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SUMMARY

Pitch frequency is one of the most important voice
characteristics, and its accurate extraction is important not
only in speech analysis and synthesis, but also in speech
coding, speech recognition, speaker recognition, and the
like. Existing methods of improving extraction accuracy
include waveform processing, correlative processing, and
spectral processing. This paper describes the use of a neural
network to extract pitch from voice features delivered from
the bandpass filter pairs (BPFPs) proposed by Fonda et al.
Three types of multi-layered neutral networks able to learn
time-continuity and high accuracy discrimination functions
and have a recurrent structure are tested. The cross-coupling
multi-layered neural network with feedback architecture
gives the best improvement over conventional neural net-
works, and exhibits superior ability for learning time con-
tinuity of pitch and U/V information. © 1997 Scripta
Technica, Inc. Electron Comm Jpn Pt 3, 80(9): 48-58, 1997

Key words: Speech detection; pitch extraction;
multilayer neural network; feedback architecture; cross-
coupling neural network.
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1. Introduction

Pitch frequency is one of the most important basic
parameters of the voice. Accurate extraction of the voice
pitch is not limited to speech analysis and synthesis sys-
tems, but it is also a fundamental and important subject
matter for speech coding, speech recognition, speaker rec-
ognition, and so on. Typical pitch extraction methods that
hitherto have been investigated to improve the accuracy
include those based on wave form processing, correlative
processing, and spectral processing, but a decisive method
has not yet been established [12].

Recently, several pitch extraction methods using neu-
ral networks (NNs) have been reported [2—6]. In this paper,
using an NN proposed here, we extract the pitch from the
voice features delivered through the use of bandpass filter
pairs (BPFPs) proposed by Funada et al. [7].

We teach pitch extraction and unvoiced/voiced (U/V)
detection functions to three types of the multi-layered NNs
that are able to learn time-continuity and high-accuracy
discrimination functions, and that have a recurrent structure
with feedback loops from the output layer and cross-cou-
pling paths within each hidden layer, and we compare their
detectability. The experimental results showed clearly that
the cross-coupling multi-layered NN with feedback archi-
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tecture (hereafter called CCNN-F) has the highest im-
proved accuracy when compared with conventional NN,
and that learning abilities of the time continuity of pitch and
U/V information, as well as discrimination functions were
much better obtained by cross-coupling paths within each
hidden layer and feedback loops from the output layer to
the first hidden layer.

Now, the mechanism by which the frequency resolu-
tion becomes sharper, with passing through the repeater of
the signal in the centripetal system ascending from the
auditory nerve to the corpus geniculatum medial of the
diencephalon has been clarified [12]. At the network level,
this mechanism suggests the existence of excitatory and
inhibitory cross-couplings among the units within a same
layer. Furthermore, we see that the centrifugal system de-
scending from the cerebral cortex is also found [12],
thereby suggesting the existence of feedback couplings in
order to adapt to the input voice.

In what follows, we first explain the NN used in this
research and its learning algorithm and then the pitch
extraction system. Thereafter, we discuss in detail the com-
parative performance results.

2. Coupling Topology of Neural Networks
and Learning

We explain here four types of the four-layered NN
used in the present research and these learning algorithms.

2.1. Neural network topologies
(1) Simple multi-layered NN (net topology: 000)

Figure 1(a) shows this NN structure. This is the
conventional feed-forward structure.

(2) Multi-layered NN with cross-coupled hidden
layers (net topology: 010)

The structure of this NN is shown in Fig. 1(b). This one
organizes cross-coupled hidden layers NN by inserting into
the hidden layers of the conventional multi-layered NN a state
layer in order to preserve the middle-layer state of a previous
time step. This state is then propagated to each unit within the
same layer through a time-delay element and the state layer,
thereby mutually cross-coupling all the units within each
middle layer (including a unit with itself). In other words, it is
the cross-coupling multi-layered NN structure.

(3) Feedback coupling multi-layered NN without
cross-coupled hidden layers (net topology: 101)
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The structure of this NN is shown in Fig. 1(c). Feed-
back coupling is done between the output layer and a hidden
layer (the first one) by adding a state layer to the conven-
tional multi-layered NN in order to preserve the output
layer state of a previous time step, and propagating this state
to each unit of the first hidden layer through a time-delay
element and the state layer.

