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Higher Order Curvature Theories of Gravity Matched with Observations: a Bridge

Between Dark Energy and Dark Matter Problems
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Higher order curvature gravity has recently received a lot of attention due to the fact that
it gives rise to cosmological models which seem capable of solving dark energy and quintessence
issues without using ”ad hoc” scalar fields. Such an approach is naturally related to fundamental
theories of quantum gravity which predict higher order terms for loop expansions of quantum fields
in curved spacetimes. In this framework, we obtain a class of cosmological solutions which are fitted
against cosmological data. We reproduce reliable models able to fit high redshift supernovae and
WMAP observations. The age of the universe and other cosmological parameters are recovered in
this context. Furthermore, in the weak field limit, we obtain gravitational potentials which differ
from the Newtonian one because of repulsive corrections increasing with distance. We evaluate the
rotation curve of our Galaxy and compare it with the observed data in order to test the viability
of these theories and to estimate the scale-length of the correction. It is remarkable that the Milky
Way rotation curve is well fitted without the need of any dark matter halo and similar results hold
also for other galaxies.

I. INTRODUCTION

The Hubble diagram of type Ia supernovae (hereafter SNeIa) [1], the anisotropy spectrum of the cosmic microwave
background radiation (hereafter CMBR) [2], the matter power spectrum determined by the large scale distribution
of galaxies [3] and by the data on the Lyα clouds [4] are evidences in favor of a new picture of the universe, which
is spatially flat and undergoing an accelerated expansion driven by a negative pressure fluid nearly homogeneously
distributed and constituting up to ∼ 70% of the energy content. This is called dark energy, while the model is usually
referred to as the concordance model. Even if supported by the available astrophysical data, this new picture is not
free of problems. Actually, while it is clear how dark energy works, its nature remains an unsolved problem. The
simplest explanation claims for the cosmological constant Λ thus leading to the so called ΛCDM model [5]. Although
being the best fit to most of the available astrophysical data [2], the ΛCDM model is also plagued by many problems
on different scales. If interpreted as vacuum energy, Λ is up to 120 orders of magnitudes smaller than the predicted
value. Furthermore, one should also solve the coincidence problem, i.e. the nearly equivalence, in magnitude orders,
of matter and Λ contributions to the total energy density. In order to address these issues, much interest has been
devoted to models with dynamical vacuum energy, the so called quintessence. These models typically involve a scalar
field rolling down its self interaction potential thus allowing the vacuum energy to become dominant at present epoch.
Although quintessence by a scalar field is the most studied candidate for dark energy, it generally does not avoid ad

hoc fine tuning to solve the coincidence problem. Moreover, it is not clear where this scalar field arises and how to
choose the self interaction potential. Actually, there is a different way to face the problem of cosmic acceleration.
It is possible that the observed acceleration is not the manifestation of another ingredient in the cosmic pie, but
rather the first signal of a breakdown of our understanding of the laws of gravitation. From this point of view, it
is thus tempting to modify the Friedmann equations to see whether it is possible to fit the astrophysical data with
a model comprising only the standard matter. In this framework, there is the attractive possibility to consider the
Einstein gravity as a particular case of a more general theory. This is the underlying philosophy of what are referred
to as f(R) theories [6–8]. In this case, the Friedmann equations have to be given away in favor of a modified set of
cosmological equations that are obtained by varying a generalized gravity Lagrangian where the scalar curvature R
has been replaced by a generic function f(R). The standard general relativity is recovered in the limit f(R) = R,
while different results may be obtained for other choices of f(R). With this paradigm in mind, the problems of dark
energy and dark matter could be geometrically interpreted giving rise to a completely new picture of gravitational
interaction. From a cosmological point of view, the key point of f(R) theories is the presence of modified Friedmann
equations, obtained by varying the generalized Lagrangian. However, here lies also the main problem of this approach
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since it is not clear how the variation has to be performed. Actually, once the Friedmann -Robertson -Walker (FRW)
metric has been assumed, the equations governing the dynamics of the universe are different depending on whether
one varies with respect to the metric only or with respect to the metric components and the connections. It is usual
to refer to these two possibilities as the metric approach and the Palatini approach respectively. The two methods
give the same results only in the case f(R) = R, while they lead to significantly different dynamical equations for
every other choice of f(R) (see [8] and references therein). The debate on what is the true physical approach is still
open [9], nevertheless several positive results have been achieved in both of them. In [6] and then in [7,8], it has
been showed that it is possible to obtain the observed accelerating dynamics of the universe expansion by taking into
account higher order curvature terms into the gravitational Lagrangian. Furthermore, in [6], a successful test with
SNeIa data has been performed. Having tested such a scheme on cosmological scales, it is straightforward to try to
complement the approach by analyzing the low energy limit of these theories in order to see whether this approach
is consistent with the local physics, i.e. on galactic scale. In [10], it has been found that, in the weak field limit, the
Newtonian potential is modified by an additive term which scales with the distance r as a power law. Having obtained
the corrected gravitational potential, the theoretical rotation curve of our Galaxy has been evaluated and compared
with the observational data. This test shows that the correction term allows to well fit the Milky Way rotation curve
without the need of dark matter. These results suggest that considering f(R) theories of gravity can provide both an
explanation to dark energy and dark matter issues. In this lecture, we outline the basic features of the f(R)-theories
in the metric approach regarding the dark energy and the dark matter problems, stressing, in particular, the matching
with astrophysical and cosmological data. Far from being exhaustive on the whole argument, we want to point out
that these families of extended theories of gravity have to be seriously taken into account since they give rise to viable
and reliable pictures of the observed universe.

