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Abstract

In this paper we present a new finite volume discretization method based on an exponential
flux approximation scheme. It can be applied to problems in which convective and diffusive
terms, as well as a production term playa role; equations of this type are found among others
in combustion theory. We show that the errors only depend on the variation of the coefficients
within grid size, and not on the magnitude of local Peclet numbers. The scheme is shown to
be second order accurate uniformly in Peclet numbers; which we believe to be unique for this
method.
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1 Introduction

In many combustion problems, including laminar flames, the flow of a reacting gas mixture has to
be modelled along with the chemical reactions between the constituent species. The conservation
laws for reacting gas flow and the theory of chemical kinetics form the basis of combustion theory.
These equations describe conservation of mass, momentum and energy of the mixture and change
of mass of each individual species. Most of these equations contain a convection term, a diffusion
or conduction term and a source term representing the production of a species or the production
of heat due to chemical reactions. Equations of this type are referred to as convection-diffusion
reaction equations.

The combustion equations are so complicated that they can only be solved numerically. The
computation of a numerical solution of the combustion equations requires the discretization of
these equations and subsequently the iterative solution of the resulting set of algebraic equations.
In this paper we focus on the discretization of the convection-difFusion-reaction equation.

The discretization of the convection-difFusion-reaction equation in this paper is based on a
scheme presented by Thiart [14, 15]. This scheme has already been used successfully in lami
nar flame computations (see [6] or [10]). Thiart's method is essentially a finite volume method,
combined with an exponential scheme for the flux computation. In fact, the fluxes are computed
locally from the conservation equations.

The scheme we propose has the following three properties. First, it is second order accurate
both for diffusion dominated and for convection dominated flows. Secondly, it does not produce
oscillations in the vicinity of steep gradients when convection is dominant. Thirdly, it uses a
3-point, 3 x 3-point or 3 x 3 x 3-point stencil for 1, 2 or 3 dimensional problems respectively.
No other discretization method we know of unifies these three qualities. Comparable exponential
schemes [14, 15, 11, 8] acquire second order accuracy only when the mesh size and local Peclet
numbers are sufficiently small. Central schemes produce oscillations when convection is dominant,
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(2.1)

and upwind schemes lose accuracy when convection is dominant. Higher order upwind schemes,
like the QUICK-scheme by Leonard [7] use a larger molecule than the proposed scheme. Methods
based on the use of flux-limiters [12, 13], besides using a larger discretization molecule, produce
non-linear equations and are therefore not comparable to the current method.

We have organized this paper as follows. In Section 2, the finite volume method is summarized
for rectangular grids. The computation of the fluxes is presented in Section 3. Furthermore, it is
demonstrated that the numerical flux is second order accurate. Combination of the finite volume
discretization and the numerical fluxes gives the Modified Thiart Scheme, which is presented in
Section 4. Limiting cases of the scheme, when convection or diffusion are dominant, are given in
Section 5. Next the global discretization error is derived in Section 6 and finally, in Section 7, a
few numerical examples are given.

2 Finite Volume Discretization

Consider the stationary conservation law for a quantity ¢, subject to convection, diffusion and a
(chemical) source term. In order to formulate a conservation law, let O(c Rn,n = 1,2,3) denote
the domain in which the process takes place. Let V C 0 be an arbitrary subdomain, bV the
boundary of V and n the outward unit vector normal to bV. Let pv denote the mass flux, r
a general diffusion coefficient r ~ r min > 0, and 8 the (chemical) source term. The integral
formulation of this conservation law then reads:

f (pv¢ - rV'¢) . n d, = Js dO.

6V V

If all variables are sufficiently smooth, this equation is equivalent to the differential equation:

V' . (pv¢ - rV'¢) = s. (2.2)

In combustion problems, the source term s can be interpreted as a production/consumption term
for chemical species or a production term for heat. In this case s, the diffusion coefficient rand
the mass flux pv are nonlinear functions of ¢. However, since this functional dependence has no
influence on the discretization itself, the dependence of s, rand pv on ¢ is ignored and they are
assumed to be given functions of reo In dealing with (2.1) and (2.2), it is convenient to introduce
the flux vector f:

after which (2.1) simplifies to

f := pv¢ - rV'¢, (2.3)

f f .n d, = / s dO. (2.4)

6V v
In this paper we will discuss finite volume methods for (2.4), thereby restricting ourselves to the
one- and two-dimensional cases.

In finite volume methods, the computational domain 0 is covered with a finite set of N control
volumes V = {Vi,· .. ,VN}, and (2.4) is imposed for each of these control volumes. The integrals
occurring in (2.4) are subsequently approximated by quadrature rules. Note that a meaningful
approximation of (2.4) should have the equivalent of the property

f f· n d, + f f .n d, = f f .n d"
6V; Wi 6V

(2.5)

with tildeV = Vi u V; the union of two arbitrary adjacent control volumes. Eqllation (2.5) implies
conservation for ¢ in if if ¢ is conserved in Vi and V;. This means that a discrete conservation
law holds for any subdomain of 0 that is simply covered by elements of V, like it is in the original
physics of the problem. Therefore also global conservation for ¢ on 0 holds, which is why finite
volume methods are called conservative.
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Let us now restrict our attention to two-dimensional problems. The flux vector f consists of
two components, so we write f =: (F, G)T. When n is covered by rectangular control volumes
and when the integrals in (2.4) are approximated by the midpoint rule, we obtain the following
discrete conservation law:

(2.6)

where Sp denotes s(~p), Fe denotes the numerical approximation of F(~e) etc.; see Figure 1.
The finite volume discretization has to be completed with the numerical calculation of Fe, Gn etc.