(4) Feedback coupling multi-layered NN with
cross-coupled hidden layers (net topology: 111)

The structure of this NN is shown in Fig. 1(d). This
NN is a combination of the two structures of Figs. 1(b) and
1(c). This model is designated as CCNN-F. It is possible to
realize this one by an NN with feedback and cross-coupling
with only time-delay elements and absolutely no state
layers. However, ours is an extended representation in
which the past information of the state layer is referable in
general.
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Fig. 1. Conventional NN and proposed NNs with
feedback architecture or cross-coupled hidden layers.



2.2. Learning algorithm

The learning algorithm used in this research fol-
lows the back-propagation training method {8]. Learn-
ing of the feedback coupling weights can be realized
with the conventional error back-propagation tech-
nique by considering the observed pattern of the output
layer in the previous time step through the state layer
as a pseudo-external input pattern. Learning of the
cross-coupling weights takes place by an approximate
error back-propagation technique, where the learning
error of the hidden layer in the previous time step is
propagated only from within the same layer directly
through the state layer. We explain below the learning
algorithm of the CCNN-F model as an example.

Let 1, H1, H2, and O be the number of units in the
input, first hidden, second hidden and output layers of
the present model, respectively. The input-output rela-
tion of a unit in the NN may be formally expressed in
general as

(n+1)(t) — ng?)yln)(t)+9(n+l) )
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Here, ¢ represents the time progression by discrete integer
steps. In general, f(x,("“)(t)) is given by the following sig-
moid function,
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where x is the sigmoid slope coefficient.

In the first hidden layer, which has feedback cou-
plings from the output layer and self cross-couplings,
Egs.(1) and (2) become
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Here, y®(t — 1) is the output value of the m-th output unit
in the previous time step, u;, is the value of a feedback
coupling weight from the m-th output unit in the previous
time step to the j-th unit of the first hidden layer, y{?(z ~1)
is the previous value of the /-th unit in the first hidden layer,
and v{{’ is the value of a cross-coupling weight from the I-th

unit of the first hidden layer to the j-th unit of the same layer.
Further, if the second term of Eq. (4) is considered as a
pseudo-external input, it can be treated like the first term of
the same expression.

In the second hidden layer there are only cross cou-
plings within the same layer, so Egs. (1) and (2) become
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In the output layer, Eqgs. (1) and (2) become
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As for the back-propagation training, weights are
adjusted to make the sum E of the squared output errors in
Eq. (10) become a minimum.

E= ZE(t)—-ZZ(yj”’(z) i) (10)

t j=1

Here, E(¢) is the sum of the squared output errors at each
time step ¢ in the learning cycle and y; 4(r) is the target output
value of the j-th output unit.

Weights are adjusted in each time interval (sequential
adjusting law) and the adjustments of weight and bias are
directly proportional to the partial derivatives of E(7), as
indicated in the following equations

AP (E) = =m +adul(t- 1)
Aujm(t) = —m au;t) + alujm(t — 1) (an
AviP () = — aE((,f; +aAv(")(t -1)
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where, Awj;, Ay, and Avy are the adjusting quantities for
the respective weights; A@;; is the adjusting quantity of the
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bias; #, and 7, are the learning rates used for the weight
and bias; and « is the momentum,

The partial derivatives used in the first terms of Egs.
(11) and (12) can be expressed, respectively, by
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where the derivative of the sigmoid function f'(x{""(1)) is
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Let us consider for simplicity the error back-propa-
gation from other units only by direct coupling paths (ap-
proximate learning technique [9, 10]. From Egs. (4), (6),
and (8), the partial derivatives used in the right side of Egs.
(13) and (14) become
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From Eq. (15), the error 5™(#) of the j-th output unit
may be expressed by

N N
571 = £ MO - M) a9
The error 6X(#) of the j-th unit of the second hidden layer

by
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and the error 9{7(¢) of the j-th unit of the first hidden layer
by
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All the adjustments of weight and bias can be deter-
mined by the learning rules with the above Egs. (11)
through (18).

3. Pitch Extraction System

The pitch extraction system used in the present re-
search is composed of a BPFP bank block, a pitch extraction

-NN block, and a U/V detection NN block. We explain each

block in turn.

