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Abstract: This paper presents a new approach to functional magnetic resonance imaging (FMRI) data
analysis. The main difference lies in the view of what comprises an observation. Here we treat the data
from one scanning session (comprising t volumes, say) as one observation. This is contrary to the
conventional way of looking at the data where each session is treated as t different observations. Thus
instead of viewing the v voxels comprising the 3D volume of the brain as the variables, we suggest the
usage of the vt hypervoxels comprising the 4D volume of the brain-over-session as the variables. A linear
model is fitted to the 4D volumes originating from different sessions. Parameter estimation and hypoth-
esis testing in this model can be performed with standard techniques. The hypothesis testing generates 4D
statistical images (SIs) to which any relevant test statistic can be applied. In this paper we describe two test
statistics, one voxel based and one cluster based, that can be used to test a range of hypotheses. There are
several benefits in treating the data from each session as one observation, two of which are: (i) the
temporal characteristics of the signal can be investigated without an explicit model for the blood
oxygenation level dependent (BOLD) contrast response function, and (ii) the observations (sessions) can
be assumed to be independent and hence inference on the 4D SI can be made by nonparametric or Monte
Carlo methods. The suggested 4D approach is applied to FMRI data and is shown to accurately detect the
expected signal. Hum. Brain Mapping 13:185–198, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (FMRI) is
one of the main tools used to investigate the functions
of the human brain. The most commonly employed
strategy is to investigate how the blood oxygenation
level dependent (BOLD) signal changes as a function
of stimuli and/or tasks [Bandettini et al., 1992; Frahm
et al., 1992; Kwong et al., 1992; Ogawa et al., 1992].
One of the aims of these types of studies is to localize
the regions of the brain that become activated during
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certain stimuli and/or tasks. There are several differ-
ent methods for FMRI data analysis described in the
literature that accomplish this [see Petersson et al.,
1999a, b, for a general discussion of these methods,
and Lange et al., 1999, for a comparative analysis].
Common to most of these proposed methods is the
view of the data as a set of voxels observed at a
number of consecutive time points. This set of voxels
usually spans a 3D volume covering the whole, or
parts, of the brain. Thus, for each voxel in the brain
and each scanning session a time-series is obtained. In
the standard approach to FMRI data analysis, a statis-
tical model, often a variant of the general linear model,
is fitted to these many time-series. Hypotheses are
subsequently tested on the estimated parameters, re-
sulting in an image that contains a statistic for each
voxel (e.g., a correlation coefficient), a so-called statis-
tical image (SI). Finally, statistical inference is made on
the SI, taking into consideration the many noninde-
pendent observations made.

Difficulties faced by 3D methods

There are several difficulties inherent in this stan-
dard approach to FMRI data analysis. Temporal cor-
relations between adjacent time points makes model
estimation difficult. Spatial correlation between adja-
cent voxels makes it difficult to obtain accurate solu-
tions to the multiple comparison problem. A straight-
forward Bonferroni correction would usually be too
conservative. Another difficulty, particularly in so-
called event-related studies [see Rosen et al., 1998, for
a review], is related to the fact that the nature of the
coupling between neuronal activity and the observed
BOLD signal is partly unknown.

Temporal autocorrelations

It is well known that observations from adjacent
time points are correlated [e.g., Friston et al., 1994a;
Zarahn et al., 1997; Purdon and Weisskoff, 1998]. The
observed temporal autocorrelation is believed to have
several causes. The slow time course of the BOLD
response is one [Friston et al., 1994a], other causes
could be model misspecifications, head movements,
physiological noise (heartbeat and respiratory effects
[Jezzard, 1999]), and machine drifts [Smith et al.,
1999]. The temporal autocorrelation is a nuisance be-
cause it invalidates the usage of standard linear model
estimates if not taken into account. Several approaches
to FMRI time-series modeling have been suggested
that take the temporal autocorrelation into consider-
ation (e.g., by autoregressive-moving average models;

Bullmore et al. [1996]; Locascio et al. [1997], or by
adjusting the degrees of freedom [Worsley and Fris-
ton, 1995]. A common assumption in these approaches
is that the autocorrelation is stationary. However, this
is not necessarily the case; the temporal autocorrela-
tions introduced by physiological noise, e.g., heartbeat
and respiratory related effects, can be nonstationary.
Furthermore, even if the autocorrelation is stationary,
the properties of the model estimates are usually
known only asymptotically [Brockwell and Davis,
1991, chap. 8]. If the temporal autocorrelation is not
properly dealt with the model estimates will be bi-
ased, potentially leading to either a loss of sensitivity
or a loss of specificity [Zarahn et al., 1997]. Thus, the
partly unknown and possibly nonstationary temporal-
autocorrelation makes the statistical modeling of
FMRI data a challenging task.

