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SUMMARY

It is important to design HIV vaccine trials to estimate the efficacy of a vaccine in reducing infectiousness in
addition to the protective efficacy. Currently planned phase III HIV vaccine field trials in which at-risk
individuals are randomized and followed over time do not permit estimation or testing of the vaccine’s effect
on reducing infectiousness of vaccinees who become infected. We suggest an augmentation of these field
trials that recurits steady sexual partners of the primary participants into the trial as far as they are willing to
participate. This study design would allow estimation of the efficacy of the vaccine on reducing infectious-
ness as well as the protective efficacy. We compare the classical design that does not include partners to two
different types of augmented design. In the first type of augmentation, called the non-randomized partner
design, the steady sexual partners are not randomized to vaccine or placebo. In the second type of
augmentation, called the randomized partner design, the steady sexual partners are also randomized to
vaccine or placebo. We present a probability model based on infection status at the end of the trial that
provides maximum likelihood estimates of the protective efficacy of the vaccine, VE

S
, and the efficacy of the

vaccine on reducing infectiousness, VE
I
. Wald statistics are used for one degree of freedom tests on VE

S
and

VE
I
. With the augmented design, a likelihood ratio test is used to test whether the vaccine has any effect at

all. The randomized partner design has more power and provides narrower confidence intervals than does
the non-randomized partner design. ( 1998 John Wiley & Sons, Ltd.

Statist. Med., 17, 185—200 (1998)

1. INTRODUCTION

Protective efficacy of a vaccine in reducing susceptibility to infection or disease is generally
measured as VE

S
"1!RR, where RR is the relative risk of the vaccinated compared to the

unvaccinated group. The currently planned HIV vaccine field trials are designed to randomize
individuals1,2 to either vaccine or placebo and to base their estimates on (possibly interval-
censored) time-to-infection data, and conditional on infection, progression to disease. The
long-term and overall effects of a vaccination programme,3 however, depend on much more than
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just protection against infection. They also depend on whether the vaccine reduces infectiousness
of breakthrough infections, the duration of protection, whether the conferred protection is
sensitive to boosting by exposure to natural infection,4,5 and whether the behaviour of the
vaccinees changes in response to vaccination.6 If the immune response induced by an HIV
vaccine does not protect well against infection, but reduces infectiousness if a person becomes
infected, then the vaccine could be an important public health intervention. Thus, it is important
to assess the effect of the vaccine on reducing infectiousness.

Vaccine trials based on relative risk parameters that do not condition on exposure to infection,
such as events per person-time, hazards, or cumulative incidence, do not allow estimation of the
transmission probability.7 To measure the efficacy of a vaccine in reducing infectiousness of
breakthrough infections, VE

I
, we need to observe the relative risk of transmission from vaccinated

infectives compared with unvaccinated infectives.7,8 In HIV vaccine studies, this could be
achieved by observing transmission within partnerships9~14 with vaccine status as the covariate
of interest. Koopman and Little,15 using a special case of the model of Longini and Koopman,16
suggest recruiting couples into a vaccine study, then randomizing by couple. The probability
model includes the within-partnership secondary attack rate, allowing estimation of the effect of
the vaccine on infectiousness from final value data. This approach would, however, preclude
recruiting individuals with no steady sexual partners or with partners who do not wish to
participate in the vaccine study. Rida17 used a martingale approach to derive approximate
confidence intervals for a similar design where just one partner is exposed to risk of infection
outside the partnership.

We suggest a feasible augmentation of the currently planned phase III HIV vaccine field studies
by including steady sexual partners of the primary randomized individuals as far as they are
willing to participate.18 This study design allows estimation of the vaccine efficacy for reducing
infectiousness while preserving the classical vaccine trial design to allow estimation of protective
efficacy. In the next section, we consider different aspects of these augmented study designs. In
Section 3, we introduce a probability model and methods of estimation and hypothesis testing of
the corresponding vaccine efficacy parameters that require just the vaccination and infection
status of the primary participants and any partners included in the study. In Section 4, we present
a simulation study to demonstrate how this augmented study design allows estimation of both
protective efficacy and efficacy in reducing infectiousness and to demonstrate the statistical
properties of the different study designs.

