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ABSTRACT: 

 

Saltmarsh is one of the important communities of wetlands. Due to a range of pressures, it has been declared as an EEC (Ecological 

Endangered Community) in Australia. In order to correctly identify different saltmarsh species, development of distinct spectral 

characteristics is essential to monitor this EEC. This research was conducted to classify saltmarsh species based on spectral 

characteristics in the VNIR wavelength of Hyperion Hyperspectral and Worldview 2 multispectral remote sensing data. Signal Noise 

Ratio (SNR) and Principal Component Analysis (PCA) were applied in Hyperion data to test data quality and to reduce data 

dimensionality respectively. FLAASH atmospheric correction was done to get surface reflectance data. Based on spectral and spatial 

information a supervised classification followed by Mapping Accuracy (%) was used to assess the classification result. SNR of 

Hyperion data was varied according to season and wavelength and it was higher for all land cover in VNIR wavelength. There was a 

significant difference between radiance and reflectance spectra. It was found that atmospheric correction improves the spectral 

information. Based on the PCA of 56 VNIR band of Hyperion, it was possible to segregate 16 bands that contain 99.83 % 

variability. Based on reference 16 bands were compared with 8 bands of Worldview 2 for classification accuracy. Overall Accuracy 

(OA) % for Worldview 2 was increased from 72 to 79 while for Hyperion, it was increased from 70.47 to 71.66 when bands were 

added orderly. Considering the significance test with z values and kappa statistics at 95% confidence level, Worldview 2 

classification accuracy was higher than Hyperion data. 

 

 

*  Corresponding author 

 

1. INTRODUCTION 

Wetland ecosystem and their constituent components and 

processes are a considerable scientific interest due to their 

ecological function and services. Saltmarsh is an intertidal plant 

community dominated by herbs and low shrubs (Adam, 1996). 

Although Saintilan (2009) treated them not as exclusively 

intertidal, he defined a special characteristics that apart them 

from Mangrove.  It has been recorded that over 40 species of 

fish are inhabiting in tidal saltmarsh in SE Australia alone 

(Daly, 2013). In addition, this ecosystems have relatively high 

rates of sediment carbon burial. According to Chmura (2003), 

globally at least 430 Tg of carbon is stored in the upper 50 cm 

of tidal saltmarsh soils. But this ecosystems over the world 

experience pressures from both human activities and natural 

processes that can reduce the ecosystem’s ability or capacity to 

recover (Goudkamp, 2006). Saintilan (2014) proved sufficient 

evidence that mangrove species have proliferated at least five 

continents over the past 50 years, at the expense of saltmarshes. 

Considering the current threats and pressure, this community is 

treated as ‘Ecological Endangered Community’ (EEC) in 

Australia (Daly, 2003). For this reasons, monitoring and 

dynamic change analysis of saltmarsh is a pressing issue and 

scientists are much more dependent on high quality remote 

sensing data for mapping and monitoring of wetland and their 

proactive management. Advanced remote sensing technology 

like hyperspectral data, with an ability to monitor more detailed 

changes in vegetation and species composition (Zomer, 2009) 

will expand opportunities for saltmarsh monitoring and 

mapping. High spatial and spectral resolution remote sensing 

data with more advanced geospatial technology allows to map 

many changes in vegetation cover using species signature 

analysis. Some authors used airborne hyperspectral data, 

particularly, Compact Airborne Spectral Imager (CASI) imagery 

for mapping and monitoring salt marshes (e.g. Belluco et al. 