Spatial autocorrelation

Spatial correlations can be introduced by the many
transformations usually applied to the data (image
reconstruction, realigning, anatomically normalizing,
and spatially low-pass filtering). Moreover, there is
also evidence that the data coming directly from the
scanner shows a spatial autocorrelation. Biswal and
colleagues [Biswal et al., 1995] demonstrated that vox-
els in resting-state FMRI data are correlated both with
neighboring voxels and more distant voxels. Zarahn et
al. [1997] showed that data only corrected for motion
artifacts (but without any interpolations) shows fre-
quency dependent spatial correlation, i.e., the spatial
dependency varies as a function of temporal fre-
quency. Statistical methods that take the spatial corre-
lations into consideration have been developed for
PET data [e.g., Friston et al., 1991; Worsley et al., 1992;
Friston et al., 1994b], and have been successfully ap-
plied also to FMRI data [Friston et al., 1994a]. These
methods assume that the spatial autocorrelation is
stationary (however, the method suggested by Locas-
cio et al. [1997] does not need this assumption, see also
Worsley et al. [1999] for a method to deal with local
nonstationarities). To the extent that the autocorrela-
tion is caused by image transformations, this assump-
tion seems to be a reasonable approximation (note
however that nonlinear algorithms often used for the
anatomical normalization might introduce local non-
stationarities). However, other sources of spatial auto-
correlations, physiological or machine related (shape
distortions and ghosting [Cohen, 1999]), might inval-
idate the stationarity assumption. Not properly ac-
counting for spatial autocorrelation leads to flawed
estimates of the probability distributions of the statis-
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tics used, thus causing either a loss of sensitivity or
specificity. Thus the partly unknown and possibly
nonstationary spatial autocorrelation further increases
the difficulty in modeling FMRI data and making
statistical inference.

The BOLD signal response

The purpose of using a statistical model for the
observed FMRI time-series data is to detect the signal
introduced by the stimulus/task. In general, to detect
a signal in a background of noise in an optimal way,
an idea of the spatial and temporal properties of the
signal is needed. However, the neuronal activity is
only observable through the filter of the hemodynamic
effects underlying the BOLD contrast. The mecha-
nisms behind the coupling between neuronal activity
and the observed BOLD signal are not completely
known. It is generally believed that changes in deoxy-
hemoglobin (HbR) content, mainly in the small veins,
causes changes in the magnetic susceptibility differ-
ence between the blood and surrounding tissue, which
in turn leads to changes in the magnetic field distor-
tions in and around the blood vessels. The water pro-
tons in the vessels and surrounding tissue are affected
by these changes in the magnetic field and this is
detected as changes in the signal intensity of T*2-
weighted MR images [Ogawa et al., 1990, 1992, 1998].
However, the mechanism behind the coupling be-
tween neuronal activity and changes in HbR content is
still a matter of debate [see, e.g., Jueptner and Weiller,
1995; Magistretti and Pellerin, 1999; and Villringer,
1999, for a general discussion on this topic, Buxton
and Frank, 1997; Hyder et al., 1998, for biophysical
models of the relationship between blood flow and
HbR, Buxton et al., 1998; Hoge et al., 1999a, for models
of the coupling between blood flow and BOLD signal,
Woolsey et al., 1996; Malonek and Grinvald, 1996;
Malonek et al., 1997; Yang et al., 1997; Vanzetta and
Grinvald, 1999; Silva et al., 1999, and Silva et al., 2000,
for detailed empirical characterization of this cou-
pling].

