

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Raltegravir monohydrate

Thammarse S. Yamuna,^a Jerry P. Jasinski,^{b*} Brian J. Anderson^b H. S. Yathiraian^a and Manpreet Kaur^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 24 October 2013; accepted 30 October 2013

The hydrated title compound [systematic name: N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-{1-methyl-1-[(5-methyl-1,3,4oxadiazol-2-ylcarbonyl)amino]ethyl}-6-oxo-1,6-dihydropyrimidine-4-carboxamide monohydrate], C₂₀H₂₁FN₆O₅·H₂O, is recognised as the first HIV integrase inhibitor. In the molecule, the dihedral angles between the mean planes of the pyrimidine ring and the phenyl and oxadiazole rings are 72.0 (1) and 61.8 (3) $^{\circ}$, respectively. The mean plane of the oxadiazole ring is twisted by $15.6 (3)^{\circ}$ from that of the benzene ring, while the mean plane of amide group bound to the oxadiaole ring is twisted by $18.8 (3)^{\circ}$ from its mean plane. Intramolecular $O-H \cdots O$ and $C-H \cdots N$ hydrogen bonds are observed in the molecule. The crystal packing features O- $H \cdots O$ hydrogen bonds, which include bifurcated O- $H \cdots (O,O)$ hydrogen bonds from one H atom of the water molecule. In addition, N-H···O hydrogen bonds are observed involving the two amide groups. These interactions link the molecules into chains along [010].

Related literature

For general background to and pharmacological properties of Raltegravir, see: Burger (2010); Cocohoba & Dong (2008); Croxtall & Keam (2009); Evering & Markowitz (2008); Hicks & Gulick (2009); Savarino (2006); Temesgen & Siraj (2008). For related structures, see: Fun et al. (2011); Shang et al. (2012); Shang, Ha et al. (2011); Shang, Qi et al. (2011); Thiruvalluvar et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data C

$C_{20}H_{21}FN_6O_5 H_2O$
$M_r = 462.44$
Triclinic, $P\overline{1}$
a = 8.3860 (6) Å
b = 11.8610 (9) Å
c = 12.1102 (9) Å
$\alpha = 110.481 \ (7)^{\circ}$
$\beta = 108.093 \ (7)^{\circ}$

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) $T_{\min} = 0.890, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.206$ S = 1.03

12734 measured reflections 7007 independent reflections 5042 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

 $\gamma = 92.329~(6)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.12 \text{ mm}^-$

T = 173 K

Z = 2

V = 1057.44 (15) Å³

 $0.44 \times 0.32 \times 0.26 \text{ mm}$

7007 reflections

306 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.78 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

H	vdro	gen-bon	d geometry	(Å.	°).
	,	gen con	a geometry	· · · ·	· · ·

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4-H4···O5	0.84	1.88	2.593 (2)	143
C20−H20C···N1	0.98	2.25	2.982 (3)	130
$N1-H1\cdots O5^{i}$	0.88	2.23	2.970 (2)	142
$N4-H4A\cdotsO1W^{ii}$	0.88	2.48	3.074 (3)	126
$C7-H7A\cdots O1W^{ii}$	0.99	2.58	3.240 (3)	124
C10−H10···O5 ⁱⁱⁱ	0.95	2.50	3.393 (3)	158
$C20-H20A\cdots O4^{iv}$	0.98	2.46	3.394 (2)	160
$C20-H20B\cdots N6^{v}$	0.98	2.50	3.422 (3)	158
$O1W-H1WA\cdots O4^{vi}$	0.85	2.51	3.249 (3)	146
$O1W-H1WA\cdots O3^{vi}$	0.85	2.33	3.013 (3)	138
$O1W - H1WB \cdots O2$	0.85	2.04	2.869 (2)	164
Symmetry codes: (i)	-x + 2, -y, -	-z + 1; (ii)	-x + 2, -y + 1	, -z + 1; (iii)

