study is a case-control design of unrelated individuals for a genetic association
analysis of addiction. Analyses that include incorporation of important demographic and
environmental factors such as age when first got drunk, sex, income, and education into
association studies are pursued. Our project involves analysis of 40 SNPs residing in genes
involved in dopamine pathways. Specifically, we consider D2 dopamine receptor gene
(DRD2) encoding a protein which plays a central role in reward-mediatingmesocorticolimbic
pathways; a member of the immunoglobulin gene superfamily NCAM1 encoding protein
involved in various neural functions; tetratricopeptide repeat domain 12 gene (TTC12);
CHRNA3 gene shown to be involved in higher craving after quitting and increased
withdrawal symptoms over time. Cases are defined as individuals with DSM-IV alcohol
dependence (lifetime). Controls are defined as individuals who have been exposed to alcohol,
but have never met lifetime diagnosis for alcohol dependence or dependence on other illicit
substances. The sample consists of 50.7% of male and 49.3% female participants; 60% report
their race as Caucasian and 40% are non-Caucasian. We categorized age when first got drunk
as “Early” if it is less or equal to 13 (EAD = 1, 45.2% of all participants) and people with low
income are the ones who make less than 30K per year (LI = 1, 45% of all participants).

Define T to be the true unobserved indicator of early drinking, that is, T = 1
corresponds to the early onset of drinking, T = 0 to the late onset. Let X be the observed value
of the early onset of drinking. Because we do not have external data or internal replicates to
estimate misclassification probability, we performed sensitivity analysis for various values of
misclassification.

We used the following risk model:

logit
{
pr(D = 1 | G = (A,B), T)

}
= β0 + βtT + βAA + βBB + βATAT + βBTBT. (5.1)

The results of sensitivity analysis (not shown) suggest that when pr(X = 0 | T = 1)
is ignored or underestimated, the interaction effect is not significant. The setting corresponds
to the case when exposed subjects are defined as nonexposed, thus reducing the association
signal. However, the estimation procedure appears to be robust to underestimation of pr(X =
1 | T = 0). This scenario corresponds to the case when a nonexposed subject is considered to
be exposed.

Parameter estimates obtained using our method corresponding to pr(X = 0 | T =
t) = 0.25 and pr(X = 1 | T = 0) = 0.25 are presented in Table 4 demonstrating significant
interaction between various genetic markers and early onset of drinking.

6. Discussion

Motivated by concerns in the analysis of gene-environment interactions, we proposed a
genotype-based Bayesian approach for the analysis of case-control studies when environmen-
tal exposure cannot be observed directly and is subject to misclassification. The formulation
of risk functions and the estimation procedure are along the lines of our previous work:
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Table 4: Risk parameter estimates and standard errors in the alcohol dependence data.

Gene, SNP Estimate of log(OR) Standard error
NCAM1, rs586903 1.78 0.06
NCAM1, rs2303377 2.58 0.11
NCAM1, rs2156485 1.87 0.07
TTC12, rs7103866 2.21 0.03
TTC12, rs723077 1.92 0.03
TTC12, rs2288159 2.21 0.01
CHRNA3, rs1051730 1.77 0.03
CHRNA3, rs8192475 1.62 0.02

genotype and additive effect models [14, 15] and pseudolikelihood approach [3, 11, 12]. The
risk function of genotype effect model involves both the additive and dominance effect while
taking into account possible interactions between genes expressed in terms of interaction
between their additive and dominance components, while the additive effect model only
involves the additive effect and possible interactions. The additive effect model contains
less parameters than the genotype effect model. In applications, the additive effect models
should be used in analyzing data as the first step. If the dominance effect is strong enough to
compensate the increase of the number of the parameters in the genotype effect models, one
may use the genotype effect models.