There have been several attempts to model the
BOLD signal response, both phenomenological mod-
els [e.g., Friston et al., 1994a; Boynton et al., 1996] and
biophysical [e.g., Buxton et al., 1998] all showing a
good fit to data. However, it has been observed that
the BOLD signal response to the same stimulus varies
between subjects [Aguirre et al., 1998b], within sub-
jects over time [Aguirre et al., 1998b], as well as be-
tween brain regions [Buckner et al., 1998; Kastrup et
al., 1999] and that the BOLD signal response to differ-
ent stimuli within the same brain region also varies

[Hoge et al., 1999b]. Thus it seems difficult to find a
single model of the BOLD signal response that can be
used in all situations. One way around this difficulty is
to measure the BOLD response at a separate occasion
and then to use the measured BOLD response to
model the signal. However, considering the within-
and between-subject variability, this implies that the
BOLD response should be measured separately for
each subject and brain region of interest. The problem
of not fully knowing the characteristics of the signal is
a problem of model selection. To use a bad model for
the data might lead to an underestimation of the ex-
perimentally induced effect and, more seriously, to the
introduction of false positives. Thus the partly un-
known nature of the coupling between neuronal ac-
tivity and the BOLD response poses further difficulties
for the FMRI data modeler.

The 4D approach

In this paper, we propose an alternative method of
analyzing FMRI data that does not require an explicit
model of the BOLD signal response. Further, the sug-
gested method takes temporal and spatial autocorre-
lations into consideration without requiring stationar-
ity. By adopting a 4D view of the data we let the
time-course of the signal “speak for itself,” and by
using nonparametric or Monte Carlo methods in mak-
ing inference, we avoid the potential pitfalls of non-
stationary autocorrelations.

Instead of viewing the FMRI data obtained in one
session as a 3D volume observed at a number of points
in time, we view it as a 4D hypervolume. Thus, each
session represents one observation. By varying the
stimulus/task between sessions, we introduce stimu-
lus/task-specific effects in the 4D hypervolumes. In-
stead of long sessions repeated few times, we suggest
the use of short sessions repeated many times. De-
pending on the study design, the 4D approach can be
used to study the responses to prolonged as well as
brief stimulus/task events. To model the experimen-
tally introduced effects we use the general linear
model, and to the extent that the sessions can be
assumed to be independent, standard parameter esti-
mates apply. In testing hypotheses on the model pa-
rameters, 4D statistical images are generated, in con-
trast to the 3D SIs generated by other methods. Thus
the generated SIs have three spatial dimensions and
one temporal dimension. Any relevant test statistic
can be applied to the 4D SIs. What is considered a
relevant statistic will vary depending on the applica-
tion. For example, the 4D cluster size statistic, one of
the statistics described in this paper, is designed to
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find regions of connected voxels, extended both in
time and space. These 4D clusters thus describe the
spatial as well as the temporal characteristics of the
BOLD signal response without the need for an explicit
model. Given the assumption of independence be-
tween sessions, statistical inference about the chosen
statistic can be made by nonparametric methods
[Holmes et al., 1996] or by a 4D generalization of a
Monte Carlo approach recently described [Ledberg,
2000]. These approaches are not dependent on any
stationarity assumptions and can therefore be used for
FMRI data.

In the next section the main steps of the 4D ap-
proach are described. In the subsequent section the 4D
method is applied to FMRI data.

THEORY

Notation

Let “scan” (also called “image”) denote the data
obtained in one single volume acquired at a given time
point and “session” a set of scans obtained in a se-
quence. Let boldface uppercase letters denote matrices
and boldface lowercase vectors. Let V denote the Kro-
necker product, A2 a generalized inverse of A, and
N(m, v) the normal distribution with mean m and
variance v. Let ε(z) and Cov(z) denote expectation and
covariance, respectively. Let v13v be a vector contain-
ing the voxel values from one scan (v is the number of
voxels). Let t denote the number of scans in one ses-
sion (we assume that all sessions have the same num-
ber of scans) and n the number of sessions.

A linear model for the data

The usual way of modeling the data obtained in a
FMRI experiment is by fitting a linear model to the
data matrix

Znt 3 v 5 1
v11

v12···
v1t

v21···
vnt

2
where vij denotes the j-th scan obtained in the i-th
session. Note that for FMRI data, the rows of Z will
have a statistical dependency as it is known that scans

acquired in succession are correlated. Instead, we sug-
gest the formation of a data matrix

Yn3vt 5 1
v11· · ·v1t

v21· · ·v2t···
vn1· · ·vnt

2 .