2006; Hunter and Power 2002; Thomson et al. 2003), still the 

data acquisition is a time-consuming and expensive activity for 

airborne hyperspectral data (Hunter and Power 2002). In this 

respect, narrow band (198 calibrated bands) but coarse spatial 

resolution EO-1 Hyperion data might be an alternative. But it 

has a low signal to noise ratio in comparison to airborne 

hyperspectral sensors. The result of signal in this spacecraft lost 

to atmospheric absorption and the reduced energy available 

from surface reflectance at orbital altitude. Moreover, detector 

arrays used in this sensor were “spares” originally designed for 

another purpose, which further decreases the signal to noise 

ratio (Jupp & Datt, 2004). On the other hand, High Resolution 

Satellite Imagery (HRSI) data products are routinely evaluated 

during the so-called in-orbit test period, in order to verify if 

their quality (SNR and other radiometric properties) fits the 

desired features. High resolution satellite data and its recent 

advancement has significantly improved the coastal and 

saltmarsh vegetation mapping. Due to the sub-meter spatial 

resolution and the advantage of satellite platform for repeated 

data acquisition with minimal coast, Space Imagines’ IKONOS 

and Digital Globe’s Quickbird-2 has facilitated the routine 

change detection monitoring of both salt-marsh and terrestrial 

vegetation. For example, with high-spatial resolution 
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QuickBird-2 satellite remote-sensing data Wang (2007)  

mapped both terrestrial and submerged aquatic vegetation 

communities of the National Seashore Suffolk County, New 

York, and achieved approximately 82% overall classification 

accuracy for terrestrial  and 75% overall classification accuracy 

for submerged aquatic vegetation  and provided an updated 

vegetation inventory and change analysis results. In another 

study, Ouyang (2011) used Quickbird imagery to efficiently 

discriminate salt-marsh monospecific vegetation stands using 

object-based image analysis (OBIA) classification methods in 

terms of accuracy than pixel-based classification method.  

Considering the prospect of HRSI, no mentionable research has 

been done using Worlview-2 for saltmarsh classification 

although it has finer spatial and spectral resolution compare to 

Quickbird. Moreover we added high spectral resolution 

Hyperion data to test the efficiency of spectral and spatial 

resolution. As the Signal-Noise-Ratio (SNR) is one of the 

important properties of Hyperion data, we considered this 

property to test the quality of the data before selecting the 

spectral wavelength for comparison. It was also considered the 

information redundancy of Hyperion data. Within 242 original 

bands, the information content of the one band can be fully or 

partially predicted from the other band in the data (Krishna,  

2008). This redundancy exist due to the high correlation 

between bands, specially between adjacent bands ( Jiang, 2004). 

Hence specific algorithms like Principal Component Analysis 

(PCA), Minimum Noise Fraction (MNF) are generally used to 

remove redundant dimensions and to select optimum bands 

number for further analysis. 

The current study explores how spectral resolution (Very Near 

Infrared part) and spatial resolutions of satellite images affect 

salt-marsh vegetation classification. For saltmarsh monitoring 

and management, it is essential to have a knowledge of the 

spatial distribution of salt-marsh vegetation types. This study 

focuses on the potentiality of high-spatial and high-spectral 

resolution satellite data for reliably salt-marsh vegetation 

species classification with the help of extensive ground truth 

data. The objectives were (1) to segregate effective number of 

bands from Hyperion data (2) to identify the efficiency of 

Visible to VNIR wavelength for saltmarsh classification from 

two sensors and (2) to assess the efficiency of high spatial 

resolution in context of coarse spectral resolution of the classes 

of interest. Although this study has ignored Short-Wave 

Infrared (SWIR) part from Hyperion, the results can then be 

used as a baseline information for further saltmarsh related 

monitoring program where spatial resolution is a fact due to 

small patch of species distribution. 

 

2. STUDY AREA AND DATA SETS 

2.1 Study area 

The study area is located (Longitude 151°43'40.6" E to  

151°46'19.4" E and latitude 32°47'21.9" S to  32°51'29.4" S ) in 

Tomago, Newcastle, Australia which occurs approximately 8 

km south of Raymond Terrace and 10 km north of Newcastle 

(NSW) (Figure 1). The study area includes the Hunter National 

Wetland Park and surrounding area. The topography is 

generally level, low lying and subject to periodical flooding. A 

series of drainage channels and levee banks dissect the study 

area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Location of the study area 

 

2.2 Remote sensing and other ancillary data 

Satellite imagery from two sensors were used for this research. 

High-spectral resolution EO-1 Hyperion data and high-spatial 

resolution data from Worldview 2 and were used to compare the 

sensor capabilities in discriminating salt-marsh vegetation. 