3.1. BPFP bank block

The BPFP bank extracts the voice features of a frame
unit (period 10 ms, length 30 ms) from a sampled voice
signal (0.1 ms interval, 16 bit resolution) by means of the
BPFP method. The BPFP method determines the slope and
power level for the frequency power spectrum at various
frequency points of the objective frequency band pass (in
this research, 11 channel banks at 15 Hz intervals, with
center frequency 100 Hz to 250 Hz, 11 channel banks at 30
Hz intervals, with center frequency 280 Hz to 580 Hz). The
result is the features vector of the voice. What we call slope
is a value expressing the degree and direction of distance of
the higher harmonics close to the center frequency of each
channel from such center frequency. When the higher har-
monic frequency is larger than the center frequency it has a
positive value, and a negative one when it is smaller [7].

The BPFP bank delivers such 44-dimensional fea-
tures vectors for each frame.



3.2. Normalization of the features vector

In order to carry out the pitch extraction and U/V
detection independently of the voice signal amplitude, it is
necessary to normalize the features vector delivered by the
BPFP bank block in the preceding processing part.

The 22-dimensional features vector based on the
power level for the frequency spectrum is normalized in
the range [0, 1] by determining for each frame the largest
valued component and dividing all the components by
this largest value. Also, for the 22-dimensional features
vector, according to the slope independently of each
amplitude, normalization is done for each frame in the
range [-1, 1]. .

Hence, the inputs to the following pitch extraction
NN and U/V detection NN blocks are normalized 44-di-
mensional feature vectors foreach frame of the voice signal.

3.3. U/V detection NN block

The U/V detection NN block detects the U/V of a
frame based on the features vector delivered by the BPFP
bank. The NN is built with an input layer of 44 units, two
middle layers, the first one with 30 units and the second one
with 15 units, and an output layer with 1 unit.

When training the NN, a teacher signal is given with
0.99 for voiced frames and 0.01 for unvoiced or silent
frames. When evaluating the trained NN registers a voiced
frame if the ‘'value of the putout layer exceeds 0.5 and an
unvoiced one if it its less than 0.5.

3.4. Pitch extraction NN block

For the voiced frame detected in the U/V detection
NN block, the pitch extraction NN block extracts the pitch
frequency of a frame based on the features vector delivered
by the BPFP bank. This NN has the structure as the U/V
detection NN. _

When training the NN, a teacher signal is given with
a correct pitch for the voiced frame. During evaluation,
successful pitch extraction is considered to be achieved
when the extracted frequency falls within +5% of the
correct pitch.

Considering that the upper bound of the pitch fre-
quencies for the voiced signal is 450 Hz and the lower
bound is 50 Hz, the teacher signal for a correct pitch given
in the output layer was actually transformed by the formula

log((correct pitch)/50.0)
log(9.0)
and thereby normalization is done in the range [0, 1]. We

can determine the extracted pitch from the output value of
the NN output layer by means of the inverse formula

(teacher’s signal) = (22)
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(extracted pitch) = 50.0 X exp({outpur value) x log(9.0))
(23)

4. Experimental Method

Next we explain the makeup of the experiment that
evaluated the comparative performance and training of
the four types of pitch extraction NNs and U/V detection
NNs.

4.1. Speech data

The data used in the experiment were selected from
the continuous speech corpus for research (the Acoustic
Society of Japan) as follows:

o Trained speakers: six persons, three males (m0l,
m02, t01) and three females (m11, m12,tl1)

o Untrained speakers: two persons, one male (103)
and one female (t12)

s Training data 1: five sentences (a0l through a05)
pronounced by each trained speaker for a total of
30 sentences '

» Training data 2: five sentences (a06 through al0)
pronounced by each trained speaker for a total of
30 sentences

¢ Non-training data used for evaluation: When
learning with training data 1, each trained speaker
pronounced sentences a06 through al0 for a total
of 30 sentences; in the case of training with train-
ing data 2, each trained speaker pronounced sen-
tences a0l through a05 for a total of 30 sentences.
the 10 sentences (a0l through al0) were pro-
nounced by each of the non-trained speakers for a
total of 20 sentences.

4.2. Correct pitch

The speech data used for training the network was
processed through the BPFP bank block, and the correct U/V
and pitch information was extracted automatically according
to matches with standard patterns from 128 classes (70451
Hz range, 3 Hz resolution). In addition, the correct pitch was.
modified visually. Furthermore, in the case of an unvoiced
frame, the correct pitch value was set for convenience as 0.
The U/V information given as the teacher signal was depend-
ent on the correct pitch value (=0/#0).