Thus the rows of Y represents the sessions and the
columns the 4D-voxels over sessions.1 Note that the
rows in Y can be assumed to be independent because
they represent different sessions. Now, let Xn3p be a
known design matrix, then a linear model for the data
is then given by

Y 5 XB 1 E (1)

where B is a p 3 vt matrix of the model parameters
and E is a n 3 vt matrix of error terms. As a simple
example, consider data from one subject obtained un-
der two different conditions (TEST and CONTROL).
Then, if there are 30 sessions alternating between
TEST and CONTROL, an appropriate design matrix is
given in Figure 1. If we assume that ε(E) 5 0,
Cov(e[ j]) 5 sj

2I, where e[ j] denotes the j-th column of E
and that hp31 is an estimatable1 contrast, then the best2

linear unbiased estimate (BLUE) of htB is given by

htB̂ 5 ht~XtX! 2 XtY (2)

[Christensen, 1991, chap. 1].

1ht 5 atX for some an31.
2Best in the sense of minimum variance.

Figure 1.
The design matrix for the 4D example case. The columns refer to
the mean value and the task factor (two columns). Black color
indicates 1 and white 0.
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Var̂~htB̂! 5 diag~RtR!ht~XtX! 2 h/g

is an unbiased estimate of the variance of htB̂ [Sen and
Srivastava, 1990]. Here R 5 Y 2 XB̂ is the residuals,
g 5 n 2 rank(X) the degrees of freedom of the model
and diag(z) is a matrix operation that puts all nondiago-
nal elements to zero. To generate a SI, t say, we divide
htB̂ with the square root of its variance:

t 5 ~htB̂!~Var̂~htB̂!! 2 1/2

Thus t is a 1 3 vt vector, the values of which represents
the linear combination of the parameter estimates, as
determined by the contrast, divided with their standard
deviation. This is just the ordinary univariate t-test sta-
tistic in a matrix setting. Under quite weak assump-
tions,4 each element of t will be distributed as Student’s
t with parameter g. Statistical images derived in this way
will therefore be called “t images.” Let T be the t 3 v
matrix containing the same data as t but arranged so that
the voxel values from the same temporal position within
the session in t are represented as a row in T. Thus, each
row in T can be viewed as a 3D t image and T as a 4D t
image. The columns of T are the (3D) voxel t values over
time. It is important to notice that the rows of T will
usually be dependent.

Thus, given a set of MR data we generate a 4D t
image that reflects the differences between conditions.
How to make inference on this 4D image is the issue of
the next section.

Inference on the 4D t images

The first thing to consider is which test statistic to
use. In the case of a 3D t image, there are several test
statistics currently in use [see, e.g., Friston et al., 1996].
The most commonly used are the global maxima and
cluster size statistics. We have extended these statistics
to 4D images as will be described below.

The maximum 4D cluster size statistic

Given a threshold s, a 4D cluster is a set of connected
4D voxels in T that are all above s. The maximum 4D
cluster size statistic is the size (i.e., the number of voxels)
of the largest of these clusters. Thus the 4D cluster size
statistic is a straightforward generalization of the cluster

size statistic for 3D images [e.g., Poline and Mazoyer,
1993; Roland et al., 1993]. Note that the clusters will have
spatial as well as temporal extent, i.e., they represent
spatio-temporal objects. In the current implementation
we have used eight connectivity, i.e., each voxel has six
neighbors in space (connected by sides) and two in time
(two voxels from adjacent time points are neighbors if
they are located at the same spatial position). Note that
with this statistic, inference is made on the level of 4D
clusters. That is, it is regions in the 4D space that will be
significant.

The maximum 4D voxel statistic

This statistic is simply the maximum value of all 4D
voxels in the 4D SI. With this statistic, inference is
made at the 4D-voxel level.