-x + 2, -y, -z + 2; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y, -z; (vi) x, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

organic compounds

organic compounds

TSY thanks the UOM for research facilities. HSY thanks Dr M. T. Swamy, Department of Chemistry, Sambhram Institute of Technology, Bengaluru, India, for a sample of the title compound. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5363).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Burger, D. M. (2010). Exp. Opin. Drug Metab. Toxicol. 6, 1151-1160.
- Cocohoba, J. & Dong, B. J. (2008). Clin. Ther. 30, 1747-1765.
- Croxtall, J. D. & Keam, S. J. (2009). Drugs, 69, 1059-1075.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Evering, T. H. & Markowitz, M. (2008). *Exp. Opin. Invest. Drugs*, 17, 413–422.
 Fun, H.-K., Sumangala, V., Prasad, D. J., Poojary, B. & Chantrapromma, S. (2011). *Acta Cryst.* E67, o274.
- Hicks, C. & Gulick, R. M. (2009). Clin. Infect. Dis. 48, 931-939.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Savarino, A. (2006). Exp. Opin. Invest. Drugs, 15, 1507-1522.
- Shang, Z., Ha, J., Yu, Y. & Zhao, X. (2011). Acta Cryst. E67, o1336.
- Shang, Z., Qi, S., Tao, X. & Zhang, G. (2011). Acta Cryst. E67, 01335.
- Shang, Z., Tao, X., Ha, J. & Yu, F. (2012). Acta Cryst. E68, 03175.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Temesgen, Z. & Siraj, D. S. (2008). Ther. Clin. Risk Manage. 4, 493-500.
- Thiruvalluvar, A., Subramanyam, M., Lingappa, B. & Kalluraya, B. (2007). Acta Cryst. E63, 03425.

supporting information

Acta Cryst. (2013). E69, o1743-o1744 [doi:10.1107/S1600536813029747]

Raltegravir monohydrate

Thammarse S. Yamuna, Jerry P. Jasinski, Brian J. Anderson, H. S. Yathirajan and Manpreet Kaur

S1. Comment

Raltegravir (systematic name:5-hydroxy-1-methyl-2-{1-methyl-1-[(5-methyl-[1,3,4]oxadiazole-2-carbonyl)amino]ethyl}-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid 4-fluorobenzylamide) monohydrate is the first in a novel class of HIV-1 integrase strand-transfer inhibitors with potent antiretroviral activity (Savarino, 2006; Hicks & Gulick, 2009; Evering & Markowitz, 2008; Temesgen & Siraj, 2008). It inhibits the action of the HIV-1-specific enzyme that is responsible for the insertion of viral complimentary DNA into the host genome (Croxtall & Keam, 2009). It is also found to be a generally well tolerated antiretroviral agent that may play an important role in the treatment of patients harboring resistance to other antiretroviral drugs (Cocohoba & Dong, 2008). A review of the pharmacokinetics, pharmacology and clinical studies of Raltegravir has been published (Burger, 2010). The crystal structures of some related compounds, viz., 5-[(4,6-dimethylpyrimidin-2- ylsulfanyl)methyl]-3-(morpholinomethyl)-1,3,4-oxadiazole-2(3H)-thione (Thiruvalluvar *et al.*, 2007), methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy-6-methoxypyrimidine- 4carboxylate (Shang, Ha *et al.*, 2011), methyl 2-(2-{[(benzyloxy)carbonyl]amino}propan-2-yl]-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4carboxylate (Shang, Qi *et al.*, 2011) and methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4carboxylate (Shang, Qi *et al.*, 2011) and methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy-6-methoxypyrimidine-4-carboxylate (Shang *et al.*, 2011) and methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy-6-methoxymethyl-6-oxo- 1,6-dihydro pyrimidine-4-carboxylate (Shang *et al.*, 2012) have been reported. In view of the importance of Raltegravir, this paper reports the crystal structure of (I), C₂₀H₂₁FN₆O₅. H₂O.