4.3. Pitch extraction experiment

We carried out pitch extraction using each NN trained
with the training data sets 1 and 2, separately and jointly,



and did a comparative study on the different extraction
ability due to differences in network topologies. The pitch
extraction NN was evaluated for voiced frames with non-
zero correct pitch. The same learning conditions were set
up for the training of all four types of the NNs (slope
coefficient of the sigmoid function: 0.8; learning rate: initial
value 0.8, decreasing rate 0.99; momentum: initial value
0.5, decreasing rate 0.99; weight initial values: -0.5t0+0.5;
bias initial values: —0.3 to +0.3; learning cycles: 2000). The
evaluation items for the performance of the trained NNs
were the following:

o The ratio of frames for which the extracted pitch
was greatly different (> £20%) from the correct
pitch (gross pitch error, GPE)

e The ratio of frames with successful pitch extrac-
tion (correct rate)

4.4. U/V detection experiment

We carried out U/V detection using each NN trained
with the training data sets 1 and 2, separately and jointly,
and did a comparative study on the differing detection
ability due to differences in network topologies. The same
learning conditions were set up for the training of all four
types of the NNs (Slope coefficient of the sigmoid function:
1.5, learning cycles: 1000, and all the other parameters as
in the pitch extraction experiment). The evaluation items
for the performance of the trained NNs were

e The ratio of unvoiced frames mistaken as voiced
frames (unvoiced-to-voiced error, UVE),

e The ratio of voiced frames mistaken as unvoiced
frames (voiced-to-unvoiced error, VUE),

e The ratio of correct frames (correct rate)

5. Experimental Results and Discussion

We first analyze the learning effects of time continu-
ity and discrimination function by feedback couplings and
cross-couplings, from the pitch extraction and U/V detec-
tion results for the cases of training with training data sets
1 and 2 separately, and explain next from the pitch extrac-
tion and U/V detection results when using both the training
data sets jointly.

5.1. Accuracy of the discrimination function

The scattering results of the extraction accuracy of
pitch information in the pitch extraction NNs trained with
training data sets 1 and 2 separately are shown in Table 1.
We use the percentage of GPE, and for non-GPE frames the
average and the variance values of the absolute deviations
from the correct values. In Table | we also have the values
evaluated with non-training data by using the NNs trained
with training data sets 1 and 2 separately (denoted hereafter
as “training data 1 NN” and “training data 2 NN”). It can
be seen from this table that in the net topologies 010 and
111 the GPE and the scattering of the extraction accuracy
are the lowest for both the training and the non-training
data. Figure 2 shows an example of pitch extraction results.
We can confirm visually the scattering of the extraction
accuracy and.the state of errors for each net structure, For
the silent or unvoiced sections, the values are not shown
here.

The comparison of the pitch extraction and U/V
detection correct rate between the net topologies 010, 111
with cross-coupled hidden layers and the net topologies
000, 101 is shown in Table 2. In both the “training data 1
NN and the “training data 2 NN,” the efficacy of the cross-
couplings can be notably appreciated in the case of pitch
extraction for the well-known and the unknown speakers.

Table 1. Scatter of the accuracy of pitch extraction for each NN
(non-training data, a unit: average [Hz], variance [szl, GPE [%])
Average/variance: average/variance values of the errors in extracted pitches, excluding the GPE.

Training data INN

Training data 2NN

Net Well-known speakers Unknown speakers Well-known speakers Unknown speakers
Topology Average Variance GPE Average Variance GPE Average Variance GPE Average Variance GPE
000 3.03 1643 148 2.73 12,11 0.63 325 1798 147 3.09 1270  0.54
010 2.85 13.73 1.09 2.62 1004 028 294 1284 0.65 2.74 9.32 0.3
101 292 18.09 161 2.48 1046 0.65 3.39 18.19 1.64 3.22 13.67 0.54
111 2.87 1401 128 2.68 11,11 032 295 1546 051 2.80 1074 020
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Fig. 2. An example of pitch extraction for female
" speaker by using each NN trained with
data 1(t12-a05, non-training speaker).

From the above facts, it can be said that training of
the NNs with cross-coupled hidden layers effectively im-
proves the accuracy of the discrimination function in pitch
extraction. This is because the cross-couplings produce a
generalization of learning from a small number of training
data, by smoothing of the pitch variation information [13].

