Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2012, Article ID 135204, 9 pages
doi:10.1155/2012/135204

Research Article

Composite Match Index with Application of Interior
Deformation Field Measurement from Magnetic Resonance
Volumetric Images of Human Tissues

Penglin Zhang,! Xubing Zhang,” and Jiangping Chen!

ISchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
2 College of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China

Correspondence should be addressed to Xubing Zhang, xubingnational@gmail.com

Received 5 April 2012; Revised 8 June 2012; Accepted 6 July 2012

Academic Editor: Yen-Wei Chen

Copyright © 2012 Penglin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Whereas a variety of different feature-point matching approaches have been reported in computer vision, few feature-point
matching approaches employed in images from nonrigid, nonuniform human tissues have been reported. The present work is
concerned with interior deformation field measurement of complex human tissues from three-dimensional magnetic resonance
(MR) volumetric images. To improve the reliability of matching results, this paper proposes composite match index (CMI) as
the foundation of multimethod fusion methods to increase the reliability of these various methods. Thereinto, we discuss the
definition, components, and weight determination of CMI. To test the validity of the proposed approach, it is applied to actual
MR volumetric images obtained from a volunteer’s calf. The main result is consistent with the actual condition.

1. Introduction

The physical property is the base of the biological simulation,
computer-assisted medical applications, such as clinical
diagnosis, and surgical simulation, surgical planning. And
estimation of internal deformation field or deformation
motion for the biological tissues plays a very significant
role in physical parameters estimation. Thus, measuring the
internal deformation field of biological tissues is becoming
the focus research. Magnetic resonance (MR) imaging (MRI)
provides superb anatomic images with excellent spatial
resolution and contrasts among soft tissues; thus, it is widely
used in computer-assisted medical applications, such as clin-
ical diagnosis, surgery simulation, operation planning, and
evaluation of physical characteristics of biological tissues.
Increasing number of researchers in medical simulation and
medical virtual reality focus on the interior deformation
field or motion measurement of biological tissues from MR
volumetric images, and it has become one of the significant
branches of medical image analysis. Generally, approaches
for estimating the deformation of MR volumetric images
can be classified into two typical types: elastic deformation
model-based and feature matching-based methods.

The elastic deformation model-based method can be
classified into either parametric or geometric active models
[1]. To obtain the deformation information of an object, the
parametric active contours, also called snakes, try to mini-
mize a defined cost function so that the function deforms
a given initial contour toward the boundary of the object.
This method was first introduced by Kass et al. in 1987 [2]
and subsequently developed and used by Lang et al. [3], Cho
and Benkeser [4], and Matuszewski et al. [5] to estimate
deformation motion of nonrigid objects. In the geometric
active model [1, 6-8], the curve and the surface of an
object are first detected. Then, the deformation propagation
of the curve and the surface is used to track the motion.
However, irrespective of what elastic deformation models
are employed, disadvantages exist in the deformation esti-
mation; for example, the parametric active model cannot
handle changes in the topology of the evolving contours
when deformation is performed directly, and often, heuristic
topology handling procedures are used [8]. In the geometric
active model, when contrast is poor and boundaries are not
clear or are continuous in the images, the contours tend to
leak through the boundary [9]. The tagged images must have
a regular grid pattern in the imaging plane because if the



number of tagged points is low, the measurement accuracy
would be poor. More important than the former two aspects,
regardless of what elastic deformation models are used, they
can only handle the deformation at the boundary of nonrigid
objects and not the interior deformation.

In recent years, researchers have been increasingly con-
cerned on approaches for matching of nonrigid feature
points. Typically, thin-plate spline-robust point matching
(RPM) is a famous algorithm for matching non-rigid feature
points, which can estimate the joint correspondence and
non-rigid transformations between two differently sized
point sets. However, optimal processing of the energy func-
tion utilized in Chui’s method may be trapped in bad local
minima [10]. Zheng proposed the RPM-local neighborhood
structure (LNS) method of matching non-rigid feature
points, based on the supposition that relative distances and
orientations among feature points in a neighborhood would
be preserved [11]. Lee improved the LNS and presented the
topology preserving relaxation labeling (TPRL) algorithm.
In the TPRL method, log distance and polar angle bins
are utilized to capture the coarse location information of
the feature points in a neighborhood. Using shape contexts,
Belongie proposed a non-rigid point matching method.
In this method, every feature point is represented by a
histogram descriptor of the distance and orientation between
this feature point and its neighbor feature points [12]. In
addition, some other useful methods were also proposed
for feature-point matching, such as the coherent point
drift matching method of non-rigid points [13, 14] and
the preservation of local geometrical characteristics [15].
In these methods, a novel objective function is defined to
preserve local image-to-image affine transformations across
correspondence. In general, some unsolved problems are
involved in the aforementioned matching methods of non-
rigid points; for example, the optimal processing of the
energy function could be trapped in bad local minima, the
topology of the neighboring feature points is not always pre-
served well, and so on. Most importantly, in these methods,
useful information of the feature point is considered singly
and lacks a comprehensive approach, which can mix up with
the useful and significant information in the point matching
of deformation measurement.