2. AUGMENTED TRIAL DESIGNS

Suppose we recruit a total of n at-risk individuals into the study, with n
1

and n
0

randomized to
either vaccine or placebo, respectively, with n

1
#n

0
"n. The outcome of interest is infection or

progression to disease conditional on becoming infected, though we do not consider this latter
case further here. Call these initially recruited individuals the primary participants. We refer to
this design with randomized individuals only as the classical or unconditional7 design. Without
information on actual contact of the trial participants with potentially infectious persons, this
trial design does not provide the information required to estimate the effect of the vaccine on
reducing infectiousness.19

Suppose that some of the primary participants have susceptible steady sexual partners who are
also willing to be recruited into the trial. Then there are an additional n@

1
and n@

0
partners of

vaccinated and unvaccinated primary participants in the study, respectively. The recruited
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partners could participate in several different ways. They may be willing to be randomized to
vaccine or placebo as well. In other cases, they may simply be willing to have their infection status
ascertained, but not to be randomized into the different arms. In this latter case, these people
would respond biologically to a given infectious challenge the same as people randomized to
placebo, although their behaviour, thus exposure to infection, might differ.

We could recruit steady partners at the beginning of or during the trial. The initially recruited
steady sexual partnership could break up while others are formed during the trial. We need to
accommodate the situation encountered in a particular trial in the final choice of probability
model appropriate for the dynamics and data collected.

An advantage of choosing a design that augments the current design is that it allows
recruitment of high risk individuals who do not have steady partners, but who can still contribute
important information on the protective efficacy of the vaccine, VE

S
. The recruitment of steady

sexual partners of the primary participants, however, also allows estimation of the effect of the
vaccine on reducing infectiousness, VE

I
. The additional participants also provide additional

information on the protective effects of the vaccine. Their exact contribution to this aspect
depends on how we include them in the trial.

In the remainder of this paper, we consider two particular augmented design. In the first, called
the non-randomized partner design, none of the recruited partners receives vaccine. In the second,
called the randomized partner design, we randomize the recruited partners either to vaccine or to
placebo.

3. A PROBABILITY MODEL AND INFERENCE FOR AUGMENTED DESIGNS

3.1. The probability model

Let h denote the relative susceptibility of a vaccinated uninfected compared to an unvaccinated
uninfected person, and / denote the relative infectiousness of a vaccinated infected compared to
an unvaccinated infected person. Then the desired estimates are the protective efficacy on
susceptibility and the efficacy in reducing infectiousness, respectively,

VE
S
"1!h, VE

I
"1!/.

Our goal is to find the maximum likelihood estimates of h and /, and thus VE
S
and VE

I
. For each

individual, or individuals within partnerships, the required data are: (i) vaccine status; (ii) infec-
tion status at the end of trial; and (iii) vaccine and infection status of partner, if the study subject
has a partner.

Let:

l denote vaccination status of primary study participants, 0 if unvaccinated, 1 if vaccinated;
k denote vaccination status of steady partners, 0 if unvaccinated, 1 if vaccinated;
i, j denote infection status of primary participant and steady partners, respectively, where
0 denotes uninfected and 1 denotes infected by the end of the study;
c equal the probability of an unvaccinated trial participant becoming infected during the study
period. For someone with a partner in the study, c represents the probability of being infected
from sources outside the partnership;
bijlk equal the per partnership transmission probability of partnerships with vaccination status
(l, k), where either i or j equals 1.
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3.2. Probability model for trial design without steady partners

The probability model is an extension of a model introduced by Longini and Koopman.16
Consider the vaccine trial design based simply on enrolling at-risk individuals and randomizing
them either to placebo or vaccine. Let n denote the total number of primary participants in the
trial, where n

0x
and n

1x
are the number of unvaccinated and vaccinated participants without

partners in the study, respectively, that is, n"n
0x
#n

1x
. The x denotes having no partner in the

study. Since none of the participants in this study design has any steady sexual partner, c is the
probability an unvaccinated participant becomes infected from any source over the course of
the study. We assume that the probability has a vaccinated person becomes infected during the
study is c