NW N HE

W , P e B

sw S SB

Figure 1: The position names in the grid.

This will be carried out in Section 3.
In finite volume methods, the choice of the control volume set V is essential, and even for the

case of uniform, structured grids there are several possibilities. The options are known as the
cell-centered and cell-vertex approaches. In the cell-centered approach, the domain is divided into
control-volumes, after which a grid point is assigned to every control volume. In the cell-vertex
approach, the reverse is done: a mesh is generated, after which control volumes are constructed,
sometimes one around every grid point [1], sometimes using the grid points as cell vertices [4]
and sometimes both is done at the same time [16], [9]. In Figures 2 to 5 it is seen that these
approaches differ indeed. The cell-vertex approach has advantages when discretizing the Euler
equations because a four-point stencil is sufficient for a second-order discretization [4]. Also,
stable discretizations have been obtained for the Navier-Stokes equations on a non-uniform or a
curvilinear grid, where the cell-centered approach had failed [16].

In combustion simulation, local grid refinement is absolutely necessary. This can be done in
several ways (see for two examples [4] and [2]). One of these is the (smooth) transformation of the
uniform grid, so that grid lines will become closer where more detail is needed. Another method is
to keep the uniform grid in tact as much as possible and add detail where necessary: this approach
produces locally uniform grids (see Figures 6 and 7).

3 Flux Computation

Once we have chosen grid points and control volumes, the integrals in (2.4) have to be approxi
mated. Often, these integrals are approximated by the (second order) mid-point rule, so that the
discretization for a rectangular control volume is given by (2.6). However, it is still not clear how
Fe, Fw , Gn and Gs have to be calculated. In this section we derive formulas for these fluxes, which
are second order accurate both for strongly convective and strongly diffusive flows. More accurate
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Figure 2: Cell-centered grid.

Figure 4: Cell-vertex grid for Euler equa
tions, according to Hall [4].
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Figure 6: Locally uniform grid refinement
in a cell-centered grid.
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Figure 3: Cell-vertex grid

Figure 5: Cell-vertex grid with four sets
of control volumes, according to Wagener
[16].
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Figure 7: Locally uniform grid refinement
in a cell-vertex grid.



(3.1)

approximations would be meaningless because of the second order accuracy of the approximations
of the integrals in (2.4).

We first consider the one-dimensional conservation law. Generalizing the result which we
will obtain to two-dimensional problems will be discussed later. Our goal is to find an accurate
approximation of F(xe ), given the values of ¢J at the points Xp and XE. For thi sit makes sense
to consider a (I-D) two-point boundary value problem first

..<!.. (pu¢J - rd¢J) = s , xp < x < XE,
dx dx

¢J(xp) = ¢JP , ¢J(XE) =¢JE.

The flux F corresponding to (3.1) reads

d¢J
F=pu¢J-r dx'

Define A, P and S by

(3.2)

P := ,\~x, S(x):= r s(e)de.
J~e

(3.3)

Recall that ~x = XE - Xp and that Xe = ~(xp + XE). We can derive the following result about
the flux F.

Lemma 3.1 • The flux F(xe ) is given exactly by the following integral formulation:

(3.4)

Proof. The differential equation (3.1) is linear with variable coefficients. For this class of boundary
value problems, there is a standard solution approach, so that we can find an integral represen
tation for ¢J. However, since our object is not to calculate ¢J, but to calculate F(xe ), we do the
manipulations a little differently from the standard approach. We integrate (3.1) and substitute
(3.2) to obtain

dF ( d¢J)dx = s {:} F(x) - F(xe ) = Sex) {:} r A¢J - dx = F(xe ) + Sex).

Here, the flux F(xe ), which is quantity to be calculated, enters the formula. We find a first-order
ordinary differential equation for ¢J. When we apply the boundary condition ¢J(xp) = ¢JP' we
obtain the following expression for ¢J(x):

d¢J 1 Sex)
dx (x) = A(X)¢J(X) - rex) F(xe ) - rex) =?

¢J(x) = exp (I:p A(e)de) ¢JP - F(xe ) j rill exp (It A«()d() de - j AA exp (It A(()d() de·
~p xp

Applying the other boundary condition ¢J(XE) = ¢JE, we obtain an equation from which we can
solve F(xe ) and obtain (3.4). This concludes the proof of Lemma 3.1. 0

We use this lemma to construct a flux approximation scheme. To this end define the functions

z
B(z):= --,

eZ -1

F h( P b)'- B(-P)a - B(P)bm, ,a, .-m P ,

5

eZ
- 1 - z

W(z):= ( 1) ,z eZ
-

. 1
Ft(P, s) := (2 - W(P))s.

(3.5)



Furthermore, for a generic function f we introduce the interpolation values fe and h.e:

1
fe := f(xp) + "2(f(xE) - f(xp)) , f>.e:= f(xp) + W(Pe)(f(XE) - f(xp)). (3.6)

Note, however, that this notation is not used for the flux function F, so Fe still denotes the
numerical approximation of F(xe ). Let Su denote the upwinded value of s:

{
Sp

Su := SE
if U e ~ 0
if U e < 0 . (3.7)

Then the I-D Modified Thiart Flux Approximation Scheme can be written as

F. .- ph +Fi
e·- e e'

where

(3.8)

(3.9)

For this approximation we have the following result:

Theorem 3.2. Let A, r E C 2
• Let s, ¢ E Cl. The numerical flux Fe is a second order

approximation of F(xe ). We can write

where'T]F is a bounded function.

