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grey-valued images
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Abstract. Existing estimators for edge length in 2D and surface area in 3D are applied
to a binary representation of the object. In this paper we estimate length and surface
area through grey-volume measurements. Volume is measured without thresholding
and does not introduce a sampling error. Object boundaries are carefully transformed

into volumes using bandlimited operations.

We give two methods: GC and GCL. The GC method measures the length of an
isophote. The GCL method measures the length of the Laplacian zerocrossing line.
The GC estimator is biased because the isophote position is shifted towards smaller
radii due to both analogue and digital low-pass filtering. The GCL estimator contains
a compensating mechanism and yields unbiased results for both the edge position and

the length.

Extension of both methods to 3D images is straightforward. The 3D GC area bias is
scale independent. The 3D GCL method yields unbiased edge position. For 3D objects
without tunnels or enclosed cavities the 3D GCL area bias amounts to a constant
correction per object and an unbiased estimator can still be constructed.

Keywords: edge position, edge length, surface area, Laplace, second derivative in
gradient direction, edge bias, low-pass filters, curved edge location, measurement

accuracy and precision, derivatives of Gaussian.

1. Introduction

The estimation of edge length such as the perimeter
of an object from its digital image is a well-known
problem in biomedical image analysis. There exists an
extensive literature that describes techniques for measur-
ing length given a 2p binary representation. We can
distinguish algorithms designed and optimized for digital
straight lines and algorithms designed for measuring the
arc length of an arbitrary curve or contour.

Since Freeman (1970) introduced chain coding of 2p
lines, people have investigated length estimators based
on this representation. Techniques suitable for straight
lines were proposed by Proffitt and Rosen (1979),
Vossepoel and Smeulders (1982), Dorst (1986), Dorst and
Smeulders (1986, 1987). An overview is given by Dorst
and Smeulders (1987). Estimators for arc length of
digitized curved lines and contours were proposed by
Kulpa (1977), Groen and Verbeek (1978), Ellis and
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Proffitt (1979), Dorst and Smeulders (1987). Young
(1988) summarizes experimental results for the corner
count method (Vossepoel and Smeulders 1982) and
validates Groen’s conjecture that this technique, origin-
ally optimized for straight lines, produces a constant bias
term when applied to circles. A common factor of the
above mentioned algorithms is that pixels along a line
segment are classified into a limited number of classes
(e.g. local direction: horizontal/vertical or diagonal) and
weighted by a set of coefficients that optimize a certain
error criterion. The sum of weighted pixels is the length
estimate. Note that the ordering, used to build a string
of chain codes and to classify the arc-pixels, is not used
any further. A recent article by Eberly and Lancaster
(1991) claims to measure the arc length directly from the
grey-scale image. Close examination shows that their
approach is similar to the chain code based techniques.
Instead of classifying the arc-pixels they are weighted
by a factor derived from the underlying grey-scales.
Arc length in 2p is analogous to surface area in 3p.
Eberly et al (1991) showed that his algorithm can also
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Ineasure surface area in 3p. Mullikin and Verbeek (1993)
extended the binary technique to three dimensions.
Although this algorithm is optimized for planes it
produces a constant bias term when measuring closed
surfaces. Other techniques to estimate the surface area
come mainly from stereology (Hahn and Sandau
1989, Gesbert et al 1990, Howard and Sandau 1992,
Meyer 1992).

Practical recipes have been proposed to estimate edge
length in 2D (Young 1988) and surface area in 3p (Mullikin
and Verbeek 1993) for the worst case in which only a
binary image is available. Fitting an analytical curve to
interpolated digital contour points and calculating
its length is a more theoretically founded approach
(Mullikin 1992).

We believe that in the thresholding that usually
produces the binary image valuable information is lost
that should be preserved to improve the estimation of
edge length.

The method presented here works on grey value
images and combines edge detection (2p and 3p) and edge
length (in 2p)/surface area (in 3p) estimation. Apart from
a few plausible assumptions it is founded on sampling
theory.

Section 2 gives the relation between analogue and
sampled images on which the method is based. Sections
3 and 4 remain in the analogue domain. Section 5
discusses the means to salvage the analogue information
from sampled images. Section 6 deals with a systematic
error and section 7 gives the means to compensate for
it. Section 8 shows how to extend from 2p to 3p. Section
9 discusses the various methods and strategies, e.g. GC
and GCL. Section 10 gives an experimental evaluation.

2. Analogue information from samples

Edge detection is generally based on thresholding. The
simplest example is thresholding of the original grey
image at a fixed level, e.g. half edge height. Thresholding
the original image at a space-variant level (a reference
image that can be derived from the original by low-pass
filtering or local minimum and maximum filtering
(Verbeek et al 1988)) is equivalent to high-pass filtering
and thresholding at a fixed level. In particular, one often
thresholds a second derivative at level zero. This
introduces noise sensitivity but solves the level selection
problem.

Thresholding is a very nonlinear operation in the
sense that the Taylor series expansion of the corresponding
scaling function—threshold (grey level) — {0, 1}—has
appreciable higher-order terms. Consequently, thresh-
olding in the continuous domain can only be replaced
by an equivalent digital operation ‘sampling — digital
thresholding — interpolation’ at the cost of equally
appreciable oversampling (Verbeek 1985).
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Direct estimation of the edge length or surface area
in the discrete domain is ‘a problem, grey-volume
estimation is not.

Theorem. The volume of a grey value landscape (inte-
grated grey value) is directly proportional to the sum of
the samples if only the Nyquist criterion is fulfilled. In
fact, only the DC component of the spectrum is used;
this allows undersampling by a factor of two.