II. CURVATURE QUINTESSENCE

A generic fourth–order theory of gravity, in four dimensions, is given by the action [6],

A =

∫

d4x
√
−g

[

f(R) + L(matter)

]

, (1)

where f(R) is a function of Ricci scalar R and L(matter) is the standard matter Lagrangian density. We are using
physical units 8πGN = c = h̄ = 1. The field equations are

Gαβ = Rαβ − 1

2
gαβR = T

(curv)
αβ + T

(matter)
αβ , (2)

where the stress-energy tensor has been defined for the curvature contributes

T
(curv)
αβ =

1

f ′(R)

{

1

2
gαβ [f(R)−Rf ′(R)] + f ′(R);µν(gαµgβν − gαβgµν)

}

(3)

and the matter contributes

T
(matter)
αβ =

1

f ′(R)
T̃

(matter)
αβ . (4)

We have taken into account the nontrivial coupling to geometry; prime means the derivative with respect to R. If
f(R) = R + 2Λ, we recover the standard second–order Einstein gravity (plus a cosmological constant term). In a
FRW metric, the action (1) reduces to the point-like one:

A(curv) =

∫

dt
[

L(a, ȧ;R, Ṙ) + L(matter)

]

(5)

where the dot means the derivative with respect to the cosmic time. In this case the scale factor a and the Ricci scalar
R are the canonical variables. It has to be stressed that the definition of R in terms of a, ȧ, ä introduces a constraint
in the action (5) [6], by which we obtain

L = a3 [f(R)−Rf ′(R)] + 6aȧ2f ′(R) + 6a2ȧṘf ′′(R)− 6kaf ′(R) + a3p(matter) , (6)

(the standard fluid matter contribution acts essentially as a pressure term). The Euler-Lagrange equations coming
from (6) give the system:
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2

(

ä

a

)

+

(

ȧ

a

)2

+
k

a2
= −p(tot) , (7)

and

f ′′(R)

{

R+ 6

[

ä

a
+

(

ȧ

a

)2

+
k

a2

]}

= 0 , (8)

constrained by the energy condition

(

ȧ

a

)2

+
k

a2
=

1

3
ρ(tot) . (9)

Using Eq.(9), it is possible to write down Eq.(7) as

(

ä

a

)

= −1

6

[

ρ(tot) + 3p(tot)
]

. (10)

The accelerated behavior of the scale factor is achieved for

ρ(tot) + 3p(tot) < 0 . (11)

To understand the actual effect of these terms, we can distinguish between the matter and the geometrical contributions

p(tot) = p(curv) + p(matter) ρ(tot) = ρ(curv) + ρ(matter) . (12)

Assuming that all matter components have non-negative pressure, Eq.(11) becomes:

ρ(curv) >
1

3
ρ(tot) . (13)

The curvature contributions come from the stress-energy tensor (3) and then the curvature pressure is

p(curv) =
1

f ′(R)

{

2

(

ȧ

a

)

Ṙf ′′(R) + R̈f ′′(R) + Ṙ2f ′′′(R)− 1

2
[f(R)−Rf ′(R)]

}

, (14)

and the curvature energy-density is

ρ(curv) =
1

f ′(R)

{

1

2
[f(R)−Rf ′(R)]− 3

(

ȧ

a

)

Ṙf ′′(R)

}

, (15)

which account for the geometrical contributions into the thermodynamical variables. It is clear that the form of f(R)
plays an essential role for this model. For the sake of simplicity, we choose the f(R) function as a generic power law
of the scalar curvature and we ask also for power law solutions of the scale factor, that is

f(R) = f0R
n , a(t) = a0

(

t

t0

)α

. (16)

