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Cognitive Radio (CR) technology improves the utilization of spectrum highly via opportunistic spectrum sharing, which requests
fast detection as the spectrum utilization is dynamic. Taking into consideration the characteristic of wireless channels, we propose
a fast detection scheme for a cooperative cognitive radio network, which consists of multiple CRs and a central control office.
Specifically, each CR makes individual detection decision using the sequential probability ratio test combined with Neyman
Pearson detection with respect to a specific observation window length. The proposed method upper bounds the detection delay.
In addition, a weighted K out of N fusion rule is also proposed for the central control office to reach fast global decision based on
the information collected from CRs, with more weights assigned for CRs with good channel conditions. Simulation results show
that the proposed scheme can achieve fast detection while maintaining the detection accuracy.

1. Introduction

In the traditional management of licensed spectrum, users
usually pay and have the exclusive access of spectrum with a
certain level of Quality of Service (QoS) guarantee. On one
hand, the spectrum is getting more and more crowded as
the number of wireless devices increases drastically. However,
on the other hand, the utilization of spectrum at any given
time is low. Figure 1 shows a measurement of 30M–3GHz
spectrum utilization. We can see that a lot of spectrum
bands are vacant. Therefore, it would be efficient to allow
unlicensed users to share spectrum with licensed users by
using a vacant frequency band.

Cognitive Radio technology is developed to utilize these
white spaces intelligently [1, 2]. FCC Spectrum Policy
Task Force published a new spectrum management policy,
open access or license exempted model, in 2002, to allow
unlicensed user to use the opportunistic spectrum. As the
transition from analog to digital television is complete, there
are vacant channels (white spaces) in every media market [3].
Accordingly, the FCC announced a Notice of Proposed Rule
Making (NPRM) on 13 May 2004, which proposed “to allow
unlicensed radio transmitters to operate in the broadcast TV
spectrum at locations where that spectrum is not being used”.
Seen as the secondary user, the cognitive radio (CR) must
avoid interfering with primary user (PU), that is, licensed

user, while sharing the licensed band with the PU. Therefore,
cognitive radio needs to sense the spectrum to detect the
existence of PU, identify the white spaces of spectrum, and
adapt its transmission to one of the white spaces to avoid
interfering with PU.

Detecting the vacant bands of the spectrum is the very
first step but very crucial in Cognitive Radio technology.
There are three major digital signal processing techniques
that could be used to detect the existence of PU: matched
filtering, energy detection, and cyclostationary feature detec-
tion [4, 5]. Among those, energy detector has been used
widely due to its simplicity and easy implementation [6].
As a radio device, a single CR may suffer severe shadowing
or multipath fading with respect to primary transmitter so
that it cannot detect the existence of PU even in its vicinities.
In addition, there exists a hidden-node problem, in which a
CR may be too far from the PU to detect the existence, but
close to the primary receiver to interfere with the reception
if transmited. Cooperative sensing provides a solution to the
challenges mentioned above [7, 8]. In cooperative sensing,
multiple cognitive radios cooperate to reach an optimal
global decision by exchanging and combining individual
local sensing results. Allowing multiple CRs to cooperate,
cooperative sensing can increase the detection probability,
reduce the detection time, and achieve the diversity gain [9–
18].
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Figure 1: A measurement of 30M–3GHz spectrum utilization.

Due to the fading and noisy wireless channel, a large
number of samples are needed for accurate detection. How-
ever, the spectrum utilization is dynamic, which requests fast
detection to enable opportunistic sharing. In this paper, we
propose a fast detection scheme in a cooperative cognitive
radio network, which consists N CRs and a central control
office. Each CR makes individual detection decision and then
forwards its decision and the average signal to noise radio
(SNR) to the central control office, which will make a global
detection decision based on the collected data from CRs
in the network. Then the central control office broadcasts
the global detection decision to all the CRs. The proposed
scheme consists of two folds: the first is to propose Sequential
Probability Ratio Test (SPRT) method with a truncated
window to upper bound the detection time at individual
CR, while satisfying the detection accuracy requirements;
the second is to propose a weighted K out of N fusion
rule, which assigns more weights for CRs with good channel
conditions, at the central control office to speed up the
global decision making by using less number of individual
decisions. Simulation results show that the proposed scheme
can achieve fast detection while maintaining the detection
accuracy.