5.2. Learning effects of time continuity

The learning effects of time continuity of U/V infor-
mation in the U/V detection NNs trained with the training
data sets 1 and 2 separately are shown in Table 3. For the
average and variance values in this table, we determined the
average/variance of the changes in the estimated value of
digitized U/V and the correct one from the respective values
in the preceding frame, and divided the average/variance of
the estimated value by that of the correct value (increasing
rate)—these are the values shown. We see that the increas-
ing rate of the average/variance values are small in the net
topologies 101 and 111 for both the well-known and the
unknown speakers, i.e., the changing count of the U/V
estimated value was close to the count of the correct value.
An example of U/V detection results is shown in Fig. 3. We
can confirm visually the state of the errors in detection for
each net structure.

The comparison of the pitch extraction and U/V
detection correct rate between the net topologies 101, 111
with feedback architecture and the net topologies 000, 010
is shown in Table 4. The efficacy of the feedback couplings
is different for training data I NN and training data 2 NN,
but for the unknown speakers, if we reconsider on the
average with training data 1 NN and training data 2 NN, we
may say that there is a slightly improved effect by the
feedback couplings in both the pitch extraction and U/V
detection.

Table 2. Comparison of correct rate of pitch extraction and U/V detection by using NN with cross-coupled hidden layers
(non-training data, a unit: %). The correct rate values of neural net topologies 010 and 111, relative values to these from
neural net topologies 000 and 10! respectively_

Training data INN Training data 2NN
Net topology Well-known 5 own speakers Well-known ;04 0 own speakers
speakers speakers
Pitch extraction 010 +1.95 +1.86 +4.44 +3.84
111 +0.98 +0.68 +4.77 +4.86
U/V detection 010 +0.76 -0.03 +0.01 +0.14
111 -0.06 -0.21 +0.19 +0.65
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Fig. 3. Anexample of U/V detection for male speaker
by using each NN trained with data 2 (t03-a01,
non-training speaker).

1t follows from the above, that the NNs with feedback
coupling from the output layer to a hidden layer learn in
particular the continuity of the time axis direction of time
series patterns such as the U/V information, and it is effec-
tive in reducing the chattering of the U/V information in the

boundaries where it is easily generated. However, the learn-
ing effect of time-continuity does not contribute directly to
the improvement of the correct rate [13].

5.3. Pitch extraction and U/V detection results

Table 5 shows the pitch extraction and the U/V detec-
tion results using each NN trained with both data sets 1 and
2. We can see from this table that the net topology 111, i.e.,
CCNN-F, behaves the best for both pitch extraction and
U/V detection. As for the former, there is an increase of
about 3.4% in the correct rate and a decrease of about 0.3%
in the percentage of GPE when compared with net topology
000; as for the latter, there is an increase of about 0.4% in
the correct rate and a decrease of approximately 0.4% in the
percentage of both VUE and UVE.

Now, the improvement of the correct rates in the pitch
extraction NN of topology 101 and the U/V detection NN
of topology 101 with respect to the net topology 000 are
due to the larger number of the jointed training data. In the
case of the CCNN-F, however, the highest improved accu-
racy can be obtained constantly, independent of the number
of training data [13].

5.4. Comparison with other methods

Table 6 shows the U/V detection and the pitch extrac-
tion results using the NNs (net topology 000) trained with
both data sets 1 and 2, compared with the results using the
cepstral method and the LPC residual correlation methods
[11]. For this case, we have not done post-processing such
as the pitch smoothing technique, and we have compared
directly the extracted values for each frame.

We see from this table that the correct rate and the error
rates (UVE + VUE, GPE) are both better by the proposed NN

Table 3. Learning effects of time-continuity of U/V for each NN (non-training data). Average/variance: the U/V detection
results with respect to the average/variance of the change from the preceding frames, divided by the correct values

(increasing rate)

Training data INN

Training data 2NN

Neto':;pol- Well-known speakers Unknown speakers Well-known speakers Unknown speakers
Average Variance Average Variance Average Variance Average Variance