The interesting cases are for α ≥ 1 which give rise to accelerated expansion. For ρ(matter) = 0 and for spatially flat
space-time (k = 0), we get the algebraic relations n and α

α[α(n − 2) + 2n2 − 3n+ 1] = 0 , α[n2 + α(n− 2− n− 1)] = n(n− 1)(2n− 1) (17)

from which the allowed solutions are

α = 0 → n = 0, 1/2, 1 , α =
2n2 − 3n+ 1

2− n
, ∀n but n 6= 2 . (18)

The solutions for α = 0 are not interesting since they provide static cosmologies with a non evolving scale factor. On
the other hand, the cases with generic α and n furnish an entire family of significative cosmological models. We see
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that such a family of solutions admits negative and positive values of α which give rise to accelerated behaviors (see
also [11] for a detailed discussion). The curvature-state equation is given by

w(curv) = −
(

6n2 − 7n− 1

6n2 − 9n+ 3

)

, (19)

which clearly is w(curv) → −1 for n → ∞. This fact shows that the approach is compatible with the recovering of a
cosmological constant. The accelerated behavior is allowed only for w(curv) < 0 as requested for a cosmological fluid
with negative pressure. From these straightforward considerations, the accelerated phase of the universe expansion
can be described as an effect of higher order curvature terms which provide an effective negative pressure contribution.
In order to see if such behavior is possible for today epoch, we have to match the model with observational data. The
presence of standard fluid matter (ρ(matter) 6= 0) does not affect greatly this overall behavior as widely discussed in
[11].

III. MATCHING WITH DARK ENERGY OBSERVATIONS

To verify if the curvature quintessence approach is an interesting perspective, we have to match the model with the
observational data. In this way, we can constrain the parameters of the theory to significant values. First we compare
our theoretical setting with the SNeIa results. As a further analysis, we check also the capability of the model with
the universe age predictions. It is worth noticing that the SNeIa observations have represented a cornerstone in the
recent cosmology, pointing out that we live in an expanding accelerating universe. This result has been possible
in relation to the main feature of supernovae which can be considered reliable standard candles via thanks to the
Phillips amplitude-luminosity relation. To test our cosmological model, we have taken into account the supernovae
observations reported in [1] and compiled a combined sample of these data. Starting from these data, it is possible
to perform a comparison between the theoretical expression of the distance modulus and its experimental value for
SNeIa. The best fit is performed minimizing the χ2 calculated between the theoretical and the observational value of
distance modulus. In our case, the luminosity distance is

dL(z,H0, n) =
c

H0

(

α

α− 1

)

(1 + z)
[

(1 + z)
α

α−1 − 1
]

, (20)

where c is the light speed and z is the red-shift. The range of n can be divided into intervals taking into account the
existence of singularities in (20). In order to define a limit for H0, we have to note that the Hubble parameter, being
a function of n, has the same trend of α. We find that for n lower than –100, the trend is strictly increasing while for
n positive, greater than 100, it is strictly decreasing. The results of the fit are showed in Table 1.

Range Hbest

0 (kms−1Mpc−1) nbest χ2

−100 < n < 1/2(1−
√
3) 65 −0.73 1.003

1/2(1 −
√
3) < n < 1/2 63 −0.36 1.160

1/2 < n < 1 100 0.78 348.97

1 < n < 1/2(1 +
√
3) 62 1.36 1.182

1/2(1 +
√
3) < n < 3 65 1.45 1.003

3 < n < 100 70 100 1.418

TABLE I. Results obtained by fitting the curvature quintessence models against SNeIa data. First column indicates the
range of n, column two gives the relative best fit value of H0, column three nbest, column four the χ2 index.
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The age of the universe can be obtained, from a theoretical point of view, if one knows the today value of the
Hubble parameter. In our case, it is

t =

(

2n2 − 3n+ 1

2− n

)

H−1
0 . (21)

We evaluate the age taking into account the intervals of n and the 3σ-range of variability of the Hubble parameter
deduced from the SNeIa fit. We have considered, as good predictions, age estimates included between 10Gyr and
18Gyr. By this test, we are able of refine the allowed values of n. The results are shown in Table 2. First of all, we
discard the intervals of n which give negative values of t. Conversely, the other ranges, tested by SNIa fit (Tab.1),
become narrower, strongly constraining n.