Worldview 2 images have 0.46 m pixel resolution in the 

panchromatic mode and 1.84 m resolution in the multispectral 

mode. The multispectral mode consists of eight broad bands in 

the coastal blue (400-450 nm), blue (450–510 nm), Yellow 

(585- 625 nm), red (630-690 nm), red edge (705 – 745), NIR1 

(770-895) and NIR2 (860-1040) parts of the electro-magnetic 

spectrum.  EO-1Hyperion images have 242 narrow bands and a 

pixel resolution of 30 m. The Wordview-2 satellite data were 

captured on 5th May 2015, and the EO-1 Hyperion satellite data 

were captured on 6th June, 2015. 

 

2.3 Field data 

For ground truth, an extensive fieldwork was conducted in the 

study area on 10th to 12th June 2015. Stratified sampling design 

was followed based on three strata (tree, saltmarsh and 

waterbody). Although homogeneity was a crucial issue for 

sampling size, however each of the sample sites were at least 30 

m × 30 m so that the data collected could be used for the 

Hyperion as well as the Worldview 2 image training and 

classification. Sampling data included vegetation species class, 

percentage occurrence of each species within the selected plot 

and their global positioning system (GPS) locations. Total 256 

sampling points and related information were recorded and 

divided into two parts for training and validation. 50% samples 

were used to train data and rest 50% were used to validate the 

training result. Both images were rectified using local council ( 

https://maps.six.nsw.gov.au/) ground control points (GCPs) to 

WGS 84 UTM Zone 56 S projection system. The image-

processing task was carried out in ENVI Classic, ERDAS 

IMAGINE 2015 and ArcGIS 10.2. 

 

2.4 Land cover and species description 

 The study area is dominated by saltmarsh species Sporobolus 

virginicus, Phragmiits australis, and Ficiona nodosa. Forested 

wetland is dominated by Pine tree (Casuarina sp) and 

Mangrove tree (Avecinia sp). 
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3. DATA PROCESSING 

Processing Flow 

 

 
              Figure 2: Processing flow of both images. 

3.1 Processing of Worldview 2 data 

The radiometrically corrected Worldview 2 products are used 

where the pixel values are calculated as a function of the 

amount of spectral radiance that enters the telescope aperture 

and the instrument conversion of that radiation into a digital 

signal (Digital Globe , 2009). So it is very important to convert 

digital number into radiance (Figure 2) and then reflectance if 

we want to compare Worldview 2 data with other sensors that is 

related with spectral information. 

 

3.1.1 Conversion of DN to radiance 

 

The raw digital number (DN) has been converted to radiance 

data by applying the ENVI Worldview 2 calibration utility, 

available in ENVI v4.6 and greater. It uses the factors from the 

Worldview 2 metadata and applies the appropriate gains and 

offsets in order to convert those values to apparent radiance. 

 

3.1.2 Atmospheric correction and surface reflectance 

 

It is imperative that multispectral data be converted into 

reflectance prior to performing any spectral analysis. Currently 

we have top atmospheric radiance data and have to be 

transformed into surface reflectance data. We used FLAASH 

atmospheric module in ENVI classic to remove atmospheric 

haze and to get surface reflectance data. FLAASH Module 

multiply the reflectance data by 10000 to convert the heavy 

float type data (with decimals) into integers for fast calculations 

and lower data size. So, the output reflectance may exceeds 

10000 (also it include negative values related to shady areas 

within the image where FLAASH cannot calculate the sun 

irradiance at it.  Here we used a logical equations (Elsaid, 2014) 

to limit the reflectance data between 0 and 1 which is more 

reliable and comparable with most spectral libraries data range. 

Because surface reflectance is equal to Surface radiance divided 

by Sun irradiance. So, surface reflectance is always less than 1. 

 

3.2 Processing of EO-1 Hyperion data 

With a single scene of Hyperion observation for classification 

with training data, it is not necessary to use atmospherically 

correct image data (Datt B, 2003). Because it tends to amplify 

noise levels and reduces the Signal Noise Ratio (SNR). 