1
"hc, where h is the relative susceptibility of the vaccinated compared to the

unvaccinated. This represents an approximation since c is actually a function of the susceptibility
of the unvaccinated individuals.3,6

Let nil be the probability that a primary participant with vaccination status l has infection
outcome i over the course of the study. For unvaccinated primary participants, the probabilities
of the possible outcomes are

n0
0
"1!c, n1

0
"c. (1)

For vaccinated primary participants, the probabilities of the possible outcomes are

n0
1
"1!hc, n1

1
"hc. (2)

3.3. Augmented designs

In the augmented designs, we recruit steady sexual partners of the primary participants into the
study. Let n@ denote the total number of steady sexual partners recruited into the study, so that the
total number of study participants is N"n#n@. If n@

0
and n@

1
denote the number of recruited

steady sexual partners of unvaccinated and vaccinated primary participants, respectively, then
n@"n@

0
#n@

1
. These recruited partners may or may not be randomized to either placebo or

vaccine. The composition of the study participants is:

n
0x
"number of unvaccinated primary participants who lack steady sexual partners;

n
1x
"number of vaccinated primary participants who lack steady sexual partners;

n
00
"number of unvaccinated primary participants with unvaccinated steady sexual partners;

n
10
"number of vaccinated primary participants with unvaccinated steady sexual partners;

n
01
"number of unvaccinated primary participants with vaccinated steady sexual partners;

n
11
"number of vaccinated primary participants with vaccinated steady sexual partners.

Let n@lk, l"0, 1, k"0, 1 be the corresponding number of steady partners augmenting the study
in partnerships of vaccine status (l, k). In this paper, we assume that each primary participant has
at most one steady partner in the study, so that nlk"n@lk. This condition is not necessary for the
model. It is quite likely in field trials that some participants would have more than one steady
partner, or change their partners over time. We could easily incorporate these situations into
the model.16

The composition of the study participants in the non-randomized partner design is

nl"nlx#nl0, n@l"n@l0, l"0, 1.
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In the randomized partner design, the composition is

nl"nlx#nl0#nl1, n@l"n@l0#n@l1, l"0, 1.

The probability model assumes that (i) primary participants and recruited steady partners are
equally at risk for infection outside the partnership, (ii) primary participants and recruited steady
partners are equally susceptible and equally infectious if infected, and (iii) vaccine efficacy is the
same in primary participants and in recruited partners. Under assumption (ii), we denote
b01
00
"b10

00
"b, the transmission probability of infection within the partnership when both

partners are unvaccinated. Similarly, b01
11
"b10

11
denotes the transmission probability when

both partners are vaccinated. These assumptions might not hold, for instance, in vaccine trials
with heterosexual partnership, where there is the belief that the transmission probability from
women to men is lower than that from men to women. We would use the more general model for
this situation.

The relative infectiousness is the ratio of the probability of transmission from a vaccinated
infected person to his or her unvaccinated susceptible partner compared to the probability of
transmission if both partners are unvaccinated:

/"

b10
10
b

"

b01
01
b

.

For simplicity, we assume that the protective effects of the vaccine in reducing the probability of
infection over the course of the study equals the protective effect of the vaccine in reducing
transmission from an unvaccinated infective within a partnership:15

h"
c
1
c
"

b10
01
b

"

b01
10
b

.

Furthermore, we assume that within a partnership in which both are vaccinated, the reduction in
infectiousness and the reduction in susceptibility due to the vaccine are independent and do not
interact, so that

/h"
b01
11
b

"

b10
11
b

.

The probabilities nil of the primary participants without steady partners in the study becoming
infected during the period of observation are the same as in equations (1) and (2).

For partnerships in the study, let nijlk be the probability that the primary participant and steady
sexual partner with vaccine status l and k, respectively, have the infection outcomes i and j at the
end of the study, respectively. When both partners are unvaccinated, the probabilities of the
possible outcomes are

n00
00
"(1!c)2

n10
00
"n01

00
"c (1!b) (1!c)

n11
00
"c2#2c(1!c)b.
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When one of the partners is vaccinated and the other is unvaccinated, the probabilities of the
possible outcomes are

n00
01
"n00

10
"(1!hc) (1!c)

n10
01
"n01

10
"c (1!hc) (1!hb)

n01
01
"n10

10
"(1!c)hc (1!/b)

n11
01
"n11

10
"hc2#c (1!hc)hb#hc(1!c)/b.