In the title compound, (I), the dihedral angles between the mean planes of the pyrimidine ring and the phenyl and oxadiazole rings are 72.0 (1)° and 61.8 (3)° respectively (Fig. 1). The mean plane of the oxadiazole ring is twisted by 15.63° from that of the phenyl ring. In addition, the mean plane of the N1–C14–O2 amide group adjacent to the oxadiazole ring is twisted by 18.8 (3)° from the mean plane of the oxidiazole ring. Bond lengths are within normal ranges (Allen *et al.*, 1987). Intramolecular O—H…O and C—H…N hydrogen bonds are observed in the molecule (Table. 1).

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonds which include bifurcated O1W– H1WA···O3 and O1W–H1WA···O4 hydrogen bonds from the H1WA atom of the water molecule. In addition, intermolecular N1–H1···O5 and N4–H4A···O1W hydrogen bonds involving the two amide groups are also observed. These interactions link the molecules into chains along [0 1 0].

S2. Experimental

Raltegravir (CAS No. 518048-05-0) (0.2 g) was dissolved in a 1:1:1(v/v) mixture of methanol, dimethyl sulfoxide and dimethyl formamide at 308 K and left for slow evaporation. Crystals suitable for X-ray work were obtained after a few months (m.p.: 383–388 K).

S3. Refinement

H1WA and H1WB were located in a difference map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using a riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH₂), 0.98Å (CH₃), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH) or 1.5 (CH₃, OH, OH₂) times U_{eq} of the parent atom. Idealised Me and tetrahedral OH (O4(H4))were refined as rotating groups. The highest peak (-0.783) in the final difference map is located 1.02 Å from O1.

Figure 1

ORTEP drawing of (I) ($C_{20}H_{21}FN_6O_5$. H_2O) showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate intramolecular O4—H4···O5, C20—H20C···N1 and intermolecular O1W—H1WB···O2 hydrogen bonds in the asymmetric unit.

Figure 2

Molecular packing for (I) viewed along the *a* axis. Dashed lines indicate intermolecular N—H…O and O—H…O hydrogen bonds. H atoms not involved in hydrogen bonding have been removed for clarity.

N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-{1-methyl-1-[(5-methyl-1,3,4-oxadiazol-2-ylcarbonyl)amino]ethyl}-6-oxo-1,6-dihydropyrimidine-4-carboxamide monohydrate

Z = 2

F(000) = 484

 $\theta = 3.0-32.9^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.025$

 $h = -12 \rightarrow 12$

 $k = -14 \rightarrow 17$

 $l = -17 \rightarrow 18$

 $D_{\rm x} = 1.452 \ {\rm Mg \ m^{-3}}$

Irregular, colourless

 $0.44 \times 0.32 \times 0.26 \text{ mm}$

 $\theta_{\rm max} = 33.0^\circ, \ \theta_{\rm min} = 3.1^\circ$

12734 measured reflections 7007 independent reflections

5042 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3215 reflections

Crystal data $C_{20}H_{21}FN_6O_5 H_2O$ $M_r = 462.44$ Triclinic, $P\overline{1}$ a = 8.3860 (6) Å b = 11.8610 (9) Å c = 12.1102 (9) Å a = 110.481 (7)° $\beta = 108.093$ (7)° $\gamma = 92.329$ (6)° V = 1057.44 (15) Å³

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{\min} = 0.890, T_{\max} = 1.000$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: mixed
$wR(F^2) = 0.206$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0974P)^2 + 0.6433P]$
7007 reflections	where $P = (F_o^2 + 2F_c^2)/3$
306 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.78 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates an	nd isotropic or a	equivalent isotropic	displacement	parameters	$(Å^2)$
				P	(/

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	1.1554 (2)	0.33688 (15)	1.31637 (13)	0.0578 (4)	
01	0.7785 (2)	0.36533 (14)	0.09901 (14)	0.0412 (4)	
O2	0.7121 (2)	0.44719 (13)	0.32679 (14)	0.0398 (4)	
O3	0.50567 (19)	-0.13326 (13)	0.34626 (15)	0.0355 (3)	
04	0.76855 (19)	-0.16476 (12)	0.52110 (14)	0.0320 (3)	
H4	0.8570	-0.1629	0.5789	0.048*	
05	1.04993 (19)	-0.05743 (13)	0.70762 (13)	0.0315 (3)	