Proof. For each bandlimited image h(x, y) with Fourier
transform (h(u, v) _sampled at intervals A, and ‘A, the
following holds if #(0, 0) is not corrupted due to a11asmg

volumeof(h(x, y)) = A A Z h(iA,. jA,)

jjh(x, NAA Zé(x —iA,)d(j —iA,) dx dy

h(u, v) *
2n 2n
2m)? 5<u - k—)é(u - l—)]

(@m) g | A Al

= (2m)*h(0,0) = ”h(x, y) dx dy ()
with V
375 > Upax and ~2E > Upax
X y

where u,,,, and v,,,, are the highest frequencies of h(x, y)
in the x- and y-direction respectively. Sampling at
Nyquist rate (twice the highest frequency) preserves the
entire spectrum. Undersampling by a factor of two
(sampling at the highest frequency) only preserves the
zero frequency.

This has led us to look for an estimation method
where edge length is expressed in a volume measure.

3. Edge length as volume

3.1. Straight edges

To start with, we employ our argument in the continuous
domain. In order to convert an edge length into a volume
of a grey value landscape proportional to it we can see
from dimension considerations that we must multiply by
a constant width and a constant height. For an edge of
constant grey level (constant edge range) this value can
be used as constant height. But the problem remains how
to introduce a constant width.

The solution we found is to apply an analogue
isotropic local maximum filter of diameter fsize to the
analogue edge. The effect of which is mainly a sideways
translation of the edge over the filter radius.



The volume enclosed between the original and the
translated edge is then equal to

volumeof(max — ori)

with max being the result after maximum filtering and
ori the original edge image.

For a straight edge the relation is exact as long as
the maximum filtering truly amounts to translation. We
shall discuss ways to ensure this.

3.2. Curved edges

For a curved edge, maximum filtering will not only
translate the edge, but will also change the edge radius.
From the simple example of a circular step edge we see
that it is then better to apply two filters, an analogue
round local maximum filter and an analogue round local
minimum filter, to the original edge. The volume enclosed
between the results is then equal to

volumeof(max — min) = length .fsize .edgeheight. (3)

For an edge of different shape it is more complicated to
define edge position and edge length. There are several
traditional definitions of edge position. The simplest is
based on thresholding which produces a binary edge. In
section 7 we show how edge length according to other
traditional definitions—such as the zero crossing of a
second derivative—can be handled. For now, we remark
that (3) holds for one particular uncommon definition of
edge position (cf figure 1): the average (continuous)
position r. of the binary edge in a cross section
perpendicular to the edge, when the average is taken over
the entire interval of threshold levels (0, edgeheight).

This follows immediately from the expression below
for a sector de of the enclosed volume

6volume0f(max _ mm) J‘ edgeheight J‘ r(h) + (fsize/2)
14

o

1 edgeheight
-1,

x [(r(h) + fsize/2)*

rdrdh

0 (h) — (fsize/2)

— (r(h) — fsize/2)*] dh

edgeheight
= fsize f r(h) dh = fsize .edgeheight.r,q;.
0

@

4. Isophote edge length

In practice the edge height will show ripple and noise.
To achieve a simulated constant height we apply clipping
at two levels clip,,,, and clipy;g,. This amounts to using
a more general definition of edge position (cf figure 2):
the average (continuous) position r., of the binary

— length. fsize/2 . edgeheight (2)

2D edge length and 3D surface area
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Figure 1. Cross section perpendicular to an edge of constant
height.
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Figure 2. Cross section perpendicular to the edge; r. is the
average position of the binary edge, when the average is
taken over an interval of threshold levels (clip;yyClippign)-

edge in a cross section perpendicular to the edge, when
the average is taken within a range of ‘threshold’ levels
(CIlplow s Chphlgh)

In particular, the chppmg levels can be chosen close
together around a fixed pseudo-threshold level t. Then
the length calculated is that of the isophote at level t. As
we are still handling continuous positions we have
constructed a continuous analogy to contour length. Just
like discrete contour length, our edge length depends on
a ‘threshold’ level.

5. Continuous edge length from a sampled image

When assessing the volume that is representative for edge
length it makes little difference whether the image is
sampled or not. For a properly sampled bandlimited
image the integral over continuous grey value is directly
proportional to the sum of the grey value samples.
Two operations used to convert edge length into
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volume need attention when assessing continuous con-
tour length from a sampled image:

(a) the analogue maximum filter used for translation of
the edge must be replaced by a discrete operation
which on the basis of the sampled image yields the
sample values of the translated continuous edge;

(b) the clipping operation being a nonlinear scaling
function must be handled with care.

In both issues an approximation is proposed to make
a practical compromise between bandlimitation and
accuracy.

5.1. Isotropic analogue maximum and minimum filters

Translation of a 1p edge profile (cf figure 1) over fsize/2
is approximated by a truncated Taylor series expansion.

() 0*h (r)

h(r + fsize/2) = h(r) + (fsize/2) —— + ¥(fsiz /2)2

O

In D-dimensional space with r along the gradient
direction (here D = 2) we obtain translations equivalent
to the isotropic local maximum and local minimum filters

h(r N fSIZZ ) h(x, y) + (f )|grad(h(x I

L1 <fs1ze> SDGD(h(x, )) (6)
fsize
< - ) hx ( >|grad(h<x )
1<f51ze>
+={——] SDGD(h(x, y)) @)
2\ 2
where

grad(h(x, y)) = (0h/ox, Oh/dy)

and SDGD stands for second derivative in the gradient
direction and can be written as

grad(h)- H(h)-grad(h)
|grad(h)|?

SDGD(h) =

in which H(h) is the Hessian matrix ’

3*h/ox>  9*h/ox d
Hh) =< o%H) b 2y>.
*hjox oy 9*h/dy* )

Although the derivatives are all bandlimited, the
modulus of the gradient and the SDGD convert a
bandlimited image into results that can only be hoped
to be approximately bandlimited. The reason for this
hope is in the fact that nonlinearity of the modulus and
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of the SDGD does hardly occur in the centre part of the
edges which we select for edge length estimation.