When both partners are vaccinated, the probabilities of the possible outcomes are

n00
11
"(1!hc)2

n01
11
"n10

11
"hc (1!hc) (1!h/b)

n11
11
"(hc)2#2hc(1!hc)/hb. (3)

In the Appendix, we consider extension of the model to account for multiple partners. Since
the probability model includes parameters for the risk of infection during the study period and
the probability of becoming infected upon exposure to an infected person, the model com-
bines two levels of analysis from the hierarchy of parameters defined in Rhodes et al.20 The
transmission probability, or the steady sexual partner secondary attack rate in this case, is a
level I parameter that conditions on contacts between susceptibles and infectives. The cumu-
lative incidence of infection is an unconditional level IV parameter that requires only informa-
tion on whether people become infected during the course of the study. When used to estimate
protective efficacy or effectiveness of a vaccine, these parameters all require equal exposure
to infection in the vaccinated and unvaccinated groups.21 The assumption that we can use
the same h parameter to estimate protective efficacy for the two levels is an approximation.3,6
We could establish a probability model to include two different parameters. In cases of low
incidence and assumptions of homogeneous exposure and susceptibility,22,23 the approximation
is appropriate.

3.4. Inference for designs without partnerships

Let mil be the observed frequency for the ith, i"0, 1, outcome with primary participants of
vaccine status l, l"0, 1 of the nil given in equations (1) and (2). The likelihood function for
estimating c and h is

¸ (c, h)J
1
<
i/0

1
<
l/0

(nil)m
i
l. (4)

We let AR
0

and AR
1

be the cumulative incidences of infection (attack rates, AR) in the
unvaccinated and vaccinated groups, respectively. By taking the partial derivatives of the
log-likelihood function and equating them to zero we get the maximum likelihood estimates of
c and h:

ĉ"
m1

0
m0

0
#m1

0

"AR
0
, hK "

m1
1

(m0
1
#m1

1
) ĉ
"AR

1
/AR

0
.
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From the estimate of h, we can find the estimate of vaccine efficacy, VEY
S
"1!hK . We use the

asymptotic standard deviation to construct a confidence interval on VE
S
. The one degree of

freedom hypothesis test of a protective effect of the vaccine, VE
S
, is

H
0
: VE

S
"0 versus H

1
: VE

S
O0.

We perform the hypothesis test using the large-sample Wald statistic

Z
VES

"

VEY
S

std(VEY
S
)

to test whether DZ
VES

D'1·96 or not, where std(VEY
S
) denotes the standard deviation of VEY

S
. We

emphasize that in this model, VE
I
, the effect of the vaccine on infectiousness, is unestimable.

3.5. Inference for augmented designs

When we augment the design with inclusion of partners in the study, let mijlk denote the observed
frequency of the i, j outcome in partnerships of vaccine status l, k at the end of the study. We
construct the likelihood function to estimate b and / as well as c and h:

¸ (c, b, h, /)J
1
<
i/0

1
<
l/0

(nil)m
i
l

1
<
j/0

1
<
k/0

(nijlk)m
ij
lk. (5)

If none of the steady sexual partners recruited into the study is vaccinated, then k, the vaccination
status of the partner, is always zero, while for the randomized partner design, k"0, 1. The
likelihood function for the non-randomized partner design is

¸ (c, b, h, /)J
1
<
i/0

1
<
l/0

(nil)m
i
l

1
<
j/0

(nijl0)m
ij
l0. (6)

We obtain the maximum likelihood estimates of the parameters in the model by simultaneously
solving the score equations

L ln ¸

Lc
"0,

L ln ¸

Lb
"0,

L ln ¸

Lh
"0,

L ln ¸

L/
"0.

