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Taking the hafnium diboride ceramic as an example, the effects of heating rate, cooling rate, thermal shock initial temperature,
and external constraint on the thermal shock resistance (TSR) of ultra-high temperature ceramics (UHTCs) were studied through
numerical simulation in this paper. The results show that the external constraint has an approximately linear influence on the
critical rupture temperature difference of UHTCs. The external constraint prepares a compressive stress field in the structure
because of the predefined temperature field, and this compressive stress field relieves the tension stress in the structure when it is
cooled down and then it improves the TSR of UHTCs. As the thermal shock initial temperature, a danger heating rate (or cooling

rate) exists where the critical temperature difference is the lowest.

1. Introduction

Ultra-high temperature ceramics (UHTCs) offer a series of
good properties including extremely high-melting point as
well as chemical and physical stabilities in the ultra-high
temperature environment with oxygen. They are the most
potential candidates for high-temperature structural appli-
cations [1-3]. However, due to the inherent brittleness of
ceramics, their poor thermal shock resistance (TSR) has been
a major reason of the destruction in the thermostructural
engineering for a long time [4-6]. Therefore, improving
the TSR of ceramics has been one of the most important
problems in the research of ceramics industry, and the
highly-accurate evaluation of the TSR of ceramics is the
foundation of this research.

At present, most of the theoretical theories about the TSR
focus on the influence of the length and density of cracks on
TSR of UHTCs [7-10]. At the same time, some new theories
of evaluating the TSR have been reported continually
[10, 11]. The experiments of TSR are universal, and the
residual strength is used to characterize the TRS of UHTCs

after quenching tests. Water, air, and liquid nitrogen are
the commonly used cooling medium [4, 12-14]. Besides,
electric resistance method [15] and hydrogen-oxygen torch
[3] are also used to study the TSR of the UHTCs.

The material parameters of UHTCs are sensitive to
temperature [2], and it is significant to take into account
the temperature dependence of those parameters for the
high-temperature application [11, 16]. In addition, being a
part of the thermal protection system (TPS), the UHTCs
must be in the affection of external constraint during the
factitive period. So the TSR of UHTCs is not only the TSR of
material its own, but also sensitive to the external constraint
[17]. However, the existing studies are mostly focused on the
TSR of material of its own; few of them take the factitive
environment into account.

This paper taking the hafnium diboride (HfB,) ceramic
as an example, the effects of heating rate, cooling rate, ther-
mal shock initial temperature, and external constraint on the
TSR of UHTCs have been studied in detail. The results of
this study will help to understand and evaluate the TSR of
UHTCs, which used as the thermal protection material and
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FIGURE 1: The orthographic views of (a) the geometric model and (b) the computational mesh.

give some helpful suggestions about improving the TSR of
UHTCs.

2. The Finite Element Analysis Model

The numerical simulation for TSR of thermal protec-
tion materials was accomplished using the large general-
purpose element analysis software SIMULIA Abaqus v6.9.1.
The geometric model is shown in Figure 1(a) (dimen-
sions in millimeters). And the four sides of the FRAME
and its backside, including the back of the UHTC plate,
are restricted by applying the symmetric constraint. The
computational mesh is shown in Figure 1(b). The C3D8T
element (three-dimensional, eight-node, and temperature-
displacement coupled element) is used for the UHTC plate.
The transition region between the UHTC plate and FRAME
is C3D6 element (three-dimensional, six-node, and linear
wedge element), and the rest of the FRAME is C3D8 element
(three-dimensional, eight-node element).

As an example, HfB; ceramic is used for simulation, with
material parameters [2, 18, 19] in Table 1. The relationship
between the Young’s modulus and temperature has been
presented in [19] based on the experimental data [2],

E(T) = Eq — BoTexp(—T—;>
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In addition, there is no heat exchange between the FRAME
and UHTC plate. The various Young’s modulus of the
FRAME are selected to account the restriction from the
other parts of the TPS that applied on the UHTC plate. The
Poisson’s ratio of the FRAME is taken to be 0.3.