Proof. Define the function w>. by

(3.10)

Recalling the standard scalar product for functions:

it is easy to see that w~(x) = -A(X)W>.(x)j so

< A, w>. >= w>.(xp) ...:.. W>.(XE) =exp (l:E

A(X)dX) - 1 =exp(< A, 1 » - 1.

Now, after some manipulations using the formulas above, the flux F(xe ) is written as:

(3.11)

where Fh is the homogeneous part, linear in ¢p and 4>E, and F i is the inhomogeneous part, linear
in s. They are given by

F h • ;Fh «>.,w~> < \ 1 >,,;. ,,;.).= <r 1,w~>' 1\, ,,/,P, '/'E F i ( ).__ < r-ls,w>. >
, X e ·- r 1 .< - ,w>. >

(3.12)

Now we must find an appropriate way to approximate (3.12). One could do this, for instance,
by assuming that r, pu and s are constant in the interval (x p, XE). By using the function W, the
integrals in the terms Fh and Fi(xe ) can be evaluated analytically, yielding:

(3.13)
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which is obviously very similar to (3.9). In [14] and [15], Thiart uses a formula very similar to
(3.13) to approximate fluxes. We will see, however, that (3.13) loses its second order accuracy for
larger Peclet numbers, a problem which can be mended by the small correction which is given by
(3.9).

It is a logical step to approximate the integrals in (3.12) by means of the -second order accurate
trapezoidal rule. This rule integrates functions accurately if their second derivative is moderate.
So when Ais large, this causes w>. to have a large second derivative, which rules out this method.
The trapezoidal rule is therefore inappropriate for the integrals of the form < I, w>. > (with
1= r-1 , Aor r-1S), but not for the integral < A, 1 >. The trapezoidal rule for the latter integral
can be formulated as:

;x < A,l >= Ae - 112tlx2A"(6) for some ~l E (xp, XE).

We use the local Peclet number Pe to approximate < A, 1 >: Pe =< A, 1 > + l2 tlx3>''' (6).
A similar integration formula can be constructed for the other integrals. We now look for a

good approximation of quotients of the following general form: ~{::~~. First of all, we see that,
since w>. is strictly positive,

for some 6 E (xp, XE).

for some ~4 E (XP,XE).

< I, w)" > __ I(C
2

) E C ( ).. lor some ..2 E Xp, XE .
<I,w>.>

We will approximate (3.14) by replacing I by its linear interpolant l:

j(x) = I(xp) + I(XE) - I(xp) (x - xp).
tlx

The difference between I and j is given by

I(x) - j(x) = -~(x - Xp )(XE - X)f"(~3)

Using (3.15), we obtain

< j,w>. > _ I( ) < x - Xp,w>. > I(XE) - I(xp)---::.....:.........:..:....- - Xp + .
<l,w>.> <l,w>.> tlx

By virtue of the fact that (x - Xp )(XE - x) is positive for x E (xp, XE), we obtain

< I - j,w>. > = _! < (x - Xp)(XE - x),w>. > f"(~4)
<l,w>.> 2 < I,w>. >

First, the factor <z;l~~:';.),> must be approximated. If >. is constant, it is given by:

< x - Xp, w>. > = W(P)tlx.
< I,w>. >

(3.14)

(3.15)

(3.16)

(3.17)

Let K. be a function such that K.(x) ~ A(x) for all x E [xp, xeJ. Then, we can derive the following
inequality:

ZE XE

< X - Xp,w/<, >< 1,w>. > - < x - Xp,w>. >< 1,w/<, >= J J(x - y)w/<,(x)w>.(y)dxdy =
xp xp

ZE ZE

J J(x - y)(w/<,(x)w>.(y) - w/<, (y)w>. (x))dxdy =
zp y

7



or, equivalently,
<X-Xp,WI< > < <x-xp,w>. >.

<1,wl<> - <1,w>.>

Let .L:= min A(X) and A+:= max A(X), then
zE[ZP,ZE) zE[ZP,ZE)

W(A+6x)6x = < x - Xp, W>.+ > < < x - Xp, W>. > < < x - Xp, W>._ > =W(A_6x)6x.
< l,w>.+ > - < l,w>. > - < l,w>._ >

By continuity of W and A, we find that

< x - Xp,W>. > = W(P({s))6x for some {s E (XP,XE).
< l,w>. >

In the same way we can derive that

< (x - Xp)(XE - x),w>. > = < x - Xp,W>. >6x _ < (x - Xp)2,W>. > =
< l,w>. > < l,w>. > < l,w>. >

where W2 can be found by taking A constant:

eZ
- (1 + z + !z2)

W2 (z) := 2 ( ) 22 •eZ -1 z

Using (3.17) and (3.18), we can approximate ~f::~~ by (cf. (3.14))

<f,w>.> ( ) 2---''---- = f>.e + 111 Xe 6x .
<1,w>.>

Let W3 =W - W2. The error term 111(Xe) can then be written as

(3.18)

(3.19)

111(Xe) = -~W3{Pe)f"(Xe) + O(6x).