In practice, we seek numerical solutions using the Newton—Raphson method starting from some
initial method of moment type estimates of the parameters. We can in turn estimate the vaccine
efficacies VE

S
and VE

I
by VEY

S
"1!hK , VEY

1
"1!/K . Usually we have interest in testing the

following hypotheses:

H
0
: VE

S
"0 versus H

1
: VE

S
O0,

H
0
: VE

I
"0 versus H

1
: VE

I
O0.

The first hypothesis tests whether the vaccine has an effect on susceptibility, whereas the second
one tests whether the vaccine has an effect on infectiousness. We can form large-sample Wald
statistics as in the previous section.
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In this model, however, it is also possible to carry out a simultaneous test of both types of
vaccine efficacies. The appropriate null hypothesis for this problem

H
0
: VE

S
"VE

I
"0

H
1
: at least one differs from zero.

The hypothesis tests whether the vaccine has any effect at all, either on susceptibility or
infectiousness, or not. An appropriate test for this problem is the likelihood ratio test. Under the
null hypothesis, the likelihood is a function of c and b only and obtains from the full likelihood by
substitution h"/"1. This test should have better power than the individual tests for VE

S
and

VE
I
mentioned earlier.

4. SIMULATION STUDIES

4.1. Methods of simulation

We conducted simulation studies to investigate the sampling distribution characteristics of the
estimators of the vaccine efficacy parameters for the three different models specified in the earlier
section. Using Monte Carlo simulations, we calculated the bias, variance and the mean square
error of the estimates of VE

S
and VE

I
. We also studied the power of hypothesis tests with the

efficacy parameters VE
S
and VE

I
. For the classical trial, we generated 500 Monte Carlo simula-

tions of total sample size 4000 each. For the simulation we assume the same number of
participants in the vaccinated and unvaccinated groups (n

0
"n

1
"2000). The probability that an

unvaccinated person becomes infected during the study is c"0·1, and the proportion by which
the vaccine reduces the susceptibility of the vaccinated individual is h"0·8, that is, VE

S
"0·2.

From each sample, we estimated VE
S
.

We simulated two augmented study designs at two levels of augmentation. In each case, there
were n"4000 primary participants with 2000 randomized either to vaccine or placebo. In the
non-randomized partner design, none of the recruited steady sexual partners receive vaccine. At
the first simulated level of augmentation, 500 primary participants in each vaccine trial arm
recruit steady sexual partners into the study:

n
0x
"n

1x
"1500, n

00
"n@

00
"n

10
"n@

10
"500.

At the second level of augmentation, 1000 primary participants in each vaccine trial arm recruit
steady sexual partners into the study:

n
0x
"n

1x
"1000"n

00
"n@

00
"1000, n

10
"n@

10
"1000.

In the randomized partner design, we assumed that half of the recruited steady partners in each
arm receive placebo and half receive vaccine. The composition of the 4000 primary participants
for the two levels of augmentation are, respectively

n
0x
"n

1x
"1500, n

00
"n

01
"n

10
"n

11
"n@

00
"n@

01
"n@

10
"n@

11
"250.

and

n
0x
"n

1x
"1000, n

00
"n

01
"n

10
"n

11
"n@

00
"n@

01
"n@

10
"n@

11
"500.
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Table I. Estimation and hypothesis testing results for the classical trial and the two augmented designs with
500 steady sexual partners per arm. Parameters used for simulation are c"0·1, h"0·8, /"0·5 and b"0·5

Parameters of interest Classical trial Non-randomized Randomized
partner model partner model

Mean VE
S

0·198 0·198 0·199
VE

I
0·501 0·484

Standard deviation VE
S

0·082 0·072 0·067
VE

I
0·057 0·026

Mean squared error VE
S

0·007 0·005 0·004
VE

I
0·057 0·026

Confidence interval VE
S

0·022—0·345 0·049—0·317 0·057—0·323
VE

I
0·005—0·952 0·111—0·778

Power VE
S

0·668 0·784 0·846
VE

I
0·570 0·864

Power of the LR test VE
S
and VE

I
0·856 0·964

Table II. Estimation and hypothesis testing results for the classical trial and the two augmented designs
with 1000 steady sexual partners per arm. Parameters used for simulation are c"0·1, h"0·8, /"0·5

and b"0·5

Parameters of interest Classical trial Non-randomized Randomized
partner model partner model