Therefore, to improve further the proposed feature-
matching-based approach and improve the robustness of
the matching result, this paper proposes a composite match
index (CMI). In Section 2, we introduce some previous work,
in Section 3, we describe the concept and definition of CMI,
and Section 4 introduces the CMI application on feature
matching of image pairs from non-rigid objects. In Section 5,
examples and preliminary experimental results are given, and
discussion and conclusions are presented in the final section.

2. Previous Work

Feature matching plays a significant role in human visual
perception, recognition, and computer vision. In medical
imaging, most existing feature matching-based research has
focused on non-rigid registration and internal deformation
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field measurement. The general idea of these works is first
to extract enough feature points or markers from medical
images acquired from non-rigid objects on natural and
deformed states, respectively. Next, the feature matching
algorithm is applied on extracted feature-point sets to
establish robust corresponding pairs. Finally, corresponding
pairs are used as control points in non-rigid registration and
are used to calculate sparse deformation fields in internal
deformation field measurements. Therefore, finding robust
corresponding pairs is a vital problem in the present work.
We surveyed existing works on feature-point matching in
computer vision. Relaxation is a valid technique to disam-
biguate matches and improve the robustness of matches.
Finding a globally optimal or reasonably good suboptimal
solution in relaxation is a difficult task, and such matching
techniques in non-rigid medical image processing have
been rarely addressed. However, a potential advantage is
that harder matching problems can be solved using global
optimization techniques.

Papademetris et al. [16] presented a method for the
integration of feature and intensity information for non-
rigid registration. In this case, a distance-based robust point
matching framework was proposed to estimate feature-point
correspondences. A disadvantage of the algorithm is that it
estimates transformation using weighted least squares, which
affects the strength of matching.

Zhang et al. [17] introduced a feature matching-based
algorithm and considered the problem of 2D deformation
field measurement as an example. Matching strengths are
measured using correlation and relative distance between
two feature points. Relaxation by the optimization algo-
rithm is deductive of the function of matching strength.
In later research [18], after slight revision, the algorithm
was extended to a 3D situation because the intensity in a
magnetic resonance (MR) image is the information of tissue
mapped on an image. Thus, the correlation intensity of
regions between two points in matching and relaxation can
effectively use the properties of tissue.

The work [19] proposed a local geometric preserving
algorithm to find corresponding feature pairs from given
feature points set in MR volumes acquired from an object
on natural and deformed states, respectively. The main
contribution of the algorithm to feature matching is that for
a non-rigid tissue, when an outside force is applied on it,
the deformation magnitude and orientation are different in
different regions. However, for a local region on the object,
the difference is actually very slight and can sometimes be
ignored.

Problems in image feature-point matching remain as
great challenges for medical image processing. Thus, the
accuracy of feature matching needs to be further improved.
Typically, single factors, such as intensity and distance, are
effective in matching algorithm for specific areas. However,
total accuracy cannot be improved. The integration of
multifactors to form a composite approach can make use of
the advantages of each factor to improve total accuracy. The
present work proposes a composite framework that can pose
multicomponents in a single cost function with associated
weights to find corresponding feature pairs.
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TaBLE 1: Comparison of the accuracy in different directions.
Approach Error Number of landmarks RMSE
0* 1# 2% 3* 4% 5% 6 7* 8* 9* 10* 11%
X-€error =12 -8 =7 =13 0 -4 -6 0 0 -7 0 0 6.626965
CMI y-error 8 -6 7 -7 0 1 6 0 0 5 0 0 4.654747
Z-error 0 -2 2 2 -1 0 -1 3 -1 2 3 2 1.848423
X-error =21 -23 -9 -12 0 =11 0 0 -1 6 0 0 10.61838
RPFM y-error 20 -8 26 —-10 0 -13 0 0 -7 4 0 0 11.08302
Z-error 2 2 2 -2 1 3 0 0 3 4 3 1 2.254625

RMSE: root mean square error; x-error: error in the x-direction; y-error: error in the y-direction; z-error: z-error in the z-direction.