Recall that he = f(xp) + W(Pe)(f(XE) - f(xp».
Similarly to the definition of fe' he is a second-order approximation of f(x>.e)' The point X>.e

will be slightly upwinded from Xe, Le. Xp < X>.e ~ Xe if U e ~ 0, and Xe ~ X>.e < XE if U e ~ O. It
is noteworthy that the trapezoidal rule can be seen as a special case of the integration rule (3.19),
because

< A, 1 > < A, Wo > \ () A 2
A = 1 = I\e + 111 Xe L.J.X ,
L.J.X < ,WO>

. with the error 111 given by

Now we have all the tools we need: an accurate integration rule and an analytical formula for
F(xe ) which we want to approximate. The function :Fh can be rewritten as

h a+b m6x P/2 b-a
:F (m,P,a,b) =m-2- - --p tanh(P/2) 6x .

We exactly know ¢(xp) and ¢(XE), which play the roles of a and b in the formula above. Since
< A, 1 >= Pe +O(6x3), we can compute the term tan~~~1~ 2 to third order accuracy too. This

leaves us to find the errors in the approximation of <r<~;:::~~{,1> and <~\~~~>, which play
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the roles of mfr'" and m respectively; see (3.12). Using the new integration formula, we find the
following approximation:

<A,W~ >Ax A~e 2 A~e( () 2 ()A 2)
1 = \e(r_1)'e(1+112(Xe)Ax )=r~e"""\e 1+112 X e Ax -113 xe x ,< r- ,W~ >< A,l > II 1\ 1\

with error terms 112(Xe) and 113(Xe) given by

Let us investigate when these errors are small. The error 113Ax2 is an estimate for the relative dif
ference between (r~e)-l and (r-1he. Since r ~ r min, this error must be small if r is represented
accurately by the grid. The error 112Ax2 is an estimate of the relative difference between r,....l and
the linear interpolant r:' l in the point x· = xp + W3(Pe)Ax. Our conclusion is that both errors
are small if r is well represented by the grid.

We use this integration rule again to find the following approximation:

~~'lW~ > = (r~~) (1 + (112(Xe) -114(Xe))Ax2) = A~er~e (1 + (112(Xe) -114(Xe) -113(Xe))Ax2) ,< ,W~ > ~e

with error 114(Xe) given by:

This error 114Ax2 is an estimate for the difference between A and the linear interpolant ~ in the
point x·. Therefore, this error will be small if A is well represented by the grid, except in regions
where A has large relative changes because it becomes very small relative to the usual level of A.
The error is then not small relative to itself, but to this overall level.

We now have the following approximation for the homogeneous part of the flux ph:

ph =:Fh (A~er~e, Pe, <pp, <PE) + 115(Xe)Ax2,

with error term 115 given by

We use the integration formula once more to obtain

i() < r-1
S, W~ > ( ) 2P Xe = - r-1 = -S~e - 116 Xe Ax ,< ,W~ >

with error tenD 116 given by

The term S~e can be written as:

X e XI!)

S~e = - Js(x)dx +W(Pe)Js(x)dx.

"'p "'p

(3.20)

(3.21)

We approximate the first integral by the trapezoidal rule, and the second integral by the midpoint
rule. Then we find:

S~e = Ax ( -~(s(xp) + s(xe)) + W(Pe)S(Xe)) + O(Ax3) = -Ax (~ - W(Pe)) Su + 117(Xe)Ax2,

(3.22)

9



with error term 111 given by

1
111(Xe) = 8 (4W(IPel) - 1) s'(xe) + O(~x).

Using (3.21) and (3.22), we find:

. . 2
F'(xe) = F'(pe,SU~X) - (176(Xe) +171(Xe))~X .

Combining (3.20) and (3.23), we find

F(xe) = Fe + (17s(Xe ) -1J6(Xe) -171(Xe))~X2.

So, 1JF(Xe) = 11s(Xe ) -1J6(Xe) -111(Xe).

(3.23)

(3.24)

o

For the generalization to two-dimensional problems, we write the problem in its quasi one
dimensional formulation

.!... (pu¢ - r a¢) = oS .!... (pv¢ _r a¢) = s
ax ax 'ay ay'

with oS and sdefined as

. aG
s:= s - ay

_ of
, s:= s - ax'

Recall that G denotes the vertical flux component:

Let us introduce the following notation, necessary for the formulation of two-dimensional flux
approximations:

pv
K, := r ' Q:= K,~Y·

Recall that ~y = YN - yp (see Figure 1), A = PF and P = A~X. For a generic function f,
introduce the interpolated values fn and f",n:

1
fn:= f(xp) + "2(f(xN) - f(xp)) , f",n:= f(xp) + W(Qn)(f(XN) - f(xp)).