Mean VE
S

0·198 0·196 0·198
VE

I
0·502 0·499

Standard deviation VE
S

0·082 0·066 0·057
VE

I
0·163 0·116

Mean squared error VE
S

0·007 0·004 0·003
VE

I
0·027 0·013

Confidence interval VE
S

0·022—0·345 0·067—0·317 0·082—0·306
VE

I
0·176—0·808 0·259—0·70

Power VE
S

0·668 0·822 0·932
VE

I
0·870 0·988

Power of the LR test VE
S
and VE

I
0·966 0·996

We also examined the statistical properties of the estimators, holding fixed the total number of
trial participants. Parameters used in the simulations of augmented trials designs in Tables I and
II are c"0·1, h"0·8, /"0·5, b"0·5. In Table III, we assume that the per partnership
transmission probability is only half that in Tables I and II, b"0·25.

For each of the trial designs, we report the average of 500 estimates of the estimable efficacy
parameters are their standard deviation. In the classical design, this is VE

S
, and in the augmented

designs this is VE
S
and VE

I
. The average of the 500 estimates leads to an estimate of the bias. The

standard deviation of the simulated estimates is the estimated standard deviation of the efficacy
parameter estimate. We also report the equitailed interval ranging from the lower 2·5th to upper
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Table III. Estimation and hypothesis testing results for the classical trial and the two augmented designs
with 1000 steady sexual partners per arm. Parameters used for simulation are c"0·1, h"0·8, /"0·5 and

b"0·25

Parameters of interest Classical trial Non-randomized Randomized
partner model partner model

Mean VE
S

0·198 0·196 0·199
VE

I
0·500 0·491

Standard deviation VE
S

0·082 0·072 0·064
VE

I
0·276 0·206

Mean squared error VE
S

0·007 0·005 0·004
VE

I
0·076 0·042

Confidence interval VE
S

0·022—0·345 0·038—0·325 0·052—0·314
VE

I
0·000—0·999 0·000—0·887

Power VE
S

0·668 0·782 0·876
VE

I
0·464 0·670

Power of the LR test VE
S
and VE

I
0·858 0·946

2·5th percentile of the estimated sampling distribution, an interval that we can regard as a 95 per
cent confidence interval for the parameter estimate. To compare the overall performance of the
efficacy parameter estimators under different probability models, we also report the mean square
errors of the estimates. Lastly, we report the approximate power of the asymptotic hypothesis test
at 5 per cent level H

0
: VE

S
"0, versus H

1
: VE

S
O0. The power is approximated by the

proportion of times in the simulation DVEY
S
/std(VEY

S
) D exceeds 1·96 (out of 500 simulation runs).

This is justified because, under the null hypothesis, VEY
S
/std(VEY

S
) is asymptotically standard

normal.
Similarly, in the augmented designs, the approximate power of the 5 per cent test for H

0
:

VE
I
"0, versus H

1
: VE

I
O0 is approximated by the proportion of times (out of 500 iteration) in

the simulation where DVEY
I
/std(VEY

I
) D exceeds 1·96. Lastly, to enumerate the power of the likeli-

hood ratio test, we perform each of the simulations twice, once under the null and once under the
alternative. We generate the samples under the null hypothesis, that is, we assume both VE

S
and

VE
I
are zero and calculate the upper 5 per cent percentile of the null distribution of the test

statistic. Then we generate samples from the alternative model, where the parameter values are as
described in the beginning of this section. The power of the likelihood ratio test is approximated
by the proportion of times the likelihood ratio test statistic in the simulation under the alternative
model exceeds the upper 5 per cent percentile point of the null distribution calculated from
a separate simulation mentioned before.

4.2. Simulation results

Tables I and II contain the simulation results. The second columns of the tables contain the
results for the classical trial where we assume that principal participants are recruited without
steady sexual partners. The results for the non-randomized partner model and randomized
partner model appear in the third and fourth columns of the tables, respectively. First we discuss
results in Table I, where we have information about 500 steady sexual partners for each group of
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the vaccinated and unvaccinated principal participants. VE