5.2. Soft clipping curbs aliasing

Sampling theory cannot predict the errors in the analysis
of thresholded images. We shall show that it can when
a smooth clipping is applied instead of thresholding.
Clipping a sampled image is equivalent to clipping the
continuous image and sampling; clipping the continuous
image distorts the grey value landscape so that it is no
longer bandlimited (The distortion is already much
weaker than the one caused by thresholding.) In order
to reduce aliasing we propose to replace the grey scaling
function of clipping by a smoother function, the error
function, between the same levels: ‘erf clipping’.

/i

cliprange

clip,¢(h(r) =t + %cliprange~erf< [h(r) — ]>

®

with cliprange = (clipy;g — clip;ow) and pseudo-threshold
level t = (clippgn + clipjoy)/2. In cross sections where
the edge slope between clipping levels is approximately
constant, h(r) = ar + b, the edge is shaped into a scaled

error function
clip,,¢(h(r)) = t + jcliprange ~erf(.i. [ar+b— t])
: cliprange

(€)

the approximate bandwidth of which is f,, . (lemma
1) limited by (lemma 2)

o, Sdgeheight edgeheight

fmax erf — = max I: fmax

cliprange

2a ] -
/ 2ncliprange
(10

Hence, if the clipping interval and the linear part of the
edge slope encompasses 1/k of the total grey range,
the erf clipping theoretically needs k\/ﬂ times over-
sampling.

For practical use we apply lemmas 3 and 4. For a
step edge which is filtered with a Gaussian of width 6 ;ecyip
we get

1  edgeheight

f max erf ~ . . (1 1)
O prectip Cliprange

A practical choice for the cliprange is edgeheight/4. The

desired f . es < 1 is obtained for
e = 4/~ 127,

For the second derivative of a step edge which is
filtered with a Gaussian of width o,,..;;, We get (grey-scale



invariant)

Je  secderrange
/ 276 prectip cliprange

A practical choice for the cliprange is secderrange/4. The
desired

~
f max erf ~

fmﬂxerf < 1 (13)

(undersampling by a factor 2 allowed for volume
estimation, cf section 2) is obtained for

Gprectip = 4/ /<27 ~ 2.63.

Lemma 1. The approximate bandwidth of erf(cr) is

(cy/2)/x.

Proof of lemma 1. As a signal and its derivative have
the same bandwidth, we take for the approximate
bandwidth f_,, . of the error function the value of
20¢,eq = 1/(nw) of the Gauss function with width w of
which it is the integral.

As the error function is defined as erf(z) = (2/\/7_r) oj’
exp(—(?) d{, we have erf(cr) = (2/y/m)c o exp(—c2(?) d{,
based on a Gaussian with variance w? = 1/(2¢?). Thus,
the approximate bandwidth is f,.y erf = 20¢q = 1/(7W) =

(c/2)/n. O
Lemma 2. The original slope is limited by a < a,,,, =
27f, . greyrange/2 where f,,, is the maximum frequency
in the original cross section.

Proof of lemma 2. The steepest slope occurs if all allowed
frequencies add up with the same phase

;fA(f) sin(2nfx) df =2n fA(f)f daf (14)
X x=0

the maximum signal value that can occur for given
spectrum-amplitude A(f) is

jA(f )cosQnfx)df| = I A(S)df. (15

x=0
The spectrum that gives the steepest slope with respect
to the maximum signal h,,,, = greyrange/2 has amplitude
A(f) = oy 0(f — frmax)> With steepest slope

amax = 2nfmax hmax = 2nfmaxgreyrange/2' (16)
O

Lemma 3. If the original slope concerns a step edge which
is filtered with a Gaussian of width 6 ,.;, then the slope

is limited by @ < Gpaygauss = €dgeheight/(a,,eciipn/ 27).

Lemma 4. If the original slope concerns the second
derivative of a step edge which is filtered with a Gaussian

12
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of width o ,,,.;;,, then the slope is limited by @ < @,46ccder =
edgeheight/(ag,ec,ip\/ﬂ) = \/Z/(Zap,eclip) secderrange,
where secderrange is the difference between the maximum
and minimum second derivative value.

Proof of lemmas 3 and 4. 1t is sufficient to consider a
straight step edge of height edgeheight. Its derivative is
edgeheight d(x), which by Gaussian smoothing gives the
slope of the smoothed edge

2
(edgeheight/,/2n0 cc1ip) exp( —3 : > a7

apreclip

with maximum slopé

QmaxGauss = edgehelght/( 27tapreclip) . (18)

The second derivative is

2
(—x-edgeheight/,/2n03,.c1;p) exp(— f ) 19)

2o.preclip

with slope

edgehelght ((1 - xz/o-greclip )/ 27"").1::|'<*,<:lip)

x2 ‘
N exp(— : ) o)
2o'prcclip
and range
secderrange = 2¢~ '/?edgeheight/\ /2102,y (21)

The maximum slope of the second derivative is

edgeheight/. 2nag,‘ec1ip = \/E secderrange/26 yreciip-  (22)

6. Curved-edge displacement by Gaussian filters

Our new technique calculates the length of an isophote
of the grey image. The derivative filters of section 5.1 are
implemented as derivatives of a Gaussian. This is
equivalent to calculating the length of the isophote in the
grey image with pure derivatives after smoothing the grey
image with the Gaussian. However, the Gaussian
low-pass filter—like all low-pass filters—displaces a
curved isophote towards the centre of curvature. We shall
show that the displacement of an erf-clipped constant
gradient edge caused by a Gaussian filter of size o is
—0?%/2R. The displacement does not depend on the order
in which clipping and shifting are performed. It always
results in an edge length bias

object contours 21{
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The displacement of an erf-clipped constant gradient edge
caused by a Gaussian filter of size ¢ can be calculated
as follows.