Range ∆H(kms−1Mpc−1) ∆n t(nbest)(Gyr)

−100 < n < 1/2(1−
√
3) 50− 80 −0.67 ≤ n < −0.37 23.4

1/2(1 −
√
3) < n < 1/2 57− 69 −0.37 < n ≤ −0.07 15.6

1 < n < 1/2(1 +
√
3) 56− 70 1.28 ≤ n < 1.36 15.3

1/2(1 +
√
3) < n < 2 54− 78 1.37 < n ≤ 1.43 24.6

TABLE II. The results of the age test. In the first column is presented the tested range. Second column shows the 3σ-range
for H0 obtained by SNeIa test, while in the third we give the n intervals, i.e. the values of n which allow to obtain ages of the
universe ranging between 10Gyr and 18 Gyr. In the last column, the best fit age values of each interval are reported.
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Another check for the allowed values of n is to verify if the interesting ranges of n provide also accelerated expansion
rates. This test can be easily performed considering the definition of the deceleration parameter q0 = −(äa)/(ȧ2)0,
using the relation (16) and the definition of α in term of n. To obtain an accelerated expanding behaviour, the scale
factor a(t) = a0t

α has to get negative (pole-like) or positive values of α greater than one. We obtain that only the
intervals −0.67 ≤ n ≤ 0.37 and 1.37 ≤ n ≤ 1.43 provide a negative deceleration parameter with α > 1. Conversely
the other two intervals of Tab.2 do not give interesting cosmological dynamics, being q0 > 0 and 0 < α < 1 (standard
Friedmann behaviour).

0 0.5 1 1.5 2
z

34

36

38

40

42

44

46

µ

FIG. 1. Best fit curve to the SNeIa Hubble diagram for the power law Lagrangian model.

A further test of the model can be performed by the age estimate obtained by the WMAP campaign [2]. Using
these data, we can improve the constraints on n in relation to the very low error (1%) of WMAP age estimator which
range between 13.5Gyr and 13.9Gyr [6].

IV. MATCHING WITH DARK MATTER: THE MILKY WAY ROTATION CURVE

Beside cosmology, the consistency of f(R) gravity may be verified also at shorter astrophysical scales, e.g. at galactic
scales, in order to check the full viability of the theory. In the low energy limit, assuming as above f(R) = f0R

n, we
obtain the gravitational potential [10]

Ψ(r) = −c2

2

[

(

r

ξ1

)−1

−
(

r

ξ2

)β(n)
]

. (22)

where c is the light speed,

β(n) =

√

4n− 1

2(n− 1)
× [P(n) +Q(n)] , (23)

and ξ1,2 are scale-lengths. A first estimate of ξ1 may be obtained observing that, for r << ξ2, Eq.(22) reduces to

Ψ(r) ∼ −c2

2

(

r

ξ1

)−1

.

Since we have to recover the Newtonian potential at these scales, we have to fix :

ξ1 =
2GM

c2
≃ 9.6 × M

M⊙

× 10−17 kpc ,

with M⊙ the mass of the Sun. The value of ξ2 is a free parameter of the theory. Up to now, we can only say that ξ2
should be much larger than the Solar System scale in order not to violate the constraints coming from local gravity
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experiments. Eq.(22) gives the gravitational potential of a pointlike source. Since real galaxies are not pointlike, we
have to generalize Eq.(22) to an extended source. To this aim, we may suppose to divide the Milky Way in infinitesimal
mass elements, to evaluate the contribution to the potential of each mass element and then to sum up these terms to
get the final potential. In order to test whether the theory is in agreement with observations and to determine the
parameter ξ2, we have computed the Milky Way rotation curve modelling our Galaxy as a two components system,
a spheroidal bulge and a thin disk. In particular, we assume :

ρbulge = ρ0

(

m

r0

)−1.8

exp

(

−m2

r2t

)

, ρdisk =
Σ0

2zd
exp

(

− R

Rd

−
∣

∣

∣

∣

z

zd

∣

∣

∣

∣

)

(24)

where m2 = R2+z2/q2, R is the radial coordinate and z is the height coordinate. The central densities ρ0 and Σ0 are
conveniently related to the bulge total mass Mbulge and the local surface density Σ⊙ by the following two relations :

ρ0 =
Mbulge

4πq × 1.60851
, Σ0 = Σ⊙ exp

(

R0

Rd

)

,

being R0 = 8.5 kpc the distance of the Sun to the Galactic Centre. We fix the Galactic parameters as follows :

Mbulge = 1.3× 1010 M⊙ , r0 = 1.0 kpc , rt = 1.9 kpc ,

Σ⊙ = 48 M⊙ pc−2 , Rd = 0.3R0 , zd = 0.18 kpc .