Null probability distributions

To estimate the probability distributions of these two
statistics, under the null hypothesis of no difference be-
tween conditions, we have applied both a nonparametric
approach based on permutations [Holmes et al., 1996;
Ledberg et al., 1998; Ledberg, 2000] and a 4D version of
the Monte Carlo method recently described [Ledberg,
2000]. The permutation approach is implemented by
generating new models for the data by permuting the
design matrix. The data is then fitted to these new mod-
els, 4D t images are generated as described above, and
from these images values of the two statistics are sam-
pled. In the Monte Carlo approach we generate a large
set of images that are of the same dimensions as T and
have a distribution very similar to what T would have
had under the null hypothesis. For each of these images
we apply the two statistics described above and thus get
an estimate of their probability distributions. The
method described in Ledberg [2000] was implemented
for 3D PET data, but because no assumptions about the
stationarity of the variance–covariance structure is
made, it is straightforward to extend it to 4D. The pur-
pose of using two different methods to generate the null
distributions is both to compare them and to illustrate
the generality of the 4D approach.

Assumptions

For linear model estimation

For the model estimates in Eq. (2) to be the BLUEs,
we need to assume that the expected value of the error
matrix in Eq. (1) is zero (ε(E) 5 0) and that the vari-
ance-covariance of each voxel can be described as
Cov(e[i]) 5 si

2I [Sen and Srivastava, 1990]. The first

3ht 5 atX for some an31.
4It suffices that Y has a left spherical (also sometimes called orthog-
onally invariant) distribution [Kariya and Sinha, 1988].
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assumption is basically that the mean structure of the
data should be described by the assumed model. With
a careful choice of model this should be the case. The
assumption about the variance-covariance structure
can be formulated as follows: the sessions should be
independent and the voxels should have the same
variance between sessions. Independence between
sessions should be obtained if enough time elapses
between them. We suggest a between-session interval
of 1 min. This should be sufficient to remove any
physiological or machine-related correlations. Note
that this is the only assumption made about the BOLD
response: that it operates on a time scale shorter than
the between-session interval. That sessions should
have the same variance should also be the case under
most circumstances. However, if data from different
subjects is modeled with the same linear model, this
assumption might not be valid anymore.

For nonparametric inference

If the permutation approach is used to make infer-
ence, the only assumption that is needed is that the
distribution of the data matrix Y, under the null hy-
pothesis, is invariant under the permutations applied
[Lindgren, 1993]. If the rows of Y are independent and
the model carefully chosen, this will be the case. Usu-
ally, there are too many possible permutations to ac-
tually calculate them all. Instead we use a random
sample of the possible permutations. As long as the
sample is relatively large (in the order of 1,000), it will
be a good approximation of the true permutation dis-
tribution [Edgington, 1980].

For Monte Carlo based inference

The assumption(s) needed for the Monte Carlo ap-
proach to be valid is that the data matrix Y in Eq. (1)
is distributed as N(XB, I V S). This means that, under
the null hypothesis, the sessions should be indepen-
dent and that the data from each session should be
multivariate normal with the same variance-covari-
ance matrix. That data are normally distributed, voxel
by voxel, has been shown to be a reasonable assump-
tion [Aguirre et al., 1998a]. That data are multivariate
normal with the same variance-covariance matrix is
more difficult to verify. The normality assumption can
probably be relaxed to any distribution invariant un-
der orthogonal transformations [Ledberg, 2000]. That
the variance-covariance matrix should be the same for
all sessions seems likely under the null hypothesis and
the method seems to be robust against departures
from this assumption as shown for PET data by Led-

berg [2000]. Note that this is an assumption also
needed by most other approaches to inference as well
[e.g., Friston et al., 1994a; Worsley and Friston, 1995].
The assumption of a distribution of a type N(XB, I V

S) implies that the mean value is XB, where X is a
design matrix. Normally the true X is not known, and
if the design matrix chosen for the statistical model
departs a lot from the true design matrix the Monte
Carlo method will give flawed (most likely conserva-
tive) estimates of the null distributions.

APPLICATION TO FMRI DATA

To illustrate the usage of the 4D method we applied
it to FMRI data from one subject.

Experimental setup

Four horizontal slices overlying the occipital cortex
were acquired in a 1.5 Tesla GE-Signa scanner using a
single-shot gradient echo EPI sequence: slice thickness
6 mm, FOV 5 240 mm 3 240 mm, matrix size 64 3 64,
TR 5 1,000 ms, TE 5 60 ms, flip angle 50°. Fifty
sessions of 50 sec each were acquired under two ex-
perimental conditions (VIS and CONT). During both
conditions the subject fixated on a small cross on a
dark background presented through the goggles of a
MR compatible visualization system (Resonance Tech-
nology Inc., Northridge, CA). The only difference be-
tween the conditions was that in VIS a flashing check-
erboard was presented for 5 sec starting at scan
number 11, whereas in CONT there was no such stim-
ulus. The between-session interval was at least 1 min.