N1	0.7540(2)	0.261/3.(14)	0 33868 (14)	0.0273(3)
	0.7540 (2)	0.20145 (14)	0.33808 (14)	0.0273 (3)
111 N2	0.7001 0.62442(18)	0.1673 0.06542(12)	0.2950 0.40180 (13)	0.033°
INZ	0.02443(10)	0.00545(13) 0.15547(12)	0.40109(13)	0.0221(3)
INJ NA	0.07073(19)	0.13347(13) 0.14224(15)	0.37317(13) 0.76001(14)	0.0228(3)
	1.1467 (2)	0.14234 (13)	0.70091(14)	0.0282 (3)
H4A	1.1334	0.2069	0.7414	0.034^{*}
N5	0.7269 (2)	0.1//3/(16)	0.08576 (16)	0.0347 (4)
N6	0.7475 (3)	0.17321 (18)	-0.02828 (18)	0.0427 (5)
CI	0.7546 (2)	0.28635 (15)	0.46715 (16)	0.0238 (3)
C2	0.7531 (2)	0.16307 (15)	0.48264 (15)	0.0211 (3)
C3	0.6221 (2)	-0.04688 (16)	0.41474 (17)	0.0245 (3)
C4	0.7677 (2)	-0.05480 (15)	0.51363 (16)	0.0237 (3)
C5	0.8866 (2)	0.04642 (15)	0.58924 (15)	0.0222 (3)
C6	1.0360 (2)	0.04108 (16)	0.69173 (16)	0.0247 (3)
C7	1.2983 (3)	0.1521 (2)	0.86874 (18)	0.0331 (4)
H7A	1.3951	0.2062	0.8731	0.040*
H7B	1.3306	0.0705	0.8568	0.040*
C8	1.2642 (2)	0.20230 (17)	0.99030 (17)	0.0271 (4)
С9	1.1883 (3)	0.12534 (17)	1.02977 (18)	0.0304 (4)
H9	1.1619	0.0401	0.9810	0.036*
C10	1.1498 (3)	0.17008 (19)	1.13923 (19)	0.0333 (4)
H10	1.0959	0.1170	1.1652	0.040*
C11	1.1919 (3)	0.2928 (2)	1.20832 (18)	0.0370 (5)
C12	1.2710 (4)	0.3723 (2)	1.1741 (2)	0.0527(7)
H12	1.3007	0.4570	1.2252	0.063*
C13	1 3067 (4)	0 3264 (2)	1.0637(2)	0.0438(5)
H13	1 3604	0 3800	1 0383	0.053*
C14	0.7364(3)	0.34282(17)	0.28320(18)	0.0297(4)
C15	0.7361(3) 0.7465(3)	0.31202(17) 0.28953(17)	0.15403(18)	0.0297(1) 0.0312(4)
C16	0.7766 (3)	0.2857(2)	-0.0153(2)	0.0312(1)
C17	0.7700(5)	0.2037(2)	-0.1049(3)	0.0505(3)
H17A	0.7148	0.3338 (3)	-0.1349	0.0595 (7)
H17A	0.7148	0.3741	-0.1763	0.089
	0.0150	0.2004	0.1703	0.089*
П1/С С19	0.9133	0.3920	-0.0028	0.089
	0.0015(3)	0.34431 (18)	0.4921 (2)	0.0330 (4)
HIðA	0.6208	0.4311	0.5065	0.049*
HI8B	0.5885	0.3358	0.5666	0.049*
HI8C	0.49/9	0.3029	0.4192	0.049*
C19	0.9184 (3)	0.37382 (17)	0.56034 (19)	0.0319 (4)
HI9A	1.0168	0.3375	0.5464	0.048*
H19B	0.9234	0.3889	0.6464	0.048*
H19C	0.9198	0.4512	0.5480	0.048*
C20	0.4769 (2)	0.06994 (17)	0.29878 (17)	0.0276 (4)
H20A	0.3837	0.0935	0.3300	0.041*
H20B	0.4396	-0.0107	0.2302	0.041*
H20C	0.5098	0.1300	0.2677	0.041*
O1W	0.6377 (4)	0.63744 (18)	0.2332 (2)	0.0697 (7)
H1WA	0.6255	0.6900	0.2977	0.105*