For a constant-slope circular edge h(r) = ar + b the
erf-clipped result was given in (9)

clip..s(h(r)) = t + icliprange

x erf(L

cliprange

[ar +b — ]) = haip(r) 4

7/
where r? = x? + y2. To study the impact of 2p smoothing
it suffices to consider the result along the x-axis (radial
behaviour).
Edge positions r = R (e.g. x = R, y = 0) correspond
to ar + b — t = 0. The unsmoothed |gradient| would be

=a exp(—(r — R)2> (25)

hclip(r) 2W 2

’ d
dr
with clipwidth

w = cliprange/(a./2n) =

We smooth by a normalized 2p Gaussian low- pass filter,
split up in two 1D convolutions

! ( ) 1 ( yz)*
—_— —_— x* — —_— s
/270 P 20* 2no P 20°
First we perform the (tangential) y-smoothing. As the
result on the x-axis is determined by the contributions

from a strip of width ~ 3¢ along it and as we are interested
in the edge postion x & R we approximate y « x and get

r~J/(x— R + (x — R)y*/R

and

1 y2> d
exp| —=—— | *|— h.y
/2no Xp< 262 *’dr ouel?) y=0

oo ) (5=

ra exp(—(x —R+ 62/2R)2) | (26)

2w?

for x — R < 3w and ¢ < 2./wR with

X | 2 ¢
F;(—) = ! exp(—'y—2>*exp<— y )
R 27{0’ 20' 2W2R y=0

) 1 o 2 2
Tl Ll 25
27]:0' - 20'2 2W2R
ZX -1/2 O.ZX

1+ —— ~ exp| —
< w? R) ' p( 2w2R)

for X/R « w?/a?
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1/(nfmax erf)‘ (253) .

Note that tangential smoothing displaces the edge by
—0?/2R. This is in the direction of the osculating circle.
Next we perform the (radial) x-smoothing and get

‘ d, o L. p( x? )
— Neyip\! ~ X —— ] %
dr e smoothed ~/ 2no 202

4 exp(__(x —R+ 02/2R)2>

2w? x=r
. 2 2
_aw exp(—(r R2+ o /22R) ) @7
Jo* +w? 2(c° + w?)

for o < 2. /w

Note that radlal smoothing broadens the edge and

reduces the slope by a factor w//a? + w?.
The Gaussian shape of |d/dr h,(r)| and the erf

character of h;,(r) are largely preserved by Gaussian
smoothing.

7. Zerocrossing of Laplacian edge length

When edge height varies slowly as in shading, the length
of an isophote does not represent edge length properly.
The edge is then defined as the position where a second
derivative of the edge crosses zero. Examples of second
derivative filters are: the Laplacian, the second derivative
in the gradient direction (SDGD) and their sum (PLUS)
(Verbeek and van Vliet 1991). In earlier work we
studied the location error for these operators on curved
edges due to low-pass filtering (van Vliet and Verbeek
1991, Verbeek and van Vliet 1991) (see also Berzins
1984). Starting from the physical edge two types of
low-pass filtering are common: optical (approximately
Gaussian, width opgz) and a Gaussian filter used in
implementing the second derivative filter which at the
same time suppresses noise (width o4, ). Together they
result in a Gaussian low-pass filtering of the physical
edge (width o,,.;;,)- Table 1 summarizes the results for
Gaussian low-pass filtered edges in 2p and 3p images.

Table 1. Theoretically derived (Verbeek and van Vliet 1991)
relative location error of constant curvature edges as
function of 6, and the radius of osculating circle (sphere)
at every edge location. The positive axis is defined from the
centre of the osculating circle (sphere).

2D 3D

4 1i 2 O precli 2
SDGD  —(0.29t01.3) m —(0.5 to 4.0) pR )

Oprecli 2
(0.83 + 20%) PR P

prechp

PLUS (043 + 14%)

Laplace (045 + 30%) < pmh,,>

4
o preclip
(1.1 + 10 /)< 5 )




In (26) we calculated that, due to the smoothing (o)
in our gradient filters, the position of an isophote of a
sloped edge is displaced towards the centre of the
osculating circle. Taking ¢ X 0., the shift is of the
same order but in opposite direction as the one caused
by the Laplacian (of Gaussian, width oy ., ). Measuring
the length of the zerocrossing (i.e. the zero-isophote) of
the Laplacian (of Gaussian) then solves both the
displacement problem and the shading problem (a
practical application is shown in figure 4).

Note that

— 2 2 — 2 2
ox apreclip = \/O-PSF + Osecder = \/GPSF + aLaplace'

Remark. Applying erf-clipping and Gaussian smoothing
without gradient to the result of Laplacian-of-Gaussian
edge detection will likewise correct the zerocrossing
position.

8. Extension to 3p

The extension to 3p is rather straightforward. Some
deviations from the 2D case are given below.

8.1. Isophote surface area

The main difference with our 2p edge length measurement
is that our 3D surface area estimation is biased due to
edge width.

In 3D a patch of surface is characterized by two
curvatures in orthogonal directions, with radii R; and
R, to be defined later. For each patch we define a local
coordinate system with a coordinate r along grad h. As
there are two radii we can no longer use the centre as
the r = O reference. Instead we take the average of r(h)
over the grey range of the edge to be the r = 0 reference.
(In 2p this characterized r.,.) The radii R; and R, can
now be defined as radii from two centres to the r =0
position. Let the patch span an angle d¢, with radius
R, and an angle d¢, with radius R,, together a solid
angle dQ = d¢, d¢, then the contribution of the patch
to the estimated area is (following the max-min filter
description of (4) of section 3.2)

d volumeof(max — min)

fsize - edgeheight

1 J‘ edgeheight J’r(h) +fsize/2
fsize - edgeheight J r(h) —fsize/2

X (Ry + r)Y(R, + r)dr dh dQ

1 edgeheight
B edgeheight _[ o

x [RyR, + afsize? + (R, + R,)r(h) + r2(h)] dh dQ
= (R,R, + fsize?/12 + M,) dQ (28)