Assumptions that have been adopted for simulating the
TSR of thermal protection materials are given below.

TaBLE 1: Temperature-dependent material parameters of HfB, [2,
18, 19].

I;ii;e;i:tlers Values and expressions

Eo(GPa), By, B, B 441,2.54, 1.9, 0.363

kK[W - (m-°C)"] —8.3455 x In(T) + 128

a°C™) (2In(T) -5) x 10°°

Tw(°C) 3380

v 0.12

p(g-cm™?) 10.5

o, (MPa) 448

CpllJ(kg - K) '] 1.5328+1.635x 104 X T —4.8086 X 10* x T2

(1) Both the UHTC plate and FRAME are continuous,
homogeneous, and isotropic.

(2) All material parameters of the UHTC plate are
functions of temperature.

(3) The connection is perfect, and there is no heat
exchange between the UHTC plate and FRAME, and
the temperature of the FRAME is constant being
equal to the predefined temperature field 20°C.

The thermal boundary conditions are applied to the
superior surface of the UHTC plate in the form of constant
heating rate or cooling rate. The initial stress field is set up
by slow heating from the predefined temperature field to
the thermal shock initial temperature field. Here, we regard
that the UHTC plate rupture once the thermal stress of the
superior surface caused by thermal shock is greater than the
fracture strength of the materials corresponding to the cur-
rent temperature. The temperature of the superior surface is
the critical rupture temperature, and the difference between
the critical rupture temperature and the thermal shock initial
temperature is the critical rupture temperature difference.
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F1GURE 2: The temperature difference between the superior surface and bottom surface of the ceramic plate versus (a) the rate of slow heating
(the frame Young’s modulus 1 GPa) and (b) the frame Young’s modulus (slow heating rate 0.1°C-s™1).

500

400 -
300

200 -% A

100 -

Critical rupture temperature difference (°C)

1000 1500 2000 2500 3000 3500 4000
Heating rate (°C-s™!)

0 500

—o— Frame Young’s modulus 0 GPa
—#— Frame Young’s modulus 1 GPa
—2— Frame Young’s modulus 1.5 GPa

(a)

500

400

300 A

200 A

100 A

Critical rupture temperature difference (°C)

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Heating rate (°C-s~!)
—o— Frame Young’s modulus 0 GPa
—#— Frame Young’s modulus 1 GPa
—£— Frame Young’s modulus 1.5 GPa

(b)

FIGURE 3: The critical rupture temperature difference versus heating rate for different frame Young’s modulus with the thermal shock initial

temperature (a) 1000°C and (b) 1500°C.

The temperature-dependent fracture strength model for
ultra-high temperature ceramics has been obtained in [20],

172
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where o, (T') is the temperature-dependent fracture strength,
o} and E, are the strength and elastic modulus at the

reference temperature, respectively, E(T) is the temperature-
dependent elastic modulus, Ty, is the melting point of the
material, and C,(T) is the specific heat at constant pressure.

3. Establishment of the Initial Stress Field

The initial stress field has been set up before thermal shock
by slow heating from the predefined temperature field 20°C
to the thermal shock initial temperature field. Noting that the
rate of slow heating should be so small that the temperature
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FIGURE 4: The critical rupture temperature difference versus frame Young’s modulus for different thermal shock initial temperature with the

same heating rate (a) 320°C-s~! and (b) 2000°C-s~".
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FIGURE 5: The critical rupture temperature difference versus thermal shock initial temperature for different frame Young’s modulus with the

same heating rate (a) 320°C-s™! and (b) 2000°C-s™L.

difference between the superior surface and bottom surface
of the ceramic plate is small enough and the initial stress field
in the plate is almost even distributed.

The temperature difference between the superior surface
and bottom surface of the ceramic plate corresponding to
the rate of slow heating and frame Young’s modulus are
shown in Figure 2. The results show that the temperature
difference between the superior surface and bottom surface
of the ceramic plate approximately linear increases with the
increment of slow heating rate and independent of minor

frame Young’s modulus. And the heating rate 0.1°C-s~! will
be used to heating up from the predefined temperature field
to thermal shock initial temperature in this paper.