Recall that fe = f(xp) + ~(f(XE) - f(xp)), h.e := f(xp) +W(Pe)(f(XE) - f(xp)). With these
notations we can define a 2-D flux approximation scheme. First, we calculate the homogeneous
fluxes Fe

h and G~:

(3.25)

and Fj;, GZ similarly. With these, we can calculate the quasi I-D source terms. For in order to
calculate F(xe) with second order accuracy, it is necessary to know s(xu) to first order accuracy.
Fortunately, we have

G(xn ) = G~ + O(~y),

so we may ignore the inhomogeneous term Gi for the approximation of the so-called cross-flux
differential ~~. We shall approximate the cross-flux differential ~~ by the difference of the homo
geneous flux term Gh :

• G~ - GZ
Sp := Sp - -..:..:--,-----=-

~y

10

F h -Fh
- e w
sp:= Sp - ~x ' (3.26)



so the upwinded quasi 1-0 source terms Su and su are given by:

A { sp if U e >°
8U := SE if Ue <°

and then the inhomogeneous flux terms:

F: := F(Pe , su~x)

_ { sp if Vn ~°
, 8U:= SN if Vn < ° '

, G~:= F(Qn, sU~Y)·

(3.27)

(3.28)

The 2-0 Modified Thiart Flux Approximation Scheme is given by

F. .- F h + F i G·- Gh + Gi
e·- e e' n·- n n· (3.29)

As for the one-dimensional case, we can define error functions l1F(ree) and l1a(ren). These are very
similar to (3.24), though a term has to be added because the quasi 1-0 source terms sand S are
not known exactly and have to be approximated.

4 The Modified Thiart Scheme

In this section we will show how, using the Modified Thiart Flux Approximation, one can construct
the so-called Modified Thiart Scheme, a discretization for the convection-diffusion-reaction equa
tion (2.1). We give the discretization by defining the discretization molecule for the differential
operator in the interior domain. In order to do this, we define coefficients a and b by

\ r B(-P.) + \ r B(Pw )ap := ">.e >'e p. ">'w >'W Pw '

b · r B(QQ.. ) + r BbQ·)P := K",n ",n .. K",s "'s .'

\ r B(-Pw ) (41)aw := ">'w >'w Pw ' •

b .- r B(-Q.)S .- K",s "'s Q. .

Hence the homogeneous flux differences, Feh - F~ and G~ - GZ can be written in the following
way

(4.2)

We will also need the homogeneous flux terms in the points reNe, renE etcetera, which are located
on the cell faces of the neighboring cells. For these calculations, we define a and b at the other
points of the 9-point stencil implicitly by

FIve - FIvw = aN<PN - aNE<PNE - aNw<PNW , G~E - G:E = bE<PE - bNE<PNE - bSE<PSE,

P;e - F;w = as<ps - aSE<PSE - asw<psw , G~w - G:w = bw<Pw - bNW<PNW - bsw<Psw.

In the further analysis, it we will assume the coefficients a* and b* two be non-negative. We
first show that this is a reasonable assumption. The coefficients a* contain quotients of the form
A>.e/Ae, which depend on P(rep) and P(reE) only. When all such quotients are positive, it follows
that all coefficients a* are positive too. Figure 8 shows that a* > 0, unless P(rep) and P(re E)
differ very much from each other; not only in a relative sense, but also in an absolute sense. It
is safe to say, therefore, that the coefficients a* and b* are positive if the grid describes the mass
flow with any degree of accuracy.

Because pi and Gi are calculated upwind, define

cw := max (O,xw - X>.w) , cp:= max (O,xe - x>.e) + max(O,x>.w - x w), CE:= max (O,x>.e - xe),

ds := max (0, Ys - Y",s) , dp:= max (0, Yn - Y",n) + max (0, Y",s - Ys) , dN:= max (0, Y",n - Yn),

CNW := Cw =: CSW,

dNW:= dN =: dNE,

CN := Cp =: Cs,

dw := dp =: dE,

CN E := CE =: CSE,

dsw := ds =: dSE·

It follows that c* and d* are non-negative. The inhomogeneous parts of the flux differences F:-F~
and G~ - G~ are given by:

FiFi A A A

e - w = Cp8p - CESE - CWSw

11



a.. > 0

o
10

P(zp)

Figure 8: The coefficients a.. , depending on P(xp) and P(XE).

The approximated conservation law (2.6) is now given by

(4.3)

(4.4)

Using the coefficients defined above, the conservation law in the interior domain is approxi
mated by

Dp¢p = L DI¢I + Bpsp + L BISI,
leNs IeN4

where Jls denotes the set of eight neighboring grid points Jls := {N, E, B, W, N E, NW, BE, BW},
.N4 denotes the set of four directly neighboring grid points .N4 := {N, E, B, W}, and where we
have defined the following coefficients

D ._!:i.y - dp ap !:i.x - Cp bp
p .- !:i.y ~x + ~x ~y'

Cp dp
B p := 1 - ~x - ~y'

CI
BI := - 1= E, W,

~x

dI
B I := - I=N,B.

!:i.y

The discretization (4.4) is, however, not yet our desired scheme. For that we need one more
modification. In a stationary flow the constant function ¢(z) == 1 is a solution to the continuous
problem (2.1) with S == 0, because V . (pv) = O. In the discretized equation (4.4) this is not the
case! In order preserve the constant solution, we modify the discretization molecule to obtain the
Modified Thiart Scheme:

L DI¢p = L DI¢1 + Bpsp + L BISI.
lENs leNs leN4

(4.5)

We have not yet paid any attention to the discretization of the boundary conditions. The
boundary conditions are no essential part of the Modified Thiart Scheme, and any consistent
treatment of the boundary conditions will do to complete the system. For the sake of completeness,

12



we give some examples of how this can be done. A Dirichlet boundary condition of the form
4>(z) = 4>0 (z) can be discretized by

4>p = 4>°(zp).
Neumann boundary conditions of the form ~ = 4>1(Z) can be discretized by introducing a mirror
point ZM:

4>P-4>M 1 1( )h =±4> (Xm), h = Ax or h =Ay, Zm = '2 ZM + zp .