The remaining contents are organized as follows. In
Section 2, we discuss the system model. Section 3 presents
the proposed fast detection scheme. In Section 4, simulation
results are presented. In the end, we give the conclusion.

2. System Model

We consider a cognitive network, which consists of N CRs
and a central control office. Each CR is equipped with an
energy detector to individually detect the existence of PU by
measuring the received SNR. Once the detection decision is
reached by a CR, the CR transmits its decision along with
the average received SNR to the central control office for
global decision making. Serving as a fusion center, the central
control office applies some fusion rule to its collected data
and reach the global detection decision. Then the central
control office broadcasts the global detection decision to
all the CRs. Widely adopted Ad hoc On-demand Distance
Vector (AODV) routing protocol [19] is used over a default
clear channel for information exchange between the CRs
and the central control office. The default channel may be
selected among several predetermined channels.

In this paper, we use the log-normal shadowing path loss
model:

Pr(d) = P0(d0) + 10 · n · Log(d0 \ d) + X(0, δ), (1)

where Pr(d) is the received signal power at distance d, P0(d0)
is the received power at the reference point d0, n is the path
loss exponent, and X(0, δ) is normal shadowing random
variable with zero mean and δ standard variance in dB.

We summarize the major notations which will be used in
the paper in Table 1.
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3. Fast Detection Scheme

In this section, a fast detection scheme is proposed and dis-
cussed in details. SPRT with truncated window is proposed
for individual detection, followed by a weighted K out of N
fusion rule for the central control office to reach quick global
decision.

3.1. Individual Detection. Fast and accurate individual detec-
tion is a must. To achieve desired detection accuracy, multi-
ple samples need to be taken due to the time-varying wireless
links. One approach is to take a certain amount of samples
and then make a one-time decision, such as Neyman Pearson
method [20]. Another approach is sequential detection, that
is, the detection decision criterion will be checked whenever
one new sample is taken, such as Sequential Probability
Ratio Test (SPRT) [21]. Neyman Pearson method has a
fixed detection delay, while SPRT usually takes less-detection
time on average but may take long delay though with small
probability. We propose to combine these two approaches
together to take advantages of the two. Specifically, we
propose to impose a truncated window to SPRT so that the
detection delay is bounded. When the number of the samples
is less than the window size, original SPRT is used to do
the sequential detection. If the sequential detection cannot
reach decision when the window size is reached, Neyman
Pearson method will be used to make the final decision.
The proposed SPRT with truncated window achieves smaller
detection delay compared with SPRT and Neyman Pearson
method.

3.1.1. Sequential Probability Ratio Test. We define two
hypotheses, specified as follows:

H0: the primary user does not exist,

H1: the primary user does exist.
(2)

When a CR observes a new sample from energy detector, it
will compute the cumulative sum of the log-likelihood ratio.
We assume all samples are i.i.d. Let yi be the received power
from the ith observed sample, and then the log-likelihood
ratio for the sample is

l
(
yi
) = ln

pdf
(
yi | H1

)

pdf
(
yi | H0

) . (3)

When H0 is true, that is, the PU does not exist, yi is just the
noise power. When H1 is true, that is, the PU does exist, yi is
the received signal power plus the noise power. Let noise(i)
be the AWGN noise for the ith sample with zero mean and
variance δ2

n. Then yi is normal distributed

If H0 is true: yi = noise(i) ∼ Normal
(
0, δ2

n

)
,

If H1 is true: yi = u + noise(i) ∼ Normal
(
u, δ2

n

)
,

(4)

where u is the signal power. Therefore, the log-likelihood
ratio for the sample is

l
(
yi
) = uyi

δ2
n
− u

2δ2
n
. (5)

Table 1: Notation table.