2D edge length and 3D surface area

with second moment M,

1 edgeheight
M, __-—J " r2(h) dh.
edgeheight J,

For fsize - 0 and r(h) = 0 (step edge) we get R;R, dQ
as the unbiased patch area. Hence the radii R; and R,
of the average r(h) surface are the effective radii. The term
fsize? dQ/12 is the same for all patches. For each object
without tunnels or enclosed cavities the solid angles dQ
add up to 4n and the fsize-dependent term leads to a
constant total-area bias of nfsize?/3. The second bias term
M, dQ may differ from patch to patch. When the volume
estimation is applied to an erf-clipped constant gradient
edge, edgeheight is replaced by cliprange and h by
heyip = clipc(ar + b) and we can calculate M,

d _ n(ar + b — t)2>

— hyip(1)| =aexp| ——————— 29

!dr cip(") p< cliprange? (29)

1 ; ®
My=—— Jd hep Pdra o J r?
cliprange Jifiness dr cliprange ] _
2
X exp( _M) dr
cliprange

_ cliprange? Y : 30)

2na®

The gradient a may differ from patch to patch. The total
area bias due to M, dQ is

: 2
cliprange J' “15 40 31)
2n all patches a

and can be extrapolated from two measurements with
different cliprange values.

8.2. Displacement of curved step edge by a 3p Gaussian
filter

The displacement of an erf-clipped constant gradient edge
caused by a Gaussian filter of size o can be calcu-
lated as follows. A 3D constant gradient edge with
local curvatures 1/R; and 1/R, can be modelled
(X, y,z < |Rq|,|R,]) as h(r) = ar + b with

r=X?+ X(y*/R, + 2*/R,)

and
X=x—Xx,_o-

The gradient is then indeed of constant magnitude
|grad(h(r))*

a2
-1+ (¥*/2R, + ZZ/ZZRz)2 + (yX/R; + zX/R,)?
X%+ y’X/R, + z>X/R,

-1+ 0[<Mﬂ. (32)
IRy, IR,
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Along the same lines as in 2p the smoothing of the
|gradient| of the erf-clipped edge

dr

first goes along the tangential dimensions y and z

1 < y:+ zz> d
exp| — *
2no? 202 »z=0

a—': hclip(r)
X? X X
oo -3 7,7 (2,
2w R, R,

X aexp

d
‘_ hclip(r)

(34

where the functions F, and F, are defined as in section 6
(cf (26)). Note that tangential smoothing displaces the
edge by —(62/2R, + 6*/2R,).

Next we perform the (radial) x-smoothing

I~ ! exXp < X : >
smoothed 2no 262

d
la hclip(" )

*d €X -
P 2w? e
0.2 0.2 2
<’ AT T)
W expl| — 1 % (35)
Jo? + w? 2(a +w?)

for o < 2./wmin[R;, R,].

Also in 3p the Gaussian shape of |d/dr h;,(r)| and
the erf character of h;,(r) are largely preserved by
Gaussian smoothing.

Area bias due to displacement. The displacement of an
erf-clipped constant gradient edge caused by a Gaussian
filter of size o is —(02/2R, + 6%/2R,) and results in an
area bias contribution -

o? ' 1 1

- —+ —J(Ry + R))dQ. (36)
2 all patches R 1 R2

For each sphere this bias contribution is —8ns?. For
other objects the bias is shape dependent and larger. For

area measurement based on the Laplacian-of-Gaussian

(0 = Opreaip) this bias is compensated.

In 3D a second—shape independent—bias due to edge
thickening occurs which cannot be compensated (see
section 8.3).

Just as in 20, for o~ 0, the offset of the
Laplacian-of-Gaussian zerocrossing position can also be
corrected by erf-clipping and appropriate Gaussian
smoothing (without built-in gradient).
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—a exp<—2r—:)2) (33)

8.3. Edge thickening bias of surface area due to 3D
Gaussian smoothing

Due to Gaussian smoothing the slope

dh (r) = aex ( 'r2> 37
dr e T 4O\ 7o

is replaced by

d aw

— heiip(r) R

dr e smoothed 4/ % + w?

y exp(—(r + 62/2R, + 02/2R2)2>' (38)

2(c? + w?)

Therefore the second moment of r(hy,), M, =w?
becomes M, | nootmea = W + 2.

The patch area bias due to smoothing is thus ¢ dQ.
For each object without tunnels or enclosed cavities the
solid angles dQ2 add up to 4n and smoothing leads to a
constant total-area bias of 4no?.

9. Methods

In the preceding sections we have introduced a method
for measuring the edge length/surface area of an isophote
or a zerocrossing. Being aware of the edge displacement
(sections 6 and 8.2), we consider the simple method that
measures the length of an isophote at level ¢. The digital
implementation can be achieved using two different
strategies.

9.1. Strategies

~ In the first strategy, we start with clipping around a

certain ‘threshold’ to ensure a constant edge height. The
result of clipping is then shifted perpendicularly to the
edge according to (6) and (7). Subtraction of the two
shifted edges cancels the contribution of the SDGD. As
a consequence the size of the displacement (fsize) becomes
irrelevant as well. Following (3), the edge length is given
by

edgelength = volumeof(|grad(clip,,¢(ori))|)/cliprange.
' (39)

Note that clipping is the only operation left that increases
the bandwidth of the original image by a factor of
edgeheight/cliprange (cf (11)).

The second strategy starts with shifting the edge image
over a carefully selected distance fsize, selecting a suitable
‘threshold’ level and applying the clipping around the
selected ‘threshold’ to both shifted versions. Subtracting
the two versions produces a bar whose volume is
proportional to the edge length. According to (3) the



measured edge length is given by

edgelength = volumeof

fsize - clip, g,
. . fsi .
X (chpm<on + % |grad(ori)|

fsize?
+

SDGD(ori)>

- clipe,f<ori _ f—s‘;_e |grad(ori)|

fsize?
8

The filters used to build |grad| and SDGD are the
first and second derivatives of a Gaussian. In order to
guarantee isotropy, all partial derivatives used to
construct the SDGD must have the same built-in
low-pass filter, equal to ¢. At the same time this o is used
to avoid spurious aliasing.