The Milky Way rotation curve vc(R) can be reconstructed starting from the data on the observed radial velocities
vr of test particles. We have used the data coming from the H II regions, molecular clouds and those coming from
classical Cepheids in the outer disc obtained by Pont et al. [13].

8 10 12 14 16 18
R Hkpc

180

200

220

240

260

280

vc Hkm�sL

FIG. 2. Observed data and theoretical Milky Way rotation curve computed using the modified gravitational potential with
n = 0.35 and ξ2 = 14.88 kpc. Note that the points with R between 15.5 and 17.5 kpc are likely affected by systematic errors.

For a given n, we perform a χ2 test to see whether the modified gravitational potential is able to fit the observed
rotation curve and to constrain the value of ξ2. Since a priori we do not know what is the range for ξ2, we get a
first estimate of ξ2 by a simple approach. For a given R, we compute ξ2 imposing that the theoretical rotation curve
is equal to the observed one. Then, we study the distribution of the ξ2 values thus obtained and evaluate both the
median ξmed

2 and the median deviation δξ2. The usual χ
2 test is then performed with the prior that ξ2 lies in the range

(ξmed
2 − 5 δξ2, ξ

med
2 + 5 δξ2). As a first test, we arbitrarily fix n = 0.35. We get ξ2 = 14.88 kpc , χ2 = 0.96. In Fig. 2,

we show both the theoretical rotation curve for (n, ξ2) = (0.35, 14.88) and the observed data. The agreement is quite
good even if we have not added any dark matter component to the Milky Way model. This result seems to suggest
that our modified theory of gravitation is able to fit galaxy rotation curves without the need of dark matter. As a
final remark, we note that ξmed

2 = 14.37kpc that is quite similar to the best fit value. Actually, a quite good estimate
is also obtained considering the value of ξ2 evaluated using the observed rotational velocity at R0. This suggest that
a quick estimate of ξ2 for other values of n may be directly obtained imposing vc,theor(R0;n, ξ2) = vc,obs(R0).
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V. CONCLUSIONS

In this lecture, we have considered f(R) theories of gravity to address the problems of dark energy and dark matter.
Such an approach has a natural background in several attempts to quantize gravity, because higher-order curvature
invariants come out in the renormalization process of quantum field theories on curved space times. We have obtained a
family of cosmological solutions [6] which we have fitted against several classes of observational data. A straightforward
test is a comparison with SNIa observations [1]. The model fits these data and provides a constrain on the family of
possible cosmological solutions. To improve this result, we have performed a test with the age of the universe giving
encouraging results in the range between 10Gyr and 18Gyr. In order to better refine these ranges, we have then
considered a test based on WMAP age evaluation. In this case, the age ranges between 13.5Gyr and 13.9Gyr. In
conclusion, we can say that a fourth order theory of gravity of the form f(R) = f0R

1+ε with ε ≃ −0.6 or ε ≃ 0.4 can
give rise to reliable cosmological models which well fit SNeIa and WMAP data. In this sense, we need only “small”
corrections to the Einstein gravity in order to achieve quintessence issues. Indications in this sense can be found also
in a detailed analysis of f(R) cosmological models performed against CMBR constraints, as shown in [12].
Furthermore, it has been analyzed the low energy limit of f(R) = f0R

n theories of gravity considering stationary
solutions. An exact solution of the field equations has been obtained. The resulting gravitational potential for a
point-like source is the sum of a Newtonian term and a contribution whose rate depends on a function of the exponent
n of Ricci scalar. The potential agrees with experimental data if n ranges into the interval (0.25, 1), so that the
correction term scales as rβ with β > 0. The following step is the generalization of this result to an extended source
as a galaxy. To this aim the experimental data and the theoretical prediction for the rotation curve of Milky Way
have been compared. The final result has been that the modified potential is able to provide a rotation curve which
fits data without adding any dark matter component. This result has to be tested further before drawing a definitive
conclusion against the need for galactic dark matter. To this aim, one has to show that a potential like that predicted
by our model is able to fit rotation curves of a homogeneous sample of external galaxies with both well measured
rotation curves and detailed surface photometry. In particular, the exponent n coming out from the fit must be the
same for all the galaxies, while ξ2 could be different being related to the scale where deviations from the Newtonian
potential sets in.
In conclusion, we have given indications that it is possible to reduce the dark energy and dark matter issues under

the same standard of f(R) theories of gravity which could give rise to realistic models working at very large scales
(cosmology) and astrophysical scales (galaxies).
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