000 1.41 1.38 1.25 1.24 1.37 1.35 1.27 1.25

010 1.21 1.20 1.21 1.20 1.34 1.32 1.29 1.27

101 1.07 1.07 1.10 1.09 1.11 1.11 1.15 1.14

111 1.07 1.07 1.14 1.13 1.14 1.13 1.17 1.16
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than by the other methods. By referring to the U/V detection
results, when we consider an overall system that extracts
the pitch only from well-detected voicing frames, the cor-
rect rate of the overall system is increased by more than
about 4.4% and the error rate (UVE + VUE + GPE) is
decreased by more than about 4.6% with respect to the other
twomethods, clearly showing the superiority of the proposed NN
method. [The correct rate of the overall system is calculated here
by taking as a correct frame one that has neither a UVE, a VUE,
nor a pitch extraction error deviating from a range under £5%
correct pitch, and taking the percentage of these correct
frames with respect to the total number of frames.] In the
cepstral and the LPC residual correlation methods, the
results are greatly influenced by the selection of the thresh-
old value for the U/V detection; this value was determined
here so as to make the correct rate of the overall system as
large as possible.

Furthermore, comparing the CCNN-F method (net
topology: 111) with the simple conventional NN method,
there is a 2% increase to the 94.9% of correct rate in the
overall system, and approximately 0.5% decrease to 3.8%
of the error rate. Therefore we may say that the proposed
CCNN-F model provides further improvement.

6. Conclusion

We carried out experimental comparisons for pitch
extraction and U/V detection abilities based on different net-
work structures, using BPFP banks and four types of
mutlti-layered NNs. The following conclusions were ob-
tained from the experimental results.

o The method using BPFP banks and conventional
multi-layered NNs is a very effective pitch extrac-
tion method as compared to other typical tech-
niques such as the cepstral method and the LPC
residual correlation method.

o The CCNN-F structure with feedback couplings
between the output and hidden layers, and cross
couplings within the hidden layer is robust and
produced the highest improved accuracy. Com-
pared with the conventional multi-layered NN, it
increases the correct rate by 2% and decreases the
error (UVE + VUE + GPE) by approximately
0.5%; this is the synergistic effect of the feedback
couplings and the cross-couplings.

Table 4. Comparison of correct rate of pitch extraction and U/V detection by using NN with feedback architecture
(non-training data, a unit: %). The correct rate values of neural net topologies 101 and 111, relative values to these from
neural net topologies 000 and 010 respectively

Training data INN Training data 2NN
Net topology Well-known Unknown speakers Well-known Unknown speakers
speakers speakers
Pitch extraction 101 +0.52 +0.63 -0.21 . -0.04
111 -0.45 ~0.55 +0.12 +0.98
U/V detection 101 +0.29 +0.69 +0.39 -0.26
111 -0.53 +0.51 +0.57 +0.25

Table 5. Results of pitch extraction and U/V detection by using each NN with both data sets ! and 2
(non-training, a unit: %)

Pitch extraction U/V detection
Net topology
Correct rate GPE Correct rate UVE VUE
000 93.26 0.56 95.81 4.59 3.89
010 93.93 0.30 96.17 3.19 4.32
101 95.68 0.52 95.51 5.97 3.37
111 96.63 0.28 96.24 4,18 345
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Table 6. Comparison with other methods of U/V detection and pitch extraction (non-training, a unit: %)

U/V detection Pitch extraction Overall system
Correct UVE +
Method rate UVE VUE Correctrate GPE Corréctrate VUE + Remarks
GPE

cepstrum 86.12 7.69 18.58 78.15 1.07 84.26 1448  Threshold =2.0
LPC residual 93.63 11.26 2.66 88.36 4.48 88.52 892 Threshold =0.15
NN 95.81 4.59 3.89 90.98 0.26 92.90 4.34  Net topology: 000
CCNN-F 96.24 4.18 3.45 94.19 0.08 94.90 3.81 Net topology: 111

¢ Training of the NN with cross-coupled hidden
layers improves the accuracy of the discrimination
function effectively in pitch extraction.

o The NN with feedback coupling from the output
layer to a hidden layer leamns in particular the
time-continuity of the U/V information.

For future research, it is necessary to confirm the
efficiency of the proposed CCNN-F model by carrying out
listening experiments with the synthesized speech having
as a voice source the extracted pitch and U/V information
by the present method, and pitch extraction experiments in
low-grade speech with noise. Also, it is necessary to pursue
the relationship between the increment in the number of
cross-coupling paths in a hidden layer and the accuracy
improvement of the discrimination function. Furthermore,
since it is not enough to leamn the discrimination function,
it is necessary to improve the approximate learning algo-
rithm considering only the back-propagation of the pre-
vious time step of direct paths in the hidden layer.
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