The first strategy allows us to choose the following
parameters:

+ SDGD(ori))) . (40)

(a) the isophote level ¢t and clipping range (cliprange/
edgeheight);
(b) the built-in ¢ of the derivative filters.

The second strategy has one additional parameter:
(c) the size of the analogue max and min filters (fsize)

Strategy 1 is independent of max-min filter size to
create a constant edge width. Its results must equal
theoretical predictions in the limit of fsize - 0. Con-
sequently, in 3D, one bias term, (fsize?/12) dQ, does not
occur (cf (28))

f |grad h|dx dy dz
patch

- f ™ lgrad KR, + PR, + r) dr dQ

Fmin

= edgeheight(R,; R, + M,) dQ.

Strategy 2 is far more complex than strategy 1 without
producing better results (Verbeek and van Vliet 1992).
From now on we will consider only strategy 1.

9.2. Isophote (GC) and zerocrossing (GCL) length/area

The erf-clipping can be applied to the sampled image
(pseudo-threshold method, GC, gradient-clip) or to
the output of the Laplacian-of-Gaussian (zerocrossing
method, GCL, gradient-clip-Laplace). Figures 3 and 4
illustrate both methods by showing the edge shape, the
edge position, and the slope at the edge position after all
steps. In the first method the isophote selected in the

2D edge length and 3D surface area

\
original \
pseudo-—threshold ¢
\
a) A
7 ———
\
erf clipped :‘
.~
N
b) \
wV2n : r -
\
N 3
o
Gaussian-g nt N Gaussian-smoothed
c) Ly
\/W j 7 ————
o2+ _sf.,, &
2R, 2R,

Figure 3. Various stages of the GC method applied to a
curved edge: (a) original bandlimited edge; (b) constant
height edge after erf-clipping; (c) Gaussian smoothing
displaces the edge towards the centre of the osculating circle.
Consequently, the GC method yields a negative bias.

experiment is at half the edge height while in the second
method it is the zero-isophote. We have set the clip range
to § of the edge height or second derivative range. The
built-in ¢ of the gradient filter can be set to any value
(6 <2R) for the first method while in the second method
it depends on the width of the optical point spread
function (approximated by a Gaussian opg (Verbeek and
van Vliet 1991)) and the width of the Laplacian-of-
Gaussian, oy ,,,c.. To guarantee that the edge position is
restored experiments showed that ¢ ~ 1.01 o,,..;;, yields
an unbiased edge position. From section 7 it follows that
the 2p GCL edge length estimator yields unbiased results.
In 3D, both surface area estimators (GC and GCL) are
biased. We summarize as follows:

Bias of isophote area. The bias of surface area measure-
ments with the GC method due to 3p Gaussian smoothing
is shape dependent. There are three contributions to the
measured bias:

(a) shift of half height edge location (cf (36)) (negative);
(b) w? (positive) and
(c) a2 (positive).

w? originates from the edge slope and o2 is due to the
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\
Gaussian—smoothed \\ ol

\
d,w\\

Voz+wz ‘—) ’.f_,_iz

2R, 2R,

Figure 4. Various stages of the GCL method applied to a
curved edge: (a) original bandlimited edge and a Gaussian
smoothed version; (b) Laplacian-of-Gaussian displaces the
edge away from the centre of the osculating circle;

(c) constant height edge after erf-clipping. Erf-clipping is applied
only to the sloped region of the edge. The resulting clipping
levels (clipy;gn and clip,,, ) are propagated to fill the interior
and the exterior of the object; (d) Gaussian smoothing
displaces the edge towards the centre of the osculating circle.
Choosing 0gagient €qual to o,y yields the correct edge
location. Consequently, the Gaussian-gradient is centred

~ around the original edge position.

Gaussian low-pass filter built-in the gradient filter.
The theoretical bias for spheres is (cf (36), (12), (25a) and
section 8.3): :

bias = —8n(o3sr + 02) + 4nw? + 4no?
1 2

o e
edgeheight?

Bias of zerocrossing area. The bias of surface area
measurements with the GCL method due to 3p Gaussian
smoothing is independent of the object shape. There are
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two contributions to the measured bias given an exact
edge location: “

(a) w? (positive) and
(b) o2 (positive).

The w2-contribution originates from the original edge
slope. Given a physical step edge we have W(0ecrip) =
1/ntf maxert(Tprectip) @s given in (12); for a physical edge
resembling a step edge smoothed with o, we get
W(\/6%0pe + OZicctip). In practice o, may vary over
the surface, say between 0 and 3opgp.

The o2-contribution is due to the Gaussian low-pass
filter built-in the gradient filter. (Sampling at the Nyquist
rate (1N) corresponds to opgg = 0.9.)

10. Experiments

Experiments are necessary to test the presented theory,
the robustness, and the applicability of it.

10.1. Test images

The test images contain a simulated image of a step edge
object imaged through an optical system and sampled at
the Nyquist frequency (1N) or at 2 times the Nyquist
frequency (2N). Randomly positioned bandlimited disc/
sphere/ellipsoid images are constructed as test objects.
To construct an arbitrary bandlimited object, we
start out from its Fourier transform, ensure proper
bandlimitation by multiplying with the perfect in-focus
OTF (optical transfer function) (Born and Wolf 1959,
Williams and Becklund 1989), and apply an inverse
Fourier transform to obtain the desired image. In 3D the
OTF is replaced by an anisotropic Gaussian function
that shows the same behaviour as the corresponding OTF
(Verbeek and van Vliet 1991). Using a compensating
anisotropic Gaussian for the derivative filters we can
obtain an iSOtropic G rectip-

The true surface area of 3p ellipsoids was computed
numerically with Mathematica (Wolfram 1988) based
upon theory from ‘Differential Geometry’ (Boehm 1990).
In earlier work we found that the 2D point spread function
of an in-focus optical system is well described by a 2p
Gaussian; opsg = 0.9 (van Vliet and Verbeek 1991,
Verbeek and van Vliet 1991).