The 4D method applied

The first and last five scans were removed before the
analysis, leaving 40 scans for each session. This was
done to remove T1 saturation effects and reduce the
amount of data. High-frequency noise was removed,
for each session separately, by fitting a regression
model containing a high-frequency component to the
voxel time-series and subtracting away the high fre-
quencies. The sessions during VIS were compared to
those during CONT using a linear model with one
factor (experimental condition) having two levels (VIS
and CONT). The threshold used for the 4D cluster size
statistic was 2.68 (corresponding to a voxel-wise P
value of 0.005). Four thousand permutations and sim-
ulations were made to estimate the probability distri-
butions of the maximum 4D voxel statistic and the 4D
cluster size statistic. Figure 2 shows the result of these
estimations. The two methods of estimating the null
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distributions of the two statistics gives very similar
results. That the permutation gives slightly lower
thresholds might be because these are made on a
smaller volume (activations removed). Voxels having
a value above 5.8 and clusters with a size larger than
11 (4D) voxels are significant at the 0.05 level.

RESULTS

Figures 3 and 4 shows the significant activations for
the cluster and voxel based statistics respectively. The
two statistics give very similar results. The cluster-
based statistic is however more sensitive than the

voxel based in the sense of number of voxels occupied
by activated regions. The activity starts around 3 sec
after stimulus onset and persists for 11 sec. The first
parts of the brain to become activated are located in
the depth of the calcarine sulcus. The activity then
spreads to surrounding regions of striate and extra-
striate visual cortex before disappearing. Figure 5
shows an example of voxels activated early and late
and their time courses. There is a striking difference in
the location of the early and late voxels. Also their
respective time courses are different.

Comparison with a 3D method

For comparison, the data was also analyzed with a
“conventional” 3D method. SPM99 (www.fil.ion.
bpmf.ac.uk/spm/) was used for this purpose. Because
the inference used in SPM requires the data to be
smooth, the data was smoothed by a Gaussian kernel
with a full width at half max (FWHM) of 12 mm. The
data was temporally smoothed with a Gaussian kernel
with a FWHM of 4-sec and temporal autocorrelation
was modeled by an AR(1) model. A high-pass filter
was applied to remove temporal trends. A fixed effect
linear model was fitted to the 25 sessions containing
the visual stimulus. A regressor with alternating 1 and
21 was included in the model to remove high-fre-
quency noise observed in the data. The signal was
modeled as a boxcar function convolved with the “he-
modynamic response function.” Activated regions
were determined at the voxel level at an omnibus P ,
0.05.

To be able to compare the two methods of analysis
the 4D method was also applied to the spatially
smoothed data. Activations were detected by the max-
imum voxel statistic at an omnibus P , 0.05. The
detected activations were projected onto three dimen-
sions. This was done by labeling a (3D) voxel in the
brain space as activated if it was active at any time
point in the 4D data set. The activations of the 3D and
4D methods could then be compared voxel by voxel.

The patterns of activation, as determined by the two
methods, was very similar. The 4D method gave
somewhat larger activations than the 3D method. The
overlap of the activated voxels detected by the two
methods was 99% of the volume of the 3D activations,
and 74% of the volume of the 4D activations. This
means that 99% of the activations detected by the 3D
method were also detected by the 4D method, and
74% of the activations detected by the 4D method
were also detected by the 3D method.

Figure 2.
Estimated probabilities for the maximum voxel statistic (top) and
maximum 4D cluster size statistic (bottom). The solid line refers
to the Monte Carlo method and the dashed to the permutation
method.
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Figure 3.
Significant differences between VIS and CONT as deter-
mined by the maximum 4D cluster size statistic shown
superimposed on an T1-weighted anatomical image. Start-
ing at the top, the rows show the activations over time with
each row representing a time step of 1 sec. The first row
shows the images 3 sec after stimulus onset. Only the time
points showing significant activations are shown.
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DISCUSSION

In this paper we have described a novel approach to
FMRI data analysis. The main difference compared to
previously described methods is that all data obtained

in one session is used as the dependent variable. Thus
we view the FMRI data as 4D spatio-temporal objects
observed under different conditions/sessions. This
change of perspective, compared to the usual 3D view,
provides several benefits, as described below.