supporting information

H1WB	0.6630	0.57	741	0.2478	0.105*	
Atomic di.	Atomic displacement parameters (\hat{A}^2)					
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
F1	0.0781 (11)	0.0643 (10)	0.0310 (7)	0.0282 (8)	0.0259 (7)	0.0103 (7)
01	0.0611 (10)	0.0302 (7)	0.0326 (7)	0.0038 (7)	0.0138 (7)	0.0148 (6)
O2	0.0591 (10)	0.0230 (7)	0.0362 (8)	0.0116 (6)	0.0114 (7)	0.0141 (6)
03	0.0303 (7)	0.0291 (7)	0.0434 (8)	0.0000 (5)	0.0075 (6)	0.0146 (6)
04	0.0379 (7)	0.0250 (6)	0.0390 (8)	0.0094 (5)	0.0142 (6)	0.0177 (6)
05	0.0391 (7)	0.0331 (7)	0.0319 (7)	0.0168 (6)	0.0152 (6)	0.0199 (6)
N1	0.0373 (8)	0.0221 (7)	0.0258 (7)	0.0095 (6)	0.0117 (6)	0.0117 (6)
N2	0.0222 (6)	0.0234 (7)	0.0214 (6)	0.0066 (5)	0.0083 (5)	0.0087 (5)
N3	0.0263 (7)	0.0235 (7)	0.0208 (6)	0.0081 (5)	0.0089 (5)	0.0099 (5)
N4	0.0308 (8)	0.0335 (8)	0.0224 (7)	0.0104 (6)	0.0076 (6)	0.0139 (6)
N5	0.0431 (10)	0.0295 (8)	0.0276 (8)	0.0060 (7)	0.0050(7)	0.0127 (6)
N6	0.0521 (11)	0.0388 (10)	0.0306 (9)	0.0076 (8)	0.0060 (8)	0.0128 (7)
C1	0.0277 (8)	0.0210 (7)	0.0231 (7)	0.0080 (6)	0.0076 (6)	0.0096 (6)
C2	0.0237 (7)	0.0206 (7)	0.0209 (7)	0.0070 (6)	0.0100 (6)	0.0078 (6)
C3	0.0261 (8)	0.0239 (8)	0.0275 (8)	0.0064 (6)	0.0133 (7)	0.0105 (6)
C4	0.0284 (8)	0.0235 (8)	0.0264 (8)	0.0099 (6)	0.0154 (7)	0.0123 (6)
C5	0.0267 (8)	0.0247 (8)	0.0201 (7)	0.0104 (6)	0.0115 (6)	0.0109 (6)
C6	0.0308 (8)	0.0305 (8)	0.0210 (7)	0.0140 (7)	0.0146 (7)	0.0133 (6)
C7	0.0287 (9)	0.0455 (11)	0.0261 (8)	0.0126 (8)	0.0067 (7)	0.0166 (8)
C8	0.0263 (8)	0.0295 (9)	0.0225 (8)	0.0076 (7)	0.0030 (6)	0.0109 (7)
C9	0.0356 (9)	0.0258 (8)	0.0255 (8)	0.0037 (7)	0.0072 (7)	0.0078 (7)
C10	0.0339 (10)	0.0377 (10)	0.0282 (9)	0.0043 (8)	0.0091 (8)	0.0139 (8)
C11	0.0439 (11)	0.0408 (11)	0.0233 (8)	0.0162 (9)	0.0095 (8)	0.0095 (8)
C12	0.086 (2)	0.0259 (10)	0.0368 (12)	0.0083 (11)	0.0186 (12)	0.0033 (9)
C13	0.0619 (15)	0.0297 (10)	0.0376 (11)	-0.0005 (10)	0.0146 (10)	0.0137 (9)
C14	0.0366 (9)	0.0243 (8)	0.0270 (8)	0.0046 (7)	0.0059 (7)	0.0129 (7)
C15	0.0365 (10)	0.0267 (9)	0.0292 (9)	0.0036 (7)	0.0054 (7)	0.0146 (7)
C16	0.0408 (11)	0.0407 (11)	0.0289 (9)	0.0022 (9)	0.0056 (8)	0.0126 (8)
C17	0.080 (2)	0.0575 (16)	0.0426 (13)	0.0024 (14)	0.0169 (13)	0.0253 (12)
C18	0.0334 (9)	0.0293 (9)	0.0374 (10)	0.0141 (7)	0.0147 (8)	0.0109 (8)
C19	0.0322 (9)	0.0241 (8)	0.0343 (9)	0.0027 (7)	0.0041 (8)	0.0118 (7)
C20	0.0241 (8)	0.0307 (9)	0.0265 (8)	0.0061 (7)	0.0060 (7)	0.0113 (7)
O1W	0.121 (2)	0.0388 (10)	0.0519 (11)	0.0309 (12)	0.0242 (13)	0.0241 (9)