The proposed method has several unique advantages. First, the observed genetic
information enters the model directly and the LD structure is captured in the regression
coefficients. This aspect offers advantages from the practical point of view, the computational
burden is less demanding because haplotype phase need not to be estimated. In the cases
when LD is moderate, which is the focus of our work, the computational demands can be
substantial even with the current state of technology. Furthermore, the risk due to uncertainty
associated with the haplotype phase estimation can be avoided. Second, the estimating
procedure is based on a pseudolikelihood model, similarly to the method investigated
previously, that allows efficient estimation of parameters, models environmental covariates
completely nonparametrically, and incorporates information about the probability of disease
[3, 11, 12]. In epidemiologic studies, the vector of environmental covariates measured exactly
is often, high dimensional, and a good estimate about probability of disease in a population
is known. Additionally, the Bayesian formulation of the proposed method allows shrinking
parameter estimates towards prior which offers advantage in cases when misclassification is
present.

Because of the Bayesian formulation and the need to validate posterior sets obtained
using a pseudolikelihood, the proposed method can be highly computationally intensive.
Moreover, the validation of pseudolikelihood requires evaluation of ratio of two likelihood
functions. For example, in our simulation experiments and data analysis, this part required us
to obtain a precise value of ratios similar to exp(3000)/exp(2908). Hence, we employed GNU
Multiple Precision Arithmetic Library (http://gmplib.org/).

The form of our pseudolikelihood function is complex and it does not seem feasible
to validate a pseudolikelihood function algebraically. Instead, we propose to apply Monahan
and Boos method to examine coverage probabilities of posterior sets. If a comprehensive
set of scenarios fails to invalidate a pseudolikelihood function, we suppose that the pseu-
dolikelihood is valid. This reasoning may be similar to the conventional hypothesis testing
where the null hypothesis is assumed to be true (pseudolikelihood is valid), and the observed
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data is used to quantify evidence in favor of the alternative hypothesis (pseudolikelihood
is not valid). Of course, a strong basis for validity of a pseudolikelihood is needed. We
employ the following arguments. Our previous research approach [3, 11, 12] demonstrated
validity of this pseudolikelihood in frequentist sense, that is, we have shown that estimation
and inferences are correct when this pseudolikelihood is used in place of a real likelihood
function. Hence, posterior distribution based on a pseudolikelihood may be invalid only for
certain prior distributions. Therefore, to invalidate a pseudolikelihood, one should find a
prior distribution for which the posterior is not valid. However, in our setting, the number of
possible prior settings is narrow, because what we advocate is the use of symmetry of prior
distribution as a way to improve precision of estimation and inference. We are restricting the
prior of regression coefficients to be Gaussian and advocate mean zero and large variance.
While one can try other priors for other parameters, the number of possible prior settings is
still reasonable and it is practically feasible to look at their performance in terms of probability
of coverage sets.

While the major motivation of the proposed work is dictated by the need of a
symmetric prior on risk coefficients, other types of a priori information can enter our model.
For example, if a priori information about the LD structure is available, it can be modeled
in the a priori distribution. Furthermore, if misclassification probabilities are not known
precisely, one can specify uncertainty associated with values of misclassification.

Amajor practical advantage of this proposedwork is that it allows themodel to exploit
recent advances in genotyping technology. Specifically, with the recent advances genetic
markers becomemore andmore densely typed andmultiplemarkers are likely to be observed
in a functional unit of interest. These units of interest may be defined in terms of LD blocks
using information available in linkagemaps.While in situations when linkage disequilibrium
is strong, the haplotype-based analysis is advantageous; in more common scenarios when
linkage disequilibrium is moderate, our approach provides advantages.

However, in the context when the number of genetic markers in a functional unit
of interest is large our methodology may require model averaging and model selection
component. Hence, behavior of this pseudolikelihood needs to be examined in this setting. A
practical strategy can be that one starts with screening analysis first to get interesting genetic
variants and SNPs using traditional methods which is computationally less demanding.
Then, one may apply the proposed approaches for possible gene-environment interactions
and further investigations by focusing on these important and interesting genetic variants
and SNPs.
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