To conclude this section, it will be shown that the proposed discretization (4.5) is second order
consistent. First, let us look at the accuracy of (4.4). The local discretization error 718 is found
when the exact solution 4> is substituted in (2.6). It is then given by

Fe-Fw Gn.-Gs
718 = Ax + Ay - sp.

We use the discretization error for F which was derived in Section 3 to evaluate 718:

(F(zw) - Fw) - (F(ze) - Fe) (G(zs) - Gs) - (G(zn.) - Gn.)
~= ~ + ~ +

F(ze) - F(zw) G(zn.) - G(zs)
Ax + Ay -Sp.

It can easily be seen that this is equal to

_ A 2 071F A 2 0fJG Ax2 03F A y2 03G
718 - - x ox - y oy + 24 OX3 + 24 Oy3 .

Obviously, the scheme is second order consistent. Consistency of (4.5) follows because it differs
from (4.4) by second order terms only. The difference between (4.5) and (4.4) is in the left hand
side of the equations. This difference is given by:

This means that (4.5) and (4.4) have only second order differences and that (4.5) is second order
consistent.

5 Limiting Cases

It is interesting to see how the Modified Thiart Scheme compares to other, conventional schemes.
We shall do this by considering two limiting cases: the case where P is small (P -+ 0), and the
case where P is very large (P -+ +00).

When P is very small, we can approximate W and B by

W(x) == ~ , B(x) == 1 - ~.

Doing so, we find that (4.5) becomes:

~ (oX r 4>p + 4>E _ oX r 4>p + 4>W) __1_ (r 4>E - 4>p _ r 4>p - 4>W) =
Ax e e 2 w w 2 Ax e Ax w Ax sp.

This can be seen as a rather standard central difference scheme.
Next, we consider very large P. Now we can approximate Wand B by

W(x) == 0 , B(x) == O.

13



Again we apply this to (4.5) and find:

1 1
Ax «pu)p¢p - (pu)w¢w) = '2 (sp + sw).

Again, this can be understood as a central difference scheme. For this, we may view it from the
perspective of the point X w ' Then it appears to be a finite volume discretization derived from
applying the trapezoidal rule on the interval (xw, x p ). Similarly, one can analyze the limiting
cases where P -+ -00. The analysis can even be extended to the analogous two-dimensional
limiting cases, but formulas become larger then.

Though most exponential schemes make a transition from central difference schemes for diffusion
dominated flow to upwind schemes for convection-dominated flow, these small analyses show that
the Modified Thiart scheme makes a transition from one central difference scheme to another.

6 Global Discretization Error
The Modified Thiart Seheme (4.5) can be written in matrix-vector form, and will then look like

Here the vectors 4>0 and 4>1 contain the boundary values for ¢ and ~ which occor in the Dirichlet
and Neumann boundary conditions respectively. In this section, we will show that D is often
monotone which means that its inverse D-1 exists and has only non-negative entries. The mono
tonicity of D is now formulated in the following way:

Theorem 6.1 . Define the function f by

f( ) '= (1/2 - W(y))(B( -x) + B(x))
x,y. (1/2+W(x))B(-y) .

For problems with constant coefficients rand pv, the discretization matrix D is monotone if the
local Peclet numbers P and Q fulfil

and
A y2

f(IQI, WI) < Ax2 ' (6.1)

Proof. For the proof of Theorem 6.1, we use [3], Section 4.3, where it is proven that a matrix A
is monotone if the following conditions are satisfied:

• A is irreducible,

• aii > 0,

• aij ~ 0 Vj -I i,

• E aij ?: 0 for all i E {I" .. , N},
j

• E aij > 0 for all i in a nonempty subset L C {I" .. ,N}.
j

The last of these conditions is verified automatically by the discretization of the Dirichlet boundary
condition. The other ones are verified if DI, I E N 4 are positive and that DI, lENs\N4 are all
nonnegative. The coefficients c. and d. have been constructed so that they would not be negative.
The coefficients a. and b. are positive in the constant coefficient case, so D I ?: 0 VIE Ns\N4 • It
can easily be seen that ds = 0 when Q < 0, resulting in Ds > O. If Q ?: 0 we see that

r r
Ds = (1/2 + W(IPI)) A

y
2 B(-Q) - (1/2 - W(Q)) Ax2 (B(P) + B(-P)).

14



Q= 10

P=lO

Figure 9: Peclet numbers P, Q for which
D is monotone if ~x = ~y.

Obviously, Ds > 0 if

Q = 10

-----+------P = 10

Figure 10: Peclet numbers P, Q for which
D is monotone if ~x = 2~y.

~X2

!(IPI, Q) < ~y2'

When the same conditions are written out for DN, Dw and DE, we find exactly the condition
(6.1). 0

A graphical representation of (6.1) can be made by shading the area in the (P, Q)-plane where
the coefficients are all positive. Figures 9 and 10 show these areas. We see that these areas are
not only very large compared to the area IPI,IQI < 2, which is the area where central difference
schemes have monotone discretization matrices, but they can also be adjusted to the specific
problem we are trying to solve by choosing the appropriate ~x : ~y ratio. A simple monotonicity
condition like (6.1) can only be given for the constant coefficient case. In general, we will find
monotone discretization matrices in a wide variety of cases.

From the monotonicity of D, we can define an upper bound for the global discretization error.