λ0,λ1: two stopping bounds in SPRT

Pm,sprt: miss-detection probability in SPRT

Pd,sprt: detection probability in SPRT

Pf ,sprt: false alarm probability in SPRT

Pd,NP: detection probability in NP

Pf ,NP: false alarm probability in NP

Pdd : detection probability in SPRT-TW

Pf f : false alarm probability in SPRT-TW

P(H0): statistic probability of H0

P(H1): statistic probability of H1

w: window size

Ii: individual decision

αi: assigned weight value

SNRi: received SNR of the ith CR

d0: reference distance

n: path loss exponent

P0(d0): received power at reference distance

Prc: confidence probability

The cumulative sum of the log-likelihood ratio can be
written in the sequential way as

L(Yi) = L(Yi−1) + l
(
yi
)
, (6)

where

L(Y0) = 0. (7)

It can be also written as

L(Yi) =
i∑

k=1

l
(
yk
)
. (8)

According to (5), we have

L(Yi) =
i∑

k=1

l
(
yk
) = u

δ2
n

i∑

k=1

yk − iu

2δ2
n
. (9)

The cumulative sum of the log-likelihood ratio will be
compared with two stopping bounds, λ0 and λ1, to make
decision. When the cumulative sum L(Yi) is larger than λ1,
we accept H1 hypothesis and the detection process stops.
If the cumulative sum L(Yi) is less than λ0, we accept H0

hypothesis and the detection process also stops. However,
when L(Yi) lies between these two bounds, a new sample
will be taken and the cumulative sum will be updated and
compared with the bounds. The sequential detection process
continues until it stops.

These two stopping bounds are set to satisfy the required
miss-detection probability Pm,sprt and false alarm probability
Pf ,sprt. They can be approximated as [21]

λ0 ≈ ln
Pm,sprt

1− Pf ,sprt
,

λ1 ≈ ln
1− Pm,sprt

Pf ,sprt
.

(10)



4 International Journal of Digital Multimedia Broadcasting

Let T be the detection time. We could obtain expected
detection time:

E(T | H1) =
(

1− Pm,sprt

)
λ1 + Pm,sprtλ0

E
(
l
(
yi
) | H1

) ,

E(T | H0) =
(

1− Pf ,sprt

)
λ0 + Pf ,sprtλ1

E
(
l
(
yi
) | H0

) .

(11)

3.1.2. Proposed SPRT with Truncated Window. The sequen-
tial detection process is random and may take a very long
time before it stops. In order to put an upper bound on
the detection time, we impose a truncated window with size
w to SPRT. If SPRT cannot stop within w samples, instead
of taking more samples, we apply Neyman Pearson (NP)
method to reach immediate decision while achieving certain
false alarm probability Pf ,NP and detection probability Pd,NP

with w samples.
The proposed SPRT with truncated window (SPRT-TW)

scheme is summarized as follows:

L(Yi) ≥ λ1: Accept H1,

L(Yi) ≤ λ0: Accept H0,

λ0 < L(Yi) < λ1 and i < w: Continue sampling,

λ0 < L(Yi) < λ1 and i = w: Apply NP method.

(12)

Therefore, the individual detection probability Pdd and
the individual false alarm probability Pf f for the proposed
SPRT-TW could be written as, according to Bayes’ Rule,

Pdd = Pd,NP(w) · P(T > w) + Pd,sprt · P(T ≤ w),

Pf f = Pf ,NP(w) · P(T > w) + Pf ,sprt · P(T ≤ w),
(13)

where P(T > w) is the probability that the CR does not reach
a decision within window size w samples and P(T ≤ w) is
the probability that the CR reaches a decision within window
size w. According to the rule of total probability, the two
probabilities can be expressed as

P(T > w) = P(T > w | H1) · P(H1)