Geometric parameters (Å, °)

F1-C11	1.364 (2)	С7—Н7В	0.9900	
O1-C15	1.355 (2)	C7—C8	1.505 (3)	
O1—C16	1.371 (3)	C8—C9	1.384 (3)	
O2—C14	1.217 (2)	C8—C13	1.389 (3)	
O3—C3	1.229 (2)	С9—Н9	0.9500	
O4—H4	0.8400	C9—C10	1.389 (3)	
O4—C4	1.339 (2)	C10—H10	0.9500	

O5—C6	1.253 (2)	C10—C11	1.366 (3)
N1—H1	0.8800	C11—C12	1.376 (4)
N1—C1	1.477 (2)	C12—H12	0.9500
N1-C14	1.345 (2)	C12—C13	1.388 (4)
N2—C2	1 383 (2)	C13—H13	0.9500
N2-C3	1 394 (2)	C14-C15	1 500 (3)
N2-C20	1 478 (2)	C16-C17	1 476 (4)
N3—C2	1 296 (2)	C17—H17A	0.9800
N3-C5	1 375 (2)	C17—H17B	0.9800
N4—H4A	0.8800	C17 - H17C	0.9800
N4—C6	1 323 (3)	C18 - H18A	0.9800
N4—C7	1 469 (2)	C18—H18B	0.9800
N5N6	1,409 (2)		0.9800
N5-C15	1.429 (3)	C19—H19A	0.9800
N6-C16	1 201 (3)	C19H19B	0.9800
C1 $C2$	1.291(3) 1.538(2)		0.9800
$C_1 = C_2$	1.558(2) 1.542(3)	C20 H20A	0.9800
C1 = C10	1.542(3) 1.520(3)	C20 H20R	0.9800
$C_1 = C_1$	1.329(3) 1.454(2)	C_{20} H_{20C}	0.9800
$C_3 = C_4$	1.454(2) 1.257(2)		0.9800
C_{+}	1.337(3) 1.487(2)		0.8504
$C_{2} = C_{0}$	0.0000		0.8304
С/—П/А	0.9900		
C15—O1—C16	102.68 (16)	С9—С10—Н10	121.1
C4—O4—H4	109.5	C11—C10—C9	117.9 (2)
C1—N1—H1	117.4	C11—C10—H10	121.1
C14—N1—H1	117.4	F1—C11—C10	118.0 (2)
C14—N1—C1	125.12 (15)	F1-C11-C12	119.3 (2)
C2-N2-C3	121.45 (14)	C10—C11—C12	122.7(2)
$C_2 - N_2 - C_2 0$	124.45 (14)	C11—C12—H12	120.6
C_{3} N2 C_{20}	114.08 (14)	$C_{11} - C_{12} - C_{13}$	118.7(2)
C2—N3—C5	119.27 (15)	C13—C12—H12	120.6
C6—N4—H4A	118.4	C8-C13-H13	119.9
C6—N4—C7	123 12 (16)	C12-C13-C8	120.2(2)
C7—N4—H4A	118.4	C12—C13—H13	119.9
C15 - N5 - N6	106.18 (17)	02-C14-N1	126.78 (19)
C16 - N6 - N5	105 55 (18)	02-C14-C15	121 48 (17)
N1-C1-C2	106.42(13)	N1-C14-C15	111 74 (16)
N1-C1-C18	113 17 (14)	01-C15-C14	119 28 (17)
N1-C1-C19	108.21 (15)	N5-C15-O1	113.46 (18)
C_{2} C_{1} C_{18}	110.32(15)	N5-C15-C14	127 26 (17)
C19 - C1 - C2	110.05(14)	01 - C16 - C17	127.20(17) 1196(2)
C19 - C1 - C18	108.63 (15)	N6-C16-O1	112.0(2)
$N_{2} - C_{2} - C_{1}$	120.93 (14)	N6-C16-C17	128 3 (2)
N3_C2_N2	120.00 (14)	$C_{16} - C_{17} - H_{17}$	109 5
N3-C2-C1	116 75 (15)	C16—C17—H17B	109.5
$03-03-N^2$	122 18 (16)	C16—C17—H17C	109.5
03-03-04	122.10 (10)	H17A C17 H17B	109.5
03-03-04	122.30 (10)	111 / A - U / - 111 / D	107.5