3.CMI

CMI-based feature-point matching approach was proposed
to address the fusion of different operator types and to
improve the reliability of results from single operators.
Here, CMI is a scalar quantity that describes the matching
possibility of point pairs. Let

Ci B [Ci,l) Ci,2) ceey Ci,k]T’

(1)
T
w = [wi, wa, ..., wk]
be the vector of component value and its corresponding
weight, respectively. Then, according to the linear weighting
method, CMI is defined as

K
EFL =D wit ik (2)
k=1
subject to
K
S = 1, (3)
k=1

where &; represents the CMI of the i-th pair, ¢ represents
the value of the kth component consisting of the CMI,
wyi represents the weight of the kth component, and K is
the number of components in the CMI. Here, component
is a factor that can be used to evaluate feature-point pair
similarities. Weight wy is used to measure the significance
of a component for CMI. Various weighting methods have
been reported for different research fields. In this case, to
consider the independence of each component, the correla-
tion weighted method is used to determine the weight of each
component. Let r = [rl,l,rl,z,...,rl,k]T be the correlation
vector consisting of correlation score of the component 0 and
k. Then, the weight of the f + 1 time w,i“ is defined by

t
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where c; is the value of the i-th feature-point pair and N is
the total number of match pairs in the potential matching set
obtained at time .

Since feature-point pairs within the potential matching
set obtained at time t are used as samples to compute the
weight w,i“ of the kth component in t + 1 times iteration,
the pairs in potential matching set are different at each time.
Thus, wy values are also different at different times, keeping
iterations in the matching process.

CMI is an effective way to fuse multifeature matching
algorithm. CMI takes full advantage of all the consid-
ered factors to generate a more robust feature matching
approach and obtain more accurate matching results. Thus,
the feature-point matching algorithm, which decides the
strength of matching via a similarity judge function, can
theoretically be integrated as a CMI component. In this
case, the local geometric persistence (LGP), local intensity
similarity (LIS), and local correlation score (LCS) between
regions around participants are selected as the components
to compute the CMI of a match pair (py,i, pv,;) and demon-
strate the validity of CMI. The following section will discuss
how to compute LCS, LGP, and LIS.

For convenient descriptions, several definitions are first
clarified as follows

(1) Initial feature set p,,, feature-point set extracted from
the MR volume acquired from the object at a natural
state.

(2) Deformed feature set p,, feature-point set extracted
from the MR volume acquired from the object at a
deformed state.

(3) PMS, a potential feature match set composed of a
match pair (p,, pv,i) if and only if the best match of
Pu.i is pv,i and conversely py,; is also the best match of
Pv,i-

(4) pu,i represents the feature point i in the initial feature
set, and p,; represents the feature point i in the
deformed feature set.

3.1. LGP. Let ¢, and c, be the moment center computed
using the initial feature set and its mapping in the deformed
feature set, respectively, let p,,; be the ith point in the initial
feature set, and let the mapping in the deformed feature set
be p,.i. Based on the consistent deformation in a local region,
the distance ratio of a potential match pair in a local region



far from their moment center is equivalent and thus yields
Hij
d(Pu,i,j) Cu) 1 J d(Pu,i,j’ Cu)

P A A VD Y ity 6
Hi,j d(pv,i,j)cv> ]j; d(Pv,i,j’Cv) (6)
where p;; is the distance ratio of the jth potential match
pair (pu,j> Pv,j) in the local region around pair (pui, pv.i);
d(pu,ij>cu) is the Euclidian distance between p,;; and c,,
d(py,ij»¢c) is the Euclidian distance between p,,; ; and ¢,, and
J is the number of potential match pairs in the local region.
Ideally, u; ; should be a constant in the local region.
Moreover, dy,i = [d(Pui 1 €)@ (Puyizs Cu)s - -» A(Pusiy» )]
and dy; = [d(pyi1,¢,)s d(Pri2,€)s. .., d(Pyiss )] are the
distance sets of the potential pairs within a local region
around pair (py,, Pv,i), respectively. Based on the definition
of mathematical expectation, we yield