+ P(T > wH0) · P(H0),

P(T ≤ w) = P(T ≤ w | H1) · P(H1)

+ P(T ≤ w | H0) · P(H0)

(14)

where P(H0) and P(H1) are statistical probabilities for the
two hypothesis and

P(T > w | H1) =
w∏

i=1

P(λ0 < L(Yi) ≤ λ1 | H1),

P(T > w | H0) =
w∏

i=1

P(λ0 < L(Yi) ≤ λ1 | H0),

P(T ≤ w | H1) = 1− P(T > w | H1),

P(T ≤ w | H0) = 1− P(T > w | H0).

(15)

From (9), L(Yi) is the sum of normally distributed ran-
dom variables. Therefore, L(Yi) follows normal distribution

If H0 is true: L(Yi) ∼ Normal
(−b, a2iδ2

n

)
,

If H1 is true: L(Yi) ∼ Normal
(
aui− b, a2iδ2

n

)
,

(16)

where

a = u

δ2
n

,

b = iu2

2δ2
n
.

(17)

The expected detection delay for SPRT-TW could be
obtained:

E(T | H1) = 1 · P(T ≤ 1 | H1)

+
w∑

i=2

i · P(T > i− 1 | H1)P(T = i | H1)

+ w · P(T > w | H1)Pd,NP(w),

E(T | H0) = 1 · P(T ≤ 1 | H0)

+
w∑

i=2

i · P(T > i− 1 | H0)P(T = i | H0)

+ w · P(T > w | H0)Pf ,NP(w),

(18)

where

P(T > w | H1) = 1− P(λ0 < L(Yw) ≤ λ1 | H1),

P(T > w | H0) = 1− P(λ0 < L(Yw) ≤ λ1 | H0).
(19)

Based on (13)–(17), the expected delay could be obtained
easily.

3.2. Weighted K out of N Fusion Rule. Data fusion is a
technique used to efficiently combine the data for decision
making. Due to its simplicity and effectiveness, K out of
N fusion rule has been widely used in many applications
including cognitive radio [7, 22]. We could also apply the K
out of N fusion rule in the central control office to reach the
global detection decision. Similar to [23], the global decision
rule could be specified as

∑

N

Ii ≥ K: Accept H1,

∑

N

Ii < K: Accept H0,
(20)

where Ii is the indicator of individual detection decision for
CRi. Ii = 1 if CRi accepts H1 and Ii = 0 if CRi accepts H0.

The above K out of N fusion detection rule implies that
each data has the same credibility as others by simply adding
the individual detection decisions together. However, this is
not true in wireless communication systems. For example,
suppose two CRs correctly detect the existence of the PU with
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one CR located very close to the PU and the other located
far away from the PU. The nearby CR receives strong signal
and quickly detects the PU, while the far-away CR receives
very weak signal and takes much longer time to reach the
decision. Obviously, the detection decision from the nearby
CR is more reliable, which is not taken into account in the
original K out of N fusion rule. Therefore, we propose a
weighted K out of N fusion rule by assigning bigger weight
to the CR with good signal reception (i.e., good channel
condition). Then the global decision rule is specified as

∑

N

αiIi ≥ K: Accept H1,

∑

N

αiIi < K: Accept H0,
(21)

where αi is the weight for individual decision of CRi. There
are many ways to design the weight αi to reflect the credibility
of individual decision. In this paper, as an example, we design
the weight as a linear function of received SNR

αi = A · SNRi + B, (22)

where A and B are some constants.
In the weighted K out of N fusion rule, the individual

detection decisions under good channel conditions are given
more weights in the global decision making. Therefore, the
global decision making requests a small number of CRs if
those CRs have good channel condition or a large number
of CRs if they have bad channel condition. Since those CRs
with good channel condition also have smaller detection time
using SPRT-TW and consequently their decisions arrive at
the central control office faster, the global detection time can
be reduced when most CRs have good channel condition.