Theorem 6.2 . Consider the 2-D boundary value problem:

Aq,(x, y) = s(x, y)

q,(x,y) = q,°(x,y)

aq,( ) 1an x,y =q, (x,y)

for all (x,y) En,
for all (x, y) E LO C 6n,

for all (x,y) ELl = 6n\LO.

(6.2)

Let tP* and 8 be the restrictions to the grid of q, and s respectively. Let tP° and tP1 be the restrictions
to the discrete Dirichlet and Neumann boundaries LO and L 1 of q,0 and q,1. Furthermore, let tP be
the numerical approximation of tP* :

and let,.,,,, be the local discretization error:

Let m be defined by

15



Let 1/J denote the solution of (6.2) with s(x, y) == 1, ¢P(x, y) == 1, ¢Jl (x, y) == 1. Let"p* denote the
restriction to the grid hereof, and 11,p the local discretization error of 1/J. If 1111.;,1100 < m, we have
the following upper bound for the global discretization error:

Proof. We can derive:

Let e denote the vector with only one-entries. Using the inequality above and the monotonicity
of D, we find:

and

o

This theorem is applied to the discretized convection-difFusion-reaction equation as follows.
First, let us look at the scaling of the Modified Thiart Scheme (4.5). In other words, let us focus
on m. The sum of the B-factors is given by:

B B B B B 1
Cp - CE - Cw dp - ds - dN

p + E + W + s + N = - ~x - ~y ,

which will be larger than !' unless Peclet number variations are very large within grid size (Figure
11; cf. Figure 8). Therefore, the scheme is well-scaled. We shall assume that m > ! (see Figure
11). Furthermore, it is not necessary to know the function 1/;. It is enough to know that it exists, is

Pw = 10

-0.4 --===----~""---__,.t'=---~'-----___:::==--Pe = 10

-0.2

0.0 0.2 0.4 0.6

Figure 11: The value of ce-:,{",-CW, depending on Pe and Pw .

bounded (111/;1100 = M < +00), and that its local discretization error will be under! for sufficiently
smooth meshes, unless the problem is very ill posed. Then the theorem tells us that the numerical
solution will not differ more from the exact solution than 4M times the local discretization error,
which was shown to be O(~X2 + ~y2).
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7 Numerical Examples

In order to test the 1-D Modified Thiart Scheme, we construct the following boundary value
problem:

:x ( m¢ - (1 + x - x2
) ~~) = 4sech2(4x - 2)(m - 1 + 2x + 8(1 + x - x2

) tanh(4x - 2)),

¢(O) =tanh (-2) , ¢(1) =tanh (2) ,

with
¢(x) = tanh(4x - 2).

The Peclet number can be varied by varying m. We calculate numerical solutions on grids of N
grid points, using finite volume methods based on the following four flux approximation schemes:

1. The upwind flux:

2. The central difference flux:

3. The homogeneous flux (similar to [14]):

F; = ;:h(m, Pe , ¢p, ¢E),

4. Modified Thiart Flux Approximation Scheme, which for 1-D problems reduces to

4 h .Fe =;: (m, Pe,¢p, ¢E) + P(Pe,su~x)

(which is also very similar to [15]).

Tables 1 and 2 show EN, the 2-norm of the global discretization error, for a diffusion dominated
problem (m = 1, Table 1) and for a convection dominated problem (m = 105 , Table 2). In the
diffusion dominated problem all methods, except upwind, are second order and almost equally
accurate. In the convection dominated problem, however, there is much more te be seen. First
of all, the homogeneous flux approximation seems to be only first order convergent. Enough
refinement, however, will reduce Peclet numbers and increase convergence, a process which has
already been started, because convergence is slightly over 2 for the finest meshes. The central
difference scheme produces an oscillation on the coursest meshes, causing an error of about the
same magnitude as the solution itself. These oscillations disappear quickly. Only Modified Thiart
Scheme seems to work properly here. There is second order convergence from the start, and
for course meshes as well as for fine meshes this method gives the most accurate results. It is
illustrative to see that Modified Thiart Scheme on a 10-point mesh obtains a comparable accuracy
to the central difference scheme on a 40-point mesh.

We conduct a similar test in the 2-D setting. For this, we use the following analytical solution
of the convection-diffusion-reaction equation:

27(1 - x)x(l - y)
pu= 6x+2

r =ro(1 + 10x(1 - x)y(1 - y))

( )

2y-1 9
, pv = 1/3 + x + 4y(2 - y),

, ¢(x, y) = 1 + tanh c: (2y - 1) - 15X2
) ,

from which the source term can be computed by the evaluation of the right-hand side in (2.2).
We applied inhomogeneous Dirichlet boundary conditions to the boundaries y = 0 and y = 1,
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Upwind Central Homogeneous Modified
Flux Thiart

N EN EN /E2N EN EN/E2N EN EN/E2N EN EN/E2N

10 4.1e-3 1.45 7.0e-3 4.00 6.9e-3 4.00 6.4e-3 3.91
20 2.8e-3 1.60 1.8e-3 3.97 1.7e-3 3.97 1.6e-3 3.93
40 1.8e-3 1.80 4.4e-4 3.98 4.3e-4 3.98 4.1e-4 3.96
80 9.8e-3 1.90 1.1e-4 3.99 1.1e-4 3.99 1.0e-4 3.98
160 5.2e-4 1.95 2.8e-5 3.99 2.7e-5 3.99 2.6e-5 3.99
320 2.7e-4 1.98 7.0e-6 4.00 6.8e-6 4.00 6.6e-6 3.99
640 1.3e-4 1.99 1.7e-6 4.00 1.7e-6 4.00 1.7e-6 4.00
1280 6.8e-5 1.99 4.4e-7 4.00 4.3e-7 4.00 4.1e-7 4.00
2560 3.4e-5 2.00 1.1e-7 4.00 1.1e-7 4.00 1.0e-7 4.00
5120 1.7e-5 2.7e-8 2.7e-8 2.6e-8

Table 1: Errors for diffusion dominated flow (m = 1).