4. Numerical Simulation for Thermal Shock
Resistance under Temperature Rising

The critical temperature differences of rupture correspond-
ing to the heating rate for various frame Young’s modulus
are shown in Figure 3. The results show that the critical
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FiGURE 6: The critical rupture temperature difference versus cooling rate for different frame Young’s modulus with the thermal shock initial

temperature (a) 1500°C and (b) 1900°C.

500

400
300 A

200 A

100 A

Critical rupture temperature difference (°C)

O T T T T T T T T
0 03 06 09 12 15 1.8 21 24 27

Frame Young’s modulus (GPa)

—o— Thermal shock initial temperature 1500°C
—#— Thermal shock initial temperature 1900°C

(a)

500

400 -
1 W

200

100 -

Critical rupture temperature difference (°C)

0 T T T T T T T T
0 03 06 09 12 15 18 21 24 27

Frame Young’s modulus (GPa)

—o— Thermal shock initial temperature 1500°C
—#— Thermal shock initial temperature 1900°C

(®)

FIGUrEe 7: The critical rupture temperature difference versus frame Young’s modulus for different thermal shock initial temperature with the

same cooling rate (a) 320°C-s~! and (b) 2000°C-s~!.

rupture temperature differences of the ceramic plate firstly
decrease sharply and then reach a minimum value, and
afterwards increase gently as heating rate increases. A danger
heating rate region exists near 300°C-s™! where the critical
temperature difference is the lowest. It is clear that the
TSR of ceramic plate decreases with the strengthening of
external constraint for the thermal shock of heating up, and
the higher thermal shock initial temperatures the greater
influence from the external constraint.

The critical temperature differences of rupture corre-
sponding to the frame Young’s modulus for various thermal

shock initial temperatures are shown in Figure4. The
results show that the critical rupture temperature differences
decrease approximately linearly with the increment of frame
Young’s modulus for heating up, and the higher thermal
shock initial temperature the greater influence from the
external constraint.

The critical temperature differences of rupture corre-
sponding to the thermal shock initial temperature for various
frame Young’s modulus are shown in Figure 5. The results
show that the critical temperature differences of the ceramic
plate firstly decrease and then reach a minimum value and
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FiGURE 8: The critical rupture temperature difference versus thermal shock initial temperature for different frame Young’s modulus with the

same cooling rate (a) 320°C-s™! and (b) 2000°C-s™!.

afterwards increase as thermal shock initial temperature
increases. A danger thermal shock initial temperature region
exists near 900°C where the critical temperature difference
is lowest. It is clear that the TSR of the ceramic plate
decreases with the strengthening of external constraint for
the thermal shock of heating up, and the higher thermal
shock initial temperature, the greater influence from the
external constraint.

5. Numerical Simulation for
Thermal Shock Resistance under
Temperature Dropping

The effects of cooling rate, external constraint, and thermal
shock initial temperature on the critical rupture temperature
difference of ceramic plate for cool down have been presented
in Figures 6, 7, and 8, respectively. Comparing with the case
of the temperature rising, the similar results can be obtained.
But the critical temperature differences of rupture increase
with the strengthening of external constraint for the thermal
shock of cool down. The external constraint prepares a com-
pressive stress field in the structure because of the predefined
temperature field, and this compressive stress field relieves
the tension stress in the structure when it is cooled down and
then the TSR of the UHTCs is improved. Besides a danger
thermal shock initial temperature region exists near 1300°C
where the critical temperature difference is lowest.

6. Conclusions

In this paper, the initial stress field was set up before thermal
shock by slow heating from predefined temperature field

to thermal shock initial temperature field. The initial stress
field relieved the stress field caused by thermal shock under
cooling down and aggravated the stress field caused by
thermal shock under heating up. Thereupon, the thermal
shock resistance was increased under cooling down and
decreased under heating up. As the thermal shock initial
temperature, a danger heating rate (or cooling rate) exists
where the critical temperature difference is the lowest.
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