4. Simulation Results

In this section, we first consider the individual detection
performance for each CR, and then evaluate the weighted
K out of N fusion rule for global detection. For the
log-normal shadowing path loss model, the shadowing
random variable X(0, δ), adds the randomness to the results,
which complicates the illustration and insight discussion.
Therefore, in the simulation for the individual detection, we
first consider the log-distance path loss model without fading
and then generalize it to slow fading scenario. The simulation
results in the no fading scenario help understand the whole
innovative fast detection scheme. Throughout simulation,
we set the following parameters: the noise follows normal
distribution with zero mean and the noise power set as
−120 dBm; the path loss exponent n = 4; P0(d0) is set
as 20 dBm; reference distance is set d0 = 1 m; the statistic
probabilities P(H0) = P(H1) = 0.5.

4.1. Individual Detection Scenario 1: No Fading. With no
fading, the path loss model is simplified to the log-distance
path loss model and the average received signal power is

u = Pr(d) = P0(d0) + 10 · n · Log(d0 \ d). (23)
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Figure 2: Traditional NP method: under fixed Pf ,NP = 0.02.

CRs with longer distance to the PU receive weaker signal
power, therefore, the distance can be used to represent the
received signal strength or the received SNR.

Note that the detection performance depends on the
window size w and received signal power u. Intuitively, the
larger the window size is, the better the detection performs;
the stronger the received signal power u is, the better the
detection performs. We first examine the performance of
traditional Neyman Pearson (NP) method when varying
the number of samples (i.e., the window size w in SPRT-
TW). We fix the false alarm probability for NP method
as 0.05. Figure 2 shows how the detection probability of
NP method varies with the number of samples for CRs at
different distance from the PU. It is shown that the detection
probability increases as the number of samples increases
and the CR with smaller distance (i.e., stronger signal)
achieves higher detection probability for any given number
of samples. As shown in Figure 2, the traditional NP method
needs up to 42 samples to reach 0.99 detection probability
for CRs at the distance 110 m.

We set the two stopping bounds of SPRT based on the
miss-detection probability Pm,sprt = 0.01 and false alarm
probability Pf ,sprt = 0.02 and simulate the proposed SPRT-
TW. Figure 3 shows how the detection probability Pdd of
SPRT-TW varies with the window size for CRs with different
distance. Figure 3 has the same trend as Figure 2. Shown
in Figure 3, the CR at distance 110 m (received SNR is
58.343 dB) takes most window size w = 18 to meet 0.99
detection probability while the CR located at d = 80 m
(received SNR is 63.8764 dB) only needs 2 samples on
average to reach the same detection probability. Compared
with the NP method, SPRT-TW takes less samples to reach
the same detection probability (e.g., 42 samples for NP
method and 18 samples for SPRT-TW at the same CR at d
= 110 m).

Figure 4 shows the corresponding false alarm probability
Pf f of SPRT-TW as the window size varies. It is shown that
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Pf f decreases with the window size and the CR at the smaller
distance achieves smaller Pf f for any given window size.
Shown in Figure 4, the CR at d = 110 m needs window size
w = 20 to reach 0.02 false alarm probability, which takes only
4 window size for the CR at d = 80 m.

From Figures 3 and 4, we see that the window size
needs to be carefully selected to meet the desired detection
performance. In addition, the selection of window size also
depends on the channel condition (i.e., received SNR). In
order to minimize the detection delay, we need to select the
minimum window size w that can meet the performance
requirements.

We further compare the detection delay among NP
method, SPRT, and our proposed SPRT-TW. Figure 5
shows that the NP method needs the longest delay and
our proposed SPRT-TW has smallest delay. The simulation
results validate that our SPRT-TW is indeed a fast detection
scheme compared to NP method and original SPRT.