Figure 4.
Significant differences between VIS and CONT as deter-
mined by the maximum voxel statistic shown superimposed
on an T1-weighted anatomical image. Starting at the top, the
rows show the activations over time with each row repre-
senting a time step of 1 sec. The first row shows the images
4 sec after stimulus onset. Only the time points showing
significant activations are shown.
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Benefits of the 4D approach

The first benefit concerns the multitude of hypoth-
eses that can be investigated with the 4D approach. By
testing hypotheses on the 4D SIs we test hypotheses
on the spatio-temporal structure of the signal. By us-
ing either of the two test statistics described here we
can investigate variations in the signal, both in time
and space, to a given stimulus/task. Depending on the

experimental setup the 4D approach can be used to
investigate changes in brain activity caused by static
as well as dynamic stimulus/task conditions. For ex-
ample, if the only difference between sessions occurs
during a very brief time period, the 4D approach can
provide similar information as that obtained in event-
related FMRI studies [Buckner et al., 1996; Dale and
Buckner, 1997; Josephs et al., 1997; for a review, see
Rosen et al., 1998] in which the BOLD signal response

Figure 5.
Early and late activations and their time courses. The top row
shows the voxels activated 4 sec after stimulus onset. The graph
on the right represents the average value of these voxels over the
25 sessions of VIS. The dashed lines represent the 95% confidence
interval of this average. The black bar indicate the time and
duration of the stimulus. The bottom row shows the voxels
activated still 11 sec after the stimulus onset. The graph to the

right shows the average time course of these voxels. Activations
are based on the maximum voxel statistic. The time course of the
late activated voxels has a somewhat slower onset and the peak
occurs around 2 sec after the peak of the time course of the early
voxels. This could indicate a difference in the underlying tissue.
Indeed it seems that the late voxels are in the vicinity of large
blood vessels.
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to single events of short duration is studied. However,
the 4D approach does not depend on any specific
assumptions about the form of the BOLD signal re-
sponse, except that it should operate on a time scale
shorter than the between-session interval. By selecting
a specific model for the BOLD response there is al-
ways a danger of introducing bias. On the other hand,
the price of using unbiased methods is usually lower
sensitivity, i.e., more scans are needed to detect the
signal. If the difference between sessions occurs dur-
ing a prolonged time period, the 4D approach is more
like a “blocked design” experiment. For example, if
there are two conditions (A and B) and the question of
interest is what areas are activated by A and not by B
and vice versa, the 4D approach could be used with
few scans per session (sps) and where sessions are
alternating between the two conditions. In this case
one can also, by starting the experiment some 10 sec-
onds before the scanning, make sure to acquire data
only during the “plateau” phase of the BOLD signal
response, thus maximizing the signal-to-noise ratio.

Thus, the 4D approach allows the integration of
blocked and event-related designs in the same frame-
work for statistical analysis.

A second benefit of the 4D approach is that, given the
assumption of independence between sessions, standard
least-square estimates can be used to solve the equations
in the linear model and to derive the SIs. This is not the
case for the 3D methods (see Introduction).

A third benefit is that, given the independence of
the sessions, nonparametric methods [Holmes et al.,
1996] or a 4D version of the Monte Carlo method of
Ledberg [2000] can be used in making inference. These
methods do not rely on any stationarity assumptions
and have been shown to work properly in the pres-
ence of nonstationary spatial autocorrelation [Led-
berg, 2000]. In the 3D case it is more difficult to use
nonparametric and Monte Carlo methods to make
inference as the assumptions needed for these meth-
ods are not fulfilled.

There are other benefits as well. For example, by
using much shorter sessions (depending on TR and
number of sps, the length of a session can be as short
as 10–20 sec), the within-session variability (e.g.,
caused by head movements and variation in perfor-
mance) seems likely to be reduced. Furthermore, the
extra dimension of the SIs gives greater flexibility in
the choice of test statistic.