1 J
u,z 7 ; (pu,i,j) Cu) >

]
E(dv,i) = 1 Zd(Pv,i,j: Cv) .
]j:1
Thus, if p,,; in the deformed feature set is the best match of a
given feature p,,; in the initial feature set, then, the geometric
deformation of potential match pair (pu,j, pv,i;) within a
local region around pair (py,, pv,i) is defined as

&ij = |Hij — i (8)
subject to
_ E(du,i)
’11 - E(dv,i) . (9)

In a small local region, all the g;;(j = 1,2,...,]) should be
approximately identical and go to zero; the smaller the value
of g, the better the geometric persistence of a potential
match pair (py;, pv,i). This is called geometric persistence in
this case. Thus, the impact factor of the j-th feature pair for
the LGP within a small local region is

10
b 1.0 +gi,j.

(10)

The geometric property within a local region is approxi-
mately consistent in the initial and deformed states. If a
pair is the best match for each other, then the correlation
of potential matches within a local region around the pair
must be a strong one. The correlated score gc(pu,i> pv,i) of the
geometric persistence of PMS in a small local region around
(Pui>Pv,i) can represent the LGP of feature pair (pu,i Pv,i)»
specifically:

wiisCu) — E(dy,;
8¢ (Punpvt) = Z ( (p d ) ( )>2
\/Z pu’,‘)j,Cu) — E(du,i))
<d<Pv,i,j, Cv> - E(dv,i))
VSl (@{pusnes) - B’

(11)
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where ] is the number of potential matches within a local
region. In (11), if A;; is large, the pair (py, pv;j) may be
a strong match pair; thus, its weight must also be large. In
addition, the value range of gc(pu,i» pv,i) should be [—1,1].
Normalizing gc(pu,i» pv,i) yields normalized LGP as

Ngc (pu,i) Pv,i) = ! +g6(2u7’“pv’l). (12)
3.2. LIS. LIS is used to describe the intensity difference
between regions around a feature-point pair in the initial and
deformed volumes. As mentioned earlier, the tissue within a
local region is the same in the initial and deformed states.
Thus, based on the MRI principle, the intensity difference
is small. The inner product between two regions has the
same properties with the invariance of rotation, zoom in, and
zoom out. The normalized inner product between regions
around (py,, pv.i) is adopted to define the similarity of two
regions. Thus,

T
Xu,iXV,i

TEa BRI (13)
[1Xuwill - 11l

lis(pu,i> pv,i) =

where X,,; is the region in the initial volume centered at
feature p,,; and X,; is the mapping region of X,,; centered
at feature p,;.

3.3. LCS. Let I(pu,im) and I(py,i») be the intensity of the m-
th voxel within the region centered at p,,; and p,; in the initial
and deformed MR volumes, respectively. Let @ be the local
cubic region with a size of w X h X I. The local correlation
score between local cubic regions around feature p,; in the
initial MR volume and its candidate match feature p,; in the
deformed MR volume is defined as

Z%:l (I(Pu,i,m) - au,i) (I (Pv,i,m) - av,i) i

Mo (I(puim)) - 02 (I(Prim))
(14)

les(Puyim> Priim) =

where
M=wxhxl,

! i (15)
M (Pu,i,m ) Ay =

Ay =

M
ZI pvzm
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Here, 62(I(pu,im)) and o2(I(py,im)) are the standard deriva-
tion of the local region @ around feature p,; and p,;,
respectively. They are given by

2 (I(puim)) = S (I (puim) — i)’

M >
02 (I(Pv,i,m)) = m=1 P}/\;m = Ay, ,

where a,,; and a,; are the averaged intensity in the neighbor-
hood of feature p,; and p,;, respectively.
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4. Application in Feature Matching

This section describes the measurement of internal defor-
mation fields using CMI. First, the cost function is given
to obtain optimal feature pairs iteratively. Then, the actual
feature matching algorithm is described. Finally, the internal
deformation fields are measured using optimal feature pairs.

4.1. Cost Function. CMI is an index that measures the
strength between a given feature and its candidate matches
in feature matching. In theory, for a given reference feature,
its potential match must have the strongest CMI among all
the candidates. Thus, for an optimal potential matching set,
its whole CMI will also be the strongest. Based on this idea,
we yield

=28 (17)

where S is the cost function in iteration and N represents the
total number of match pairs in the PMS obtained at time ¢.