Considering our scene of wetland ecosystem we did 

atmospheric correction (Figure 2) but calculated SNR well 

ahead with radiance data to assess data quality. 

 

3.2.1 Elimination of bad bands based reference and 

other information 

 

Among the 242 bands of L1_R Hyperion data, it has been found 

that some bands are set zero during level-1 processing. They are 

bands from 1 to 7, bands from 58 to 76 and bands from 225 to 

242. The remaining 198 calibrated bands (Beck, 2003) have 

been used for SNR calculation.  Bands 77 and 78 were removed  

due to low SNR ( Datt B, 2003). Water absorption bands 120 – 

122, 126 -132, 165-182, 185- 187 and 221 – 224 also removed 

(Beck, 2003) but bands 123-125 have been retained in the 

image because some atmospheric correction programs like 

ENVI FLAASH require bands centres near 1380 nm in the 

strong water vapour wavelength for masking clouds. Thus 158 

remaining calibrated bands used for radiometric calibration for 

radiance data followed by atmospheric correction. 

 

3.2.2 SNR Calculation of EO-1 Hyperion data 

 

EO-1 Hyperion was designed for a one-year life as test basis. 

But the instrument has continued to function well beyond two 

years with no degradation (Pearlman, 2003). It has already more 

than 10 years has passed and still a lot of research are in 

progress with this sensors. So in our work we tested SNR of 

158 selected bands. After that 158 bands were  radiometrically  

corrected in ENVI based on metadata information to get 

radiance data. These radiance data were used for SNR 

calculation. There are many analytical approach (Atkinson, 

2007) to calculate SNR. The simplest way is the mean over 

standard    deviation method by which the SNR is expressed as 

the ration of the mean signal over the standard deviation of a 

target interest. Standard approach use a 50% albedo target, 

however user defined targets based on interest can be selected 

to calculate SNR. Here SNR was calculated based on different 

season and different year of acquisition to find a relation with 

Hyperion proposed SNR. 

 

3.2.3 Atmospheric correction 

 

The Hyperion data has been acquired in June 2015 when there 

is a spectral variation in trees and shrubs was expected. 

FLAASH is an atmospheric correction tool that corrects 

wavelengths in the visible though near-infrared and shortwave 

infrared regions, upto 3 µm (Somdatta, 2010). The DN values 

of Hyperion L1_R data are scaled at-sensor radiance and stored 

as 16 bit signed integer that need a radiometric calibration to get 

the absolute radiance. Then FLAASH atmospheric correction 

module has been selected to convert absolute radiance values in 

the image to its reflectance values (ENVI  User Guide).  

 

3.2.4 Principal Component Analysis (PCA) 

 

A spectral subset 56 bands has been selected (table 1) from 158 

bands based on VNIR to SWIR wavelength (436.99 to 1043.59 

nm) to match wavelength with HRSI Worldview 2 data. 

Hyperion is a narrow band hyperspectral data and contains 

redundancy of information within a narrow interval of 

wavelength. Principal Component Analysis (PCA) was done to 

produce uncorrelated bands, segregate noise components and to 

reduce data dimensionality of 56 bands (Table 1).  

 

Worldview 2 EO-1 Hyperion 
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Bands Lower 

edges 

(nm) 

Upper 

edges 

(nm) 

Bands Wavelength 

(nm) range  

Coastal 400 450 B9-10 436.99 – 447.17 

Blue 450 510 B11-

16 

457.34 – 508.22 

Green 510 580 B17-

23 

518.39 – 579.45 

Yellow 585 625 B24-

B27 

589.62 – 620.15 

Red 630 690 B28-

B34 

630.32 – 691.37 

RedEdg 705 745 B35-

B41 

701.55 – 762.60 

NIR1 770 895 B42- 

B53 

772.78-884.70 

NIR2 860 1040 B64-

B90 

996.63-1043.59 

8 Bands   56 

Bands 

 

Table 1. Band selection from both sensor. 