Drawbacks of the 4D approach

The major drawback with the 4D approach is that
the time in the scanner for each subject is prolonged

compared to a more conventional design with rela-
tively few and long sessions. This is because by using
many short sessions and requiring them to be suffi-
ciently separated in time, the between-session inter-
vals might add up to a considerable amount of time.
For example, to acquire 600 scans with a TR of 1 sec
takes 10 min if they are acquired in one session, di-
viding them into 60 sessions of 10 scans each, and
assuming a between session interval of 1 min, will
instead take 70 min, because of the intervals between
sessions.

Another potential drawback is loss of sensitivity
compared to 3D methods. Because the search space is
enlarged by a factor t, the 4D method might be less
sensitive than a standard 3D method for some exper-
imental designs and test statistics. However, as the
comparison with a “standard” 3D method showed,
the reverse situation might also occur. In this compar-
ison the 4D method detected “more” activations than
did the 3D method, and almost all voxels detected by
the 3D method were detected by the 4D method. Note
however that twice as much data was used in the 4D
analysis than in the 3D analysis, as the CONT scans
were not included in the latter analysis. The discrep-
ancy between the two methods could perhaps be re-
duced by allowing a more general form of the signal
shape in the 3D analysis.

Issues concerning the implementation

In this paper we have used the 4D approach in
connection with the maximum voxel and 4D cluster
size statistics. To make inference we have used both a
4D generalization of the Monte Carlo method of Led-
berg [2000] and a nonparametric permutation ap-
proach. However, the 4D approach can be combined
with any relevant test statistic and any statistical in-
ference procedure of which the necessary assumptions
are met.

Choice of test statistic

The cluster- and voxel-based statistics gave similar
results (Fig. 3 and 4). The cluster-based statistic was
more sensitive (in terms of number of voxels occupied
by “activations”) than the voxel based. This is ex-
pected given that activations occur in spatio-tempo-
rally extended regions. If the resolution given by the
clusters of voxels is sufficient to investigate a specific
question, the 4D cluster size statistic should be the
statistic of choice. The voxel-based statistic on the
other hand gives a much finer resolution, inference
being made at the 4D-voxel level. So if a detailed

r 4D Analysis of FMRI Data r

r 195 r



characterization of the spatio-temporal properties of
the signal is desired this is the statistic of choice.

Choice of inference method

The two methods for statistical inference used in
this paper gave similar results (Fig. 2). This is in line
with previous findings [Ledberg, 2000]. The nonpara-
metric approach is very good in that it requires very
weak assumptions about the data. However, in the
presence of extended and strong activations, a step-
down approach is needed or a loss of sensitivity will
result [Holmes et al., 1996; Ledberg et al., 1998; Led-
berg, 2000]. The step-down approach is readily imple-
mented but increases the computational burden. In the
4D generalization of the Monte Carlo approach of
Ledberg [2000], the signal is taken away before the
null distribution is estimated. If data are behaving
according to the assumptions, this method will be
faster than the permutation approach and give very
similar result. However, if the assumptions are vio-
lated, for example, by a bad model for the data, the
Monte Carlo approach might give flawed estimates of
the probability distributions.

To run the permutations/simulations in the FMRI
data set used in this paper took around 24 hours on a
400 MHz PC.

How many sessions are needed?

In the 4D approach the sessions are the dependent
variables, which means that more sessions will lead to
better power to detect activations. How many sessions
are needed then? This is a question of signal-to-noise
ratio, the statistic used and the number of sps. In the
example from real data we used 50 sessions and 40
sps. This was sufficient to detect the anticipated re-
sponse in the visual cortex. If the 4D cluster size
statistic is used, fewer sessions can probably be used
without a large loss of sensitivity. Forty sps is proba-
bly more than enough in most cases. For studies
where a detailed characteristic of the signal is of sec-
ondary importance, 10 or less sps should suffice, and
this would imply fewer sessions.

Other areas of application

The 4D approach presented here could be useful in
other areas of functional neuroimaging as well where
spatio-temporal signals are observed, such as EEG and
optical imaging.

CONCLUSION

We have described a 4D approach to FMRI data
analysis. This approach provides a general framework
where hypotheses can be tested and statistical infer-
ence can be made circumventing some of the compli-
cations of more common 3D methods. Application to
FMRI data showed that the 4D approach is sufficiently
sensitive to be of practical use. Thus, the 4D approach
is a useful complement to existing methods for statis-
tical analysis of FMRI data.
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