4.2. Actual Matching Algorithm. The objective of the feature
matching algorithm is to obtain an optimal PMS ultimately.
The idea of PMS optimization is to maximize the aforemen-
tioned cost function S iteratively. In each iterative step, the
current PMS strength is evaluated by all candidate matches
within PMS using the defined cost function S. The iterative
steps will stop until S no longer increases or is subjected
to stop conditions. Specifically, the inputs are two feature-
point sets obtained from MR volumetric images of an object
under natural and deformed states, respectively. The output
is an optimal PMS. The specific process of the algorithm is
summarized as follows.

(0) Compute LCS and LIS. For each given pair (py,i, pv,i)
consisting of features in initial and deformed vol-
umes, we use a local region (size of 9 X 9 X 3 in
this case) centered at features to compute LCS and
LIS according to (14) and (13), respectively.

(1) Form initial PMS. The LCS is used as the initial
CMI of each match pair in the step of initial PMS
formation. In other words, LCS is the only criterion
of this step.

(2) Compute LGP. For each given pair (py,, pv,i), we first
search for neighbor potential matches within a small
window (size of 17 X 17 X 3 in this case) centered
at pu,;. The potential matches contained within the
window are participants in the LGP computation
using the approach in Section 3.1.

(3) Compute w. Compute the weight for each CMI
component using potential matches in current PMS
as samples. The specific computing method can be
seen in (4).

(4) Update the CMI of each pair. For each given pair
(Pu,i> Pv,i)» its corresponding CMI is updated through
the weighting sum of the components LCS, LIS, and
LCP, which are computed in (0) and (2).

(5) Form PMS and compute the cost function S. The
updated CMI of each pair forms new PMS. The cost
function in (17) is then computed using potential
matches in the current PMS.

(6) Repeat (2) to (5) until S no longer increases.
(7) Return the current PMS.

Although candidate sets LCS and LIS of each pair are
constant, PMS is dynamic because of the varying LGP and
w of the component at ¢ + 1 times iteration. Thus, the match
strength index of CMI is varied. Dynamic cost function will
move potential matches into or out of the PMS. The best
candidate of a feature-point may also change.

4.3. Measuring Density Deformation Fields. After obtaining
the optimal PMS, the internal density deformation fields
of non-rigid objects are then obtained. In this study, the
method proposed in our previous work [20] is used to obtain
the internal density deformation fields. In summary, the
internal density deformation fields are interpolated by sparse
deformation fields using a finite element model. In detail, the
magnitude of the sparse deformation field is first computed
by its corresponding pair in PMS using Euclidian distance.
The start and end points of a field direction are defined
by the points of the corresponding pair. Next, a non-rigid
object is reconstructed using tetrahedra, whose nodes are
points in the PMS. The density deformation fields can then
be interpolated using the finite element method.

Let P be an arbitrary volume voxel at x = (x,y,2)
within a tetrahedron QP;P;PiP; consisting of nodal points
P;, P, Pi, and P;. Its displacement may be approximated
by weighting the finite element node displacements u; j s /(x)
using their shape function [20]:

u(x) = wi(xX)Nj jx1(x) +u;(X)Nj g 1:(x)

(18)

+ U (X) N i, (%) + W (%) Ny i j g (%),

where u;(x) is the displacement of nodal i, and the shape
function Nj j «/(x) on tetrahedron (OP;P ;PP is given by
’PP]'P}(PI

4P.P;PP’

where ¢PP;P.P; and 4P;P;P(P; are the volume of tetrahe-
dron OPP;PiP; and OP;P; PPy, respectively.

Nijki(x) = (19)

5. Experiments and Results

Our approach consists of four steps: feature extraction,
affine transformation, feature matching, and deformation
field measurement. Extracting sufficient features from the
initial and deformed volumes is necessary to find enough
homologous feature pairs. In this study, high-curvature 3D
points were preextracted as features from MR volumetric
images. In this case, the two-dimensional Harris operator
[21] was extended to a 3D operator by extracting features
from the MR volumetric images [22].

Some experiments were designed to demonstrate the
performance of the proposed approach. All experiments
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FIGURE 1: Acquired MR volumes. (a) Place of acquired volume; (b) MR slices in volume obtained at natural state; (c) MR slices in volume

obtained at deformed state.

(a)

Image file magnltude
207

(®)

FIGURE 2: Density deformation fields. Deformation fields generated using PMS obtained using the (a) CMI-based feature match algorithm

and the (b) RPEM algorithm).

were performed using our own tool developed with Visual
C++, which runs on Microsoft Windows XP. All described
experimental results were obtained on a Lenovo Portable PC
with a 2.20 GHz Intel(R) Core(TM) 2 Duo CPU T6600 and
4GB of RAM.