4.2. Individual Detection Scenario 2: Slow Fading. In this
section, we consider the log-normal shadowing path loss
model, shown in (1). Because of the random fading factor
X ∼ N(0, δ(dB)), we define a confidence probability Prc,

Prc = P(Pr(d) > ε), (24)

where the Pr(d) is received power and ε is the power
threshold. Prc describes how much confidence we have when
the receive power is stronger than the power threshold. In the
simulation, we set δ = 8 dB for shadowing and n = 4 for path
loss exponent.

We set the threshold power as −56.1236 dBm and plot
how the confidence probability varies with distance in
Figure 6. It is shown that the confidence probability decreases
with distance. To achieve 0.9 confidence level, the CR has
to locate closer than 45 m from the PU. Without fading,
however, the CR can locate at far as d = 80 m to receive
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−56.1236 dBm power. Therefore, the CR at d = 45 m under
fading condition should use the same window size as the
CR at d = 80 without fading. We also try various threshold
power and identify the distances for no fading scenario and
fading scenario which use the same window size to achieve
similar detection performance. The results are shown in
Table 2 under 0.9 confidence level. It is shown that the fading
has negative impacts for the detection performance.

4.3. Weighted K out of N Fusion Rule. In this section, we
compare our proposed weighted K out of N fusion rule with
the original K out of N fusion rule. From [23], we know
that K is usually chosen as N/2 to minimize the total error
probability, shown in Figure 7.

We randomly generate N = 100 CRs according to a
uniform distribution at the distance from the PU ranging
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Table 2: Comparing the distance from PU under fading and no
fading.

Threshold power (dBm) No fading Slow fading

−56.1236 80 (m) 45 (m)

−57.3799 86 (m) 47 (m)

−59.1089 95 (m) 52 (m)

−60.6813 104 (m) 57 (m)

−61.6557 110 (m) 62 (m)

from 80 m to 110 m. We use the linear weight function to
assign the weight to each CR. For fair comparison, we set the
values A and B such as the expectation of weights is equal
to 1 but the variance of the weights can vary. Figures 8 and
9 show the weight assigned for the CRs at different distance
with the mean weight as 1 but the weight variance as 0.5 and
0.02, respectively. It is shown that the nearby CR is assigned
with higher weight compared to the far-away CR due to the
good channel condition. In addition, the weights for CRs at
different distances differ more when the weight variance is
larger.

We compare the minimum number of individual deci-
sions needed to reach the global decision. We pick K =
N/2 = 50 so that the total error probability can be minimized
in the originalK out ofN Fusion Rule. For the original fusion
rule, each individual decision is treated the same with weight
1, therefore, minimum 50 individual detection decisions
with all positive detections are needed. In the weighted
fusion rule, the individual decision is treated differently. To
minimize the number of individual decisions, we need to
include the CRs with the best channel conditions (i.e., the
CRs closest to the PU). Example results are shown in Table 3.
It is shown that the weighted fusion rule needs less minimum
number of individual decisions. In addition, the more the
weight variance is, the less number of individual decisions
the fusion needs. Since those decisions come from the CRs
with best channel conditions and consequently arrive at the
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Figure 8: Assigned weight for CRs at different distance when weight
variance = 0.5.

Table 3: Comparing the original and the weighted fusions.

N = 100 Original fusion Weighted fusion

variance = 0 M = 50 M = 50 (same as the original)

variance = 0.02 M = 50 M = 44

variance = 0.5 M = 50 M = 26

central control office quickest, the global decision can be
reached quickly without waiting for more decisions.

5. Conclusion

In this paper, we have proposed a fast detection scheme,
SPRT-TW for individual detection and weighted K out of
N fusion rule for global detection, for cooperative cognitive
radio networks. It is shown that the proposed SPRT-TW
takes the least detection time compared with traditional NP
detection method and the original SPRT and the weighted
fusion rule in general takes less numbers of individual
decisions (consequently faster) to reach the global decision
compared to the original fusion rule. Our scheme takes into
consideration the characteristic of wireless channels. For the
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future work, we will try to derive the optimal design for the
weight assignment.
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