Upwind Central Homogeneous Modified
Flux Thiart

N EN EN/E2N EN EN/E2N EN EN/E2N EN EN/E2N

10 9.8e-2 1.94 2.1eOO 15.9 9.8e-2 1.94 6.8e-3 3.91
20 5.0e-2 1.97 1.3e-l 15.5 5.0e-2 1.97 1.7e-3 3.95
40 2.6e-2 1.98 8.5e-3 14.7 2.6e-2 1.99 4.4e-4 3.97
80 1.3e-2 1.99 5.8e-4 8.93 1.3e-2 2.00 1.1e-4 3.98
160 6.5e-3 2.00 6.5e-5 4.60 6.4e-3 2.00 2.8e-5 3.99
320 3.2e-3 2.00 1.4e-5 4.05 3.2e-3 2.01 6.ge-6 3.99
640 1.6e-3 2.00 3.5e-6 4.01 1.6e-3 2.03 1.7e-6 3.99
1280 8.1e-4 2.00 8.7e-7 4.00 7.8e-4 2.07 4.3e-7 4.01
2560 4.1e-4 2.00 2.2e-7 4.00 3.8e-4 2.15 1.1e-7 4.09
5120 2.0e-4 5.4e-8 1.8e-4 2.6e-8

Table 2: Errors for convection dominated flow (m = 105 ).
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and inhomogeneous Neumann boundary conditions to the other boundaries. The nature of the
problem, convection dominated flow or diffusion dominated flow, can be chosen by varying roo
Figures 12, 13, 14 and 15 give graphical representations of the source term, the stream function
and the solution.

Again, four finite volume methods are used to discretize the equation: the Modified Thiart
Scheme, the central difference scheme, and two second order exponential schemes which are ob
tained as minor simplifications from Modified Thiart Scheme:

1. A flux approximation given by

3 h . A

Fe =:F ((PU)e,Pe,<PP,<PE) +:F'(Pe,su6.x),

in which the term >'AerAe, which occurs in Modified Thiart Scheme, is replaced by the simpler
form (PU)e. We shall call this the 'constant mass-flux' approximation.

2. The homogeneous flux approximation, given by

Fi =:Fh (>'AerAe,Pe,<PP,<PE).

We apply these schemes on grids of size N x N, and compute eN, the 2-norm of the global
discretization error, which can be found in Tables 3 and 4. Again we solve a problem with dominant
convection (ro = 0.005, Table 4) and one with dominant diffusion (ro = 0.1, Table 3). It can be
seen onc more that for diffusion dominated flow it does not matter very much which method is
used because all three methods are comparably accurate and converge quadratically.

19



Modified Central Constant Mass- Homogeneous
Thiart Flux Flux

N EN EN/E2N EN EN/E2N EN EN /E2N EN EN/E2N

10 4.0e-2 6.0 6.0e-2 5.2 3.6e-2 5.6 4.9e-2 4.1
20 6.7e-3 3.5 1.2e-2 4.0 6.4e-3 3.5 1.2e-2 3.7
40 1.9e-3 3.7 2.ge-3 4.0 1.8e-3 3.7 3.2e-3 3.8
80 5.1e-4 3.8 7.2e-4 4.0 5.0e-4 3.8 8.3e-4 3.9
160 1.3e-4 1.8e-4 1.3e-4 2.1e-4

Table 3: Errors for diffusion dominated flow (fo = 0.1).

Modified Central Constant Mass- Homogeneous·
Thiart Flux Flux

N EN EN/E2N EN EN/E2N EN EN/E2N EN EN/E2N

10 6.8e-2 4.5 2.3e-1 13.0 6.6e-2 3.7 1.6e-1 2.0
20 1.5e-2 4.9 1.8e-2 4.4 1.8e-2 3.6 8.3e-2 2.3
40 3.1e-3 6.0 4.0e-3 4.1 4.9e-3 2.9 3.7e-2 2.7
80 5.4e-4 6.5 9.9e-4 4.0 1.7e-3 2.9 1.4e-2 2.7
160 9.3e-5 2.4e-4 5.7e-4 4.4e-3

Table 4: Errors for convection dominated flow (fo = 0.005).

When we try to solve the problem with dominant convection, we run into a new difficulty.
When f o is very small, the discretization matrix for the central difference scheme becomes so ill
conditioned that our solver, GMRES(n) with a tridiagonal preconditioner, cannot find the answer.
Since 2-D problems increase in size much more rapidly than 1-D problems, we cannot refine the
meshes so often that we can really see the asymptotic behavior. The results in Table 4 are therefore
not quite as pronounced as in Table 2. Still it can be observed that the central difference scheme
suffers from large errors due to spurious oscillations, that the Modified Thiart Scheme is superior
to the other schemes, and that the methods 2 and 3 do not quite converge quadratically. The
Modified Thiart Scheme shows a convergence rate which is faster than expected, which we assume
is non-asymptotic behavior.
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