In the experiment, the MR images were acquired from a
volunteer’s calf (Figure 1(a)) using an MRI scanner at natural
state and deformed states (initial and under forcing), respec-
tively. In both cases, the FOV was 20 X 20 cm, and the slice
gap was 2 mm. Some slices (Figures 1(b) and 1(c)) placed at
the middle section of the calf were selected to form the MR
volumes. As a result, initial and deformed volumes with size
of 512 X 512 x 57 voxels were generated for the experiment.

First, 500 and 800 features were extracted from the
volume acquired on the natural and deformed states,
respectively. Next, the proposed CMI-based feature match
approach was applied on the two feature-point sets to
obtain the optimal PMS. As the result, a PMS with 245
potential match pairs was obtained. The sparse and density
deformation fields were computed using the method men-
tioned in Section 4.3. Figure 2 shows 50000 internal density
deformation fields, with large deformation at the bottom of
the calf. This result is consistent with the actual situation.

To prove the validity of the proposed CMI-based feature
match algorithm, we compared it with a robust point feature

matching (RPFM) algorithm proposed by Chen [23]. In
the present study, we applied the RPFM algorithm to the
same feature-point sets, which resulted in a PMS with 316
potential match pairs.

We selected 12 landmarks in the slice (z = 40) of
deformed MR volume to test the accuracy of the measured
internal deformation fields, as shown in the middle picture
of Figures 3 and 4. Then, the landmarks were subjected
to reverse moving using the internal deformation fields
measured through the CMI-based algorithm and RPFM
algorithm. The results on the MR volume acquired at natural
state were projected to check the accuracy of the deformation
fields. Figures 3 and 4 show the reverse moving results of the
landmarks.

In Figures 3 and 4, the center of each red rectangle in
the middle picture (z = 40) gives the landmark position.
Slices that lie on the left and right sides (the middle layer)
give the reverse moving result of the landmarks and the z
value of different slices, respectively. The outer layer is the
zoom in for the reverse moving result of each landmark.
In the middle and outer layers, the red rectangles represent
the reverse moving position of the landmarks, the green
rectangles are actual position of landmarks, and the yellow
rectangles represent the reverse moving positions and actual
position consistency. From Figures 3 and 4, we note the
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FIGURE 4: The reverse moving result of the landmarks using deformation fields measured through the RPFM approach.



accuracy of the reverse moving position of landmarks using
deformation fields calculated by PMS obtained using CMI-
based approach obviously is higher than that of RPFM, that
is, the reverse moving position of landmarks 0, 1, 2, 3, and 5.
Table 1 shows the quantitative accuracy of the reverse moving
results of the landmarks using internal deformation fields
obtained by PMS via CMI and RPFM.

As shown in Table 1, regardless of the direction (i.e.,
x-, y-, and z-directions), the accuracy of the deformation
fields measured through PMS obtained using the CMI-based
approach is better than that using the RPFM algorithm.

The number of potential matches in optimal PMS
obtained using the CMI-based feature matching algorithm is
fewer than that of RPFM because the CMI-based approach
is combined with the multifeatures in feature matching,
whereas RPFM is a single-feature approach. In other words,
the match requirements of CMI are stricter compared with
those of RPFM. The reliability of optimal PMS obtained
using the CMI-based algorithm is higher because it has more
accurate deformation fields than the RPFM algorithm. This
conclusion is supported by the reverse moving results of the
landmarks.

6. Conclusions

In this work, a new method called CMI is presented for
the integration of feature-based internal deformation field
measurements. In general, feature match algorithms using
a single property are highly accurate in specific aspects.
However, the overall accuracy is limited because the full
advantages of different properties in feature-point matching
are not fully used. Fusion multialgorithms offer the use of
advantages in algorithms to improve accuracy. Such a fusion
is necessary for feature matching in non-rigid objects, where
the improvement will be more obvious. In addition, the most
advantage of the proposed approach is to provide a feasible
option to integrate various feature matching algorithms.
Each feature matching algorithm can act as the component
of the CMI, and if the appropriate weight can be assigned
to the component, then, one can obtain more reliable
potential matches. Obviously, the effect of the component
weight should also be considered. Thus, (1) investigating an
approach to determine the appropriate weights should be the
focus of future research; (2) the imaging mechanism of MRI
should be further considered in component of the CMI to
remove the aberrance of machine to improve the accuracy of
feature-point matching as possible.
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