N2—C3—C4	115.25 (15)	H17A—C17—H17C	109.5
O4—C4—C3	114.82 (16)	H17B—C17—H17C	109.5
O4—C4—C5	126.23 (16)	C1—C18—H18A	109.5
C5—C4—C3	118.95 (15)	C1C18H18B	109.5
N3—C5—C6	117.28 (15)	C1—C18—H18C	109.5
C4—C5—N3	122.65 (15)	H18A—C18—H18B	109.5
C4—C5—C6	120.04 (15)	H18A—C18—H18C	109.5
O5—C6—N4	123.62 (16)	H18B—C18—H18C	109.5
O5—C6—C5	119.27 (17)	C1—C19—H19A	109.5
N4—C6—C5	117.11 (15)	C1—C19—H19B	109.5
N4—C7—H7A	109.3	C1—C19—H19C	109.5
N4—C7—H7B	109.3	H19A—C19—H19B	109.5
N4—C7—C8	111.60 (16)	H19A—C19—H19C	109.5
H7A—C7—H7B	108.0	H19B—C19—H19C	109.5
С8—С7—Н7А	109.3	N2—C20—H20A	109.5
С8—С7—Н7В	109.3	N2—C20—H20B	109.5
C9—C8—C7	120.34 (17)	N2—C20—H20C	109.5
C9—C8—C13	119.05 (19)	H20A—C20—H20B	109.5
C13—C8—C7	120.60 (19)	H20A—C20—H20C	109.5
C8—C9—H9	119.3	H20B—C20—H20C	109.5
C8—C9—C10	121.39 (18)	H1WA—O1W—H1WB	109.4
C10—C9—H9	119.3		
	11,10		
F1—C11—C12—C13	-179.7(2)	C4—C5—C6—N4	178.97 (16)
O2—C14—C15—O1	19.2 (3)	C5—N3—C2—N2	0.9 (2)
O2-C14-C15-N5	-160.2(2)	C5—N3—C2—C1	-178.19 (14)
O3—C3—C4—O4	2.5 (3)	C6—N4—C7—C8	-94.3 (2)
O3—C3—C4—C5	-176.74 (17)	C7—N4—C6—O5	-3.5 (3)
O4—C4—C5—N3	178.19 (16)	C7—N4—C6—C5	177.18 (16)
O4—C4—C5—C6	0.3 (3)	C7—C8—C9—C10	-177.60 (18)
N1—C1—C2—N2	-57.7 (2)	C7—C8—C13—C12	178.4 (2)
N1—C1—C2—N3	121.37 (16)	C8—C9—C10—C11	-1.1 (3)
N1-C14-C15-O1	-161.84 (18)	C9—C8—C13—C12	-0.9(4)
N1-C14-C15-N5	18.8 (3)	C9-C10-C11-F1	-179.51 (18)
N2-C3-C4-O4	-176.77(15)	C9-C10-C11-C12	-0.4(3)
N2-C3-C4-C5	4.0 (2)	C10-C11-C12-C13	1.2 (4)
N3-C5-C6-O5	-178.36(15)	C11—C12—C13—C8	-0.5(4)
N3-C5-C6-N4	1.0(2)	C13 - C8 - C9 - C10	1.8 (3)
N4-C7-C8-C9	85.1 (2)	C14 - N1 - C1 - C2	172.40 (17)
N4-C7-C8-C13	-94.3(2)	C14 - N1 - C1 - C18	51.1 (2)
N5-N6-C16-O1	0.5 (3)	C14 - N1 - C1 - C19	-69.4(2)
N5-N6-C16-C17	179 3 (3)	$C_{15} - C_{16} - C_{16} - N_{6}$	-0.3(3)
N6-N5-C15-O1	0.2 (2)	$C_{15} = 01 = C_{16} = C_{17}$	-179.2(2)
N6-N5-C15-C14	179.65 (19)	C15 - N5 - N6 - C16	-0.4(2)
C1 - N1 - C14 - O2	-2.9(3)	C16-01-C15-N5	0.1(2)
C1 - N1 - C14 - C15	178 28 (17)	$C_{16} = 01 = C_{15} = C_{14}$	-179 43 (18)
$C_2 = N_2 = C_3 = O_3$	177.59 (16)	C18 - C1 - C2 - N2	65.4 (2)
$C_2 = N_2 = C_3 = C_4$	-31(2)	C18 - C1 - C2 - N3	-11550(17)
02 112 03 07 07	5.1 (2)	010 01 02 103	110.00(17)