10.2. Isophote and zerocrossing length of 2p discs

Both variants (GC and GCL) of our edge length
estimator were tested. The results are shown in figure 5.
Sampling at 2N roughly complies with condition (13).
Note that sampling at 1N gives a larger CV but still of
the order of the bias and thus is found to be sufficient
in practice. The GC method shows the expected bias due
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Figure 5. For each sample point in these figures 25 randomly
positioned bandlimited 2o discs were generated. The
performance of two variants of our edge length estimator
(OLapiace = 1.5) applied to discs of different bandlimitation
(IN and 2N) is compared with the best classical technique
available (Young 1988). (@) The absolute relative error (in %)
for the perimeter length. (b) The CV (in %) for the perimeter
length.

to edge displacement by ¢ smoothing. Comparing figure
5 with the results reported for discs by Young (1988) we
notice: (i) when using GCL our bias for discs is an order
of magnitude smaller; (ii) our CV’s for both 1N and 2N
discs are one order of magnitude smaller than the ones
reported by Young (1988).

10.3. Robustness of perimeter length in the presence
of noise

To test the robustness of our GCL technique in the
presence of noise we added various amounts of indepen-
dent Gaussian distributed noise to a disc of radius 20.
The SNR is defined as

i
SNR(dB) = 20 1og(5dge—°‘g—h—t).

O noise

The 0y 4p1cc T€duces the noise without dramatic changes
in performance of the edge position and therefore the
length estimator (cf figure 6). For SNR’s larger than 30 dB

b)

SNR (dB) —>

Figure 6. For each sample point in these figures 25 randomly
positioned bandlimited 2p discs were generated. The images
were disturbed by various amounts of additive Gaussian
noise. The robustness of our edge length estimator for
different ¢’s on a bandlimited (1N) sampled disc of radius 20
is shown. (a) The absolute relative error (in %) for the
perimeter length. (b) The CV (in %) for the perimeter length.

the method performs similarly as in the noise free case.
The CVs are still decreasing—especially for larger
O Laplace- 10 3D, filters with the same oy , . can successfully
be applied to much lower SNR’s. Thanks to oy ,pjqcc
sampling at 1N complies with condition (13).

10.4. Zerocrossing position of curved edges in 20 and 3p

Section 7 concludes that applying erf-clipping and
Gaussian smoothing without gradient to the result of
Laplacian-of-Gaussian edge detection will correct the
zerocrossing position. We only show a 3p example (cf
figure 7) because the behaviour in 2D is exactly the same.
Figure 7 shows no difference in performance between
spheres and ellipsoids. Sampling at 2N roughly complies
with condition (13). Note that sampling at 1N shows the
same CV and even a slightly smaller bias for small radii.
The bias in edge position is an order of magnitude smaller
than the bias of the Gaussian-of-Laplacian edge detector
over almost the entire range of radii.
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Figure 7. For each sample point in these figures 10 randomly
positioned bandlimited 3p spheres or ellipsoids were
generated. The relative error in zerocrossing position is
presented for spheres and ellipsoids of different
bandlimitation (1N and 2N). The values can be compared
with results from earlier work (van Vliet and Verbeek 1991;
Verbeek and van Vliet 1991). Laplace requires and has

got 1N, PLUS requires 3N, but has got 2N sampling. (a)
The absolute relative error (in %) for the zerocrossing
position. (b) The CV (in %) for the measured zerocrossing
position.

10.5. Isophote area (GC) for 3p spheres and ellipsoids

From (36) one can derive that as in 2D the surface area
of the isophote at half edge height produces a biased
estimate. Unlike in 2D the 3D bias is constant. It only
depends on the object shape. Table 2 confirms this theory.
Both spheres and ellipsoids have a constant bias over
the entire range of object size. Figure 8 shows the
performance of the GC surface area estimator before and
after subtraction of the theoretical bias. For convex
non-spherical shapes the correction is partial. The
correction gives an enormous reduction in bias: almost
two orders of magnitude for spheres and at least one
order of magnitude for our ellipsoids. The CV’s for
spheres and ellipsoids are the same. Sampling at 2N
roughly complies with condition (13). Note that sampling
at 1N gives large CV’s but still of the order of the bias
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Table 2. Bias of surface area measurements due to 3p
Gaussian smoothing for the GC method. Three phenomena
contribute to the measured bias: shift of half height edge
location cf (36) (negative), w? (positive) and a2 (positive). w?
originates from the edge slope and o2 is due to the Gaussian
low-pass filter built in the gradient filter. Theoretical bias for
spheres is (cf (41)): bias = —8n(o3sr + 02) + 4nw? + 4ng? =

—4ng? — 4n(2 — (cliprange/edgeheight)?)ass.
Theory Experiment

i

Opsp O ﬁm Bias spheres Bias spheres Bias ellipsoids
edgeheight R (O8R, 1.0R, 1.2R)
Re(5-45) Re(5-45)
09 15 025 —48.0 —48.8 —545
1.8 15 025 —107 —108 —-117
Isophote area
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101 RN
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Figure 8. For each sample point in these figures 10 randomly
positioned bandlimited 3p spheres or ellipsoids were
generated. The performance of a simple version of our
surface area estimator (¢ = 1.5) is shown for spheres
and ellipsoids of different bandlimitation (1N and 2N).
We measure the surface area of the isophote at half
edge height. The resulting bias is independent of the
size but dependent on the shape of the object. For
spheres sampled at 1N (¢ = 1.5) the bias equals —48.0
and for spheres sampled at 2N (¢ = 1.5) the bias
equals —107. (a) The absolute relative error (in %) for
the measured surface area before and after (*)
subtraction of the theoretical bias for spheres. (b) The
CV (in %) for the measured surface area.
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Table 3. Bias of surface area measurements due to 3p Gaussian smoothing for the GCL method. Two phenomena contribute to
the measured bias given an exact edge location: w? and 2. The w?-contribution originates from the original edge slope. Given a
physical step edge we have W(0 reciip) = 1/Mfmaxert (Opreciip) as-given in (12); for a physical edge resembling a step edge smoothed
With G0 We get W(y/(020pe + 2reciip))- In practice oy, may vary over the surface, say between 0 and 3opse. The a2-contribution
is due to Gaussian low-pass filter built-in the gradient filter.
(Sampling at 1N corresponds to gpsg = 0.9.)