 

3.3 Classification algorithm and accuracy 

For supervised classification, the standard statistics “Maximum 

Likelihood Classifier” (MLC) algorithm was used. Overall 

Accuracy (OA), Producer Accuracy (PA) and User Accuracy 

(UA) were calculated based on confusion matrix. For the 

accuracy of different vegetation classes Mapping Accuracy 

percentage (MA %) was calculated based on the following 

equation (Congalaton & Green, 2008), 

 

     MA (%) = (Pixels Correctly Classified)/ (Pixels Correctly classified+ 

Pixels Omissions + Pixels Commissions) * 100                          (1). 

 

   where   

          Pixels omissions is the number of pixels assigned to other   

classes along the row of the confusion matrix relevant to the 

class considered.  

        Pixels commissions is the number of pixels assigned to 

other classes along the column of the confusion matrix relevant 

to the class considered. 

  

4. RESULTS  

4.1 Worldview 2 data analysis and classification 

4.1.1 Analysis of radiance and reflectance spectra 

 

At first radiance spectrum of different vegetation and land cover 

classes were visually observed to check their similarity and 

difference with the surface reflectance spectra. The radiance 

spectra (figure 3a) shows high values within the blue and green 

part of visible wavelength due to aerosol scattering. But after 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.  Radiance (a) and Surface reflectance (b) of healthy 

vegetation from healthy forest spectra. 

 

FLASSH, the surface reflectance spectra (figure 3b) is corrected 

and blue and green values are much lower and the chlorophyll 

peak in the green wavelength is visible. Now this spectra is 

comparable with the corrected reflectance spectra of Hyperion 

data. 

 

4.1.2 Classification 

 

Arrangement of 

bands for 

classification 

OA_Trai

ning % 

Kappa 

statistics 

OA_V

alidati

on % 

Kappa 

statistics 

     

RGB and NIR1 97.61 0.969 72.57 0.66 

RGB, NIR 1 and 

Coastal 

97.58 0.964 72.57 0.66 

RGB, NIR1 and 

Yellow 

RGB, NIR1 and 

Red Edge  

98.14 

 

98.19 

0.973 

 

0.973 

76.38 

 

78.59 

0.70 

 

0.71 

 

RGB, NIR 1 and 

NIR2 

98.19 0.972 77.66 

 

0.70 

8 Band together 99.07 0.984 79.67 0.71 

     

         Table 2. Supervised classification of WORLDVIEW 2 

 

It is clear from the training and validation dataset, with an 

increase in the number of the bands, the overall accuracy also 

increased except coastal band. This might be due to the absence 

of sea water in the study area. Over all accuracy for test site 

increased up to 7% with the combined 8 bands of 

WORLDVIEW 2 data.  

 

 

 

a 

b 
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Band Foreste

d 

Wetland

s 

Phragm

itis 

Sporob

olus 

Other 

marshe

s 

Water 

      

RGB and 

NIR1 

81.23 68.43 74.68 66.57 78.86 

RGB, NIR 1 

and Coastal 

81.23 68.43 74.68 66.57 78.86 

RGB, NIR1 

and Yellow 

RGB, NIR1 

and Red 

Edge  

81.46 

 

88.19 

70.59 

 

72.79 

77.02 

 

78.25 

72.38 

 

70.59 

78.92 

 

81.54 

RGB, NIR 1 

and NIR2 

88.55 73.45 77.58 71.66 

 

84.09 

8 Band 

together 

89.12 78.74 81.78 72.67 88.56 

      

      Table 3: Mapping Accuracy (%) of WORLDVIEW 2 data 

for the validation classes in saltmarsh area 

 

4.2 EO-1 Hyperion data analysis and classification 

 

4.2.1 Signal Noise Ratio Calculation (SNR) 

 

SNR varies from 0 to 110 based on the season and acquisition 

time. SNR is highest in VNIR region for both dataset and 

ranges 0 to 40 with maximum of 110 at 500 nm. Figure 4 and 

figure 5 shows the estimated SNR for study area in two different 

season. 

 

 Figure 4. SNR of EO-1 Hyperion data (summer season) 

 

Figure 5. SNR of EO-1 Hyperion data (winter season) 

 

The estimated SNR for both season are in good agreement with 

the predicted SNR for EO-1 Hyperion (Pearlman, 2003). The 

SNR was one of the parameter that need to be estimated to 

establish the quality of images acquired by the sensors. 

 

4.2.2 Principal Component Analysis 

 

PCA was applied on the atmospheric corrected and spectral 

subset of 56 bands. Depending on the amount of information 

and lack of gain of variance in the increasing PCs, the initial 

intrinsic dimensionality is reduced to 16 components (figure 6).  

 
 

Figure 6. Percentage depiction of gain in variance with increase 

in PCs 

4.2.3 Selection of Band for classification 

 

Based on the reference, total 16 bands (table 4) were selected 

for further classification. 

 

World

view 2 

EO-1 Hyperion 

Bands Region 

of 

Spectru

m 

Sele

cted 

Ban

ds 

Wavelengt

h (nm) 

range  

Importance as 

per 

(Thenkabail, 

2004a, 2004b) 

Coasta

l 

Visible B9 436.99 Blue 

absorption 

peak, 

chlorophyll-a 

Blue 510 B20 

B23 

548.92 

579.45 

Absorption 

pre-maxima, 

soil 

background 
Green 580 B25 599.80 

Yello

w 

625 B26 

B27 

609.97 

620.15 

Red 690 B29 

B33 

640.50 

681.20 

Absorption 

maxima, 

maximum 

chlorophyll 

absorption 

RedEd

ge 

745 B35 

B39 

B41 

701.22 

742.25 

762.60 

Sensitive to 

vegetative 

stress  

NIR1 895 B42 

B57 

772.78 

884.70 

Correlation 

with Biomass 

NIR2 1040 B79 

B82 

B86 

996.63 

1013.30 

1033.50 

Sensitive to 

moisture plant 

moisture 

Very small gain 

of information 
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stress  

8 Bands 16 Bands 

             Table 4. List of 16 selected bands for classification. 

 

4.2.4 Analysis of Surface Reflectance Spectra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Radiance (a) and surface reflectance (b) spectra for 

healthy forest. 

 

Radiance spectra of Hyperion data includes radiation reflected 

from the surface and affected by the source of radiation that is 

sun for optical imagery. From figure 6 (a), the radiation spectra 

trend toward higher values at about 500 nm, because the 

spectrum of the sun peaks at about 500 nm and looks like the 

overall shape of the solar spectrum. That is why for any 

quantative analysis of multispectral or hyperspectral image data, 

radiance image are corrected to reflectance images. From 

surface reflectance spectra (figure 6b), the spectra changed and 

red-edge part has smoothen sharply that is most important for 

vegetation spectral properties analysis. 

 

 

4.2.5  Classification  

 

 

Bands 

combination 

OA_Traini

ng % 

Kappa 

statistics 

OA_Vali

dation % 

Kappa 

statisti

cs 

     

RGB and 

NIR1 (8band) 

98.42 0.978 70.47 0.64 

8 band and 

Coastal (10 

Band) 

98.42 0.978 70.43 0.64 

10 Band and 

Yellow(12 

band) 

12 Band and 

Red Edge (14 

Band) 

98.76 

 

99.15 

0.981 

 

0.988 

70.38 

 

71.59 

0.65  

 

0.66 

14 Band and 

NIR2 ( 16 

Band) 

99.27 0.988 71.66 

 

0.66 

         

      Table 5. Supervised classification of Hyperion data 

 

 

Band Foreste

d 

wetland

s 

Phragm

itis 

Sporob

olus 

Other 

marshe

s 

Water 

      

RGB and 

NIR1(8band

) 

77.23 66.27 55.44 62.57 67.37 

8 band and 

Coastal (10 

Band) 

76.56 66.30 54.19 64.03 70.34 

10 Band and 

Yellow(12 

band) 

12 Band and 

Red Edge 

(14 band) 

77.46 

 

 

78.86 

66.59 

 

 

67.85 

55.44 

 

 

57.30 

64.38 

 

 

64.57 

70.56 

 

 

73.54 

16 Band 

together 

79.12 67.95 57.34 65.23 73.87 

      

                Table 6. Mapping Accuracy (%) of Hyperion data for 

the validation classes in saltmarsh area. 

 

5. DISCUSSION 

Based on 4 Hyperion scenes around the coastal region of 

Australia using the mean/standard deviation SNR method shows 

that there is a strong relationship between the acquisition time 

of year and the SNR of the Hyperion data. That was a good 

agreement with findings of Kruse (1999). Calculated SNR for 

Hyperion SWIR data are higher in the summer and lowest in the 

winter (Figure 4 and 5) that was also similar with the finding of 

Kruse (2003). After SNR based data quality assessment, 

Hyperion L1_R data were radiometrically calibrated followed 

by FLASSH correction. 

There are clear and visible differences between radiance and 

reflectance spectra of Worldview 2 and EO-1 Hyperion data 

that becomes visible after atmospheric correction. Øystein 

(2012) proved that FLAASH corrected Worldview 2 image has 

a clearly lower blue component and expected chlorophyll peak 

in the green band due to the correction of aerosol scattering.   In 

a different study conducted by Yuan (2008) showed that 

Hyperion image showed the rich spectral information of objects 

after FLAASH correction. Based on the PCA of FLAASH 

corrected reflectance data, only 16 bands were selected for 

further processing that was similar with the findings of Chauhan 

(2011) and Pervez (2015). From 155 atmospherically corrected 

band, Pervez (2015) showed that only first 10 PCs contain more 

than 99 % of the information. Chauhan (2011) segregated first 

13 bands that contains 97 % information from 168 bands of 

Hyperion data. In our study, among the 56 bands of 

atmospherically corrected Hyperion data, 79.01% variability 

a 

b 

Red-Edge 
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was contained by first PC, 96.31% variability was contained by 

PC2 and likewise 16 PCs contains upto 99.83% variability due 

to the application of PCA. PCA highlights the redundancy in 

data due to similar responses in some wavelength and reduce 

the dimensionality of data by decorrelation. When 16 selected 

bands of Hyperion data were compared with the 8 bands of 

Worldview 2 for saltmarsh classification, the overall 

classification accuracy has increased in both cases after adding 

band orderly. But the overall accuracy obtained from 

Worldview 2 was higher than that from EO-1 Hyperion image. 

Table 2 shows that OA % for Worldview 2 was increased from  

72 to 79 while for Hyperion it increased from 70.47 to 71.66. 

Considering the significance test with z values and kappa 

statistics at 95% confidence level, Worldview 2 classification 

accuracy was higher than Hyperion data. This findings is differ 

from the findings of Kumar & Sinha (2014). This is might be 

due to the spectral properties of high spatial resolution data and 

ground scene of study area. Kumar and Sinha (2014) used 

Quick bird images that have 4 multispectral band with 2.4 m 

resolution. Whereas Worldview 2 images that used in our study 

have 1.84 m spatial resolution with 8 band in multispectral 

mood. Moreover they used all of the bands of Hyperion data in 

their study. But in our study we used only 56 Hyperion band 

(49 VNIR and 7 SWIR) to compare with the wavelength of 

Worldview 2 images. It was also segregated the number of 

bands to reduce the redundancy of information. Finally 16 

bands based on reference were used for classification purposes.  

 

 

6. CONCLUSION 

This paper describes importance of SNR for data quality 

assessment and PCA for data reduction for EO-1 Hyperion data. 

Based on the VNIR of multispectral broadband and 

hyperspectral narrow band data this research explores the 

potentiality of spatial resolution over spectral resolution. 

Classification accuracy improved significantly in both cases 

after adding bands orderly. But overall accuracy was higher in 

case of Worldview 2 due to high spatial resolution and small 

patch size of species on real earth condition. The result of 

current study can be applied to any future research relates to 

SWIR for the improvement of classification accuracy. Although 

this research ignores the importance of SWIR, another study is 

on progress with SWIR of EO-1 Hyperion and Worldview-3 (8 

band MSS and 8 band SWIR) data for the improvement of 

classification accuracy for saltmarsh species. 
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