supporting information

C2—N3—C5—C4	0.1 (2)	C19—C1—C2—N2	-174.73 (15)
C2—N3—C5—C6	178.05 (15)	C19—C1—C2—N3	4.3 (2)
C3—N2—C2—N3	0.8 (2)	C20—N2—C2—N3	178.83 (16)
C3—N2—C2—C1	179.79 (15)	C20—N2—C2—C1	-2.2 (2)
C3—C4—C5—N3	-2.7 (3)	C20—N2—C3—O3	-0.6 (2)
C3—C4—C5—C6	179.50 (15)	C20—N2—C3—C4	178.63 (15)
C4—C5—C6—O5	-0.4(2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O4—H4…O5	0.84	1.88	2.593 (2)	143
O1 <i>W</i> —H1 <i>WB</i> ···O2	0.85	2.04	2.869 (2)	164
C20—H20C…N1	0.98	2.25	2.982 (3)	130
N1—H1···O5 ⁱ	0.88	2.23	2.970 (2)	142
N4—H4 A ···O1 W ⁱⁱ	0.88	2.48	3.074 (3)	126
$C7$ — $H7A$ ···O1 W^{ii}	0.99	2.58	3.240 (3)	124
C10—H10…O5 ⁱⁱⁱ	0.95	2.50	3.393 (3)	158
C20—H20 A ···O4 ^{iv}	0.98	2.46	3.394 (2)	160
C20—H20 <i>B</i> ···N6 ^v	0.98	2.50	3.422 (3)	158
O1 <i>W</i> —H1 <i>WA</i> ···O4 ^{vi}	0.85	2.51	3.249 (3)	146
O1W—H1 WA ···O3 ^{vi}	0.85	2.33	3.013 (3)	138

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+2; (iv) -x+1, -y, -z+1; (v) -x+1, -y, -z; (vi) x, y+1, z.