Theory Experiment
Spheres Ellipsoids
f(cliprange, cliprange , R R(08,1,1.2)

Opsp O prectip secderrange) a w a2 4dn(w? + o?) R € (40, 45) R € (40, 45)
0.9 1.75 0.25 0.53 0.044-0.15 3.12 39.6-409 - 40.2t 40.5t
0.9 2.20 0.25 0.67 0.070-0.18 491 62.3-63.6 63.5t 63.81
0.9 3.13 0.25 0.95 0.14-0.25 10.0 127-129 130 131
0.9 4.10 0.25 1.24 0.25-0.35 17.1 218-220 227 231
1.8 2.34 0.25 0.71 0.080-0.19 5.60 70.5-71.8 72.4% 73.2¢

T R €20, 25, 30, 35, 40, 45).

and thus is found to be sufficient in practice. Comparing
figure 8 with the results reported for spheres by (Mullikin
and Verbeek 1993) we notice: (i) our bias for spheres is
one order of magnitude smaller; (ii) our CV’s for spheres
sampled at IN and 2N are respectively two and three
orders of magnitude smaller.

10.6. Zerocrossing area (GCL) for 3p spheres and
ellipsoids

Section 8.3 predicts a bias per surface patch of
(w? + 6?)dQ. The bias due to the edge shape after
erf-clipping is w? dQ, whereas 3D Gaussian smoothing
contributes the second term o2 dQ. Table 3 shows the
calculation of the predicted bias and empirical results.
For small radii the empirically obtained bias is somewhat
larger than the theoretical prediction. Figure 9 shows the
performance of GCL before and after subtraction of the
theoretical bias. Sampling at 2N roughly complies with
condition (13). Note that sampling at 1N is found to be
sufficient in practice. Comparing figure 8 with the results
reported for spheres by (Mullikin and Verbeek 1993) we
notice: (i) our bias for small radii (< 10) is the same, but
for large radii (=25) our bias is at least one order of
magnitude smaller; (i) our CV’s for both 1IN and 2N
spheres are one order of magnitude smaller for small
radii (<10) and two orders of magnitude smaller for
large radii (= 25).

11. Conclusions

In this paper we estimate 20 edge length and 3D surface
area through grey-volume measurements. The method is
not empirical but, apart from a few plausible assumptions,
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Figure 9. For each sample point in these figures 10 randomly
positioned bandlimited 3p spheres or ellipsoids were
generated. The performance of our zerocrossing surface area
estimator (6p,p,.. = 1.5) before and after subtraction of the
predicted constant bias term are compared for spheres and
ellipsoids of different bandlimitation (1N and 2N). For IN
images and 0 X 0yecip = 1.75 the bias equals 39.6 and for
2N images and 6 X 0peqyp = 2.25 the bias equals 70.5. (a)
The absolute relative error (in %) for the measured surface
area before and after (*) subtraction of the theoretical bias.
(b) The CV (in %) for the measured surface area.
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based on sampling theory. The volume of a grey value
landscape is directly proportional to the sum of the
samples for all images sampled at half the Nyquist rate
or higher. An edge is transformed ifito volume by giving
it a constant height after which the edge is shifted
perpendicularly to the edge over a small distance. The
constant height obtained by ‘erf-clipping’ in the linear
region of the edge. The edge location defined via the
clipping levels is shading-dependent (GC method). For
a constant and isotropic shift of the edge we apply a
Taylor series expansion along the gradient direction. The
derivative-of-Gaussian filters used are sampling invariant
and allow shifts in the subpixel region. However, for
curved edges the built-in Gaussian introduces a system-
atic edge displacement towards the centre of the
osculating circle. \

To use a more appropriate edge definition that does
not suffer from shading, the erf-clipping is applied to the
output of a Laplacian-of-Gaussian filter (GCL method).
The choice of the Laplacian-of-Gaussian offers a
compensating systematic edge displacement (away from
the centre of the osculating circle) and hence an unbiased
estimate of 2p edge length and position. (For position
estimation clipping is only followed by a Gaussian
filtering.) This works for all edges with a radius larger
than the support of the built-in Gaussian filter.

Extension to higher dimensionality is straightforward
but leads to biased (hyper-)area estimations (the edge
position remains unbiased). For 3D objects without
tunnels or enclosed cavities the surface area bias amounts
to a constant correction per object and an unbiased
estimator can still be constructed.

Our method can be implemented using simple
derivatives-of-Gaussian filters and non-linear image
scaling (erf-clipping). The algorithm is of the same
complexity as the Laplacian-of-Gaussian filter followed
by thresholding that produces the binary images for the
traditional methods. The edge position of curved edges
in our methods is much better preserved than by
Laplacian-of-Gaussian filtering.

Experiments show that unbiased estimators for 2p
edge length and 3D surface area can be constructed.
Comparing our method with existing binary methods
(Young 1988, Mullikin and Verbeek 1993) we notice that:
(i) our bias is almost everywhere an order of magnitude
smaller; (ii) our CV’s in 2D are more than an order of
magnitude smaller and our CV’s in 3D are two or three
orders of magnitude smaller. We may conclude that
proper sampling really pays off. Moreover, our method
easily takes care of edge shifts by optical smoothing (opsg).

The experiments also show that some undersampling
does not sacrifice the performance of our method.
Sampling at the Nyquist rate, derivative-of-Gaussian
with ¢ = 1.5 (GC) or sampling at the Nyquist rate,
Laplacian-of-Gaussian with 6y ,,;,.e = 1.5 and derivative-
of-Gaussian with ¢ = 1.75 (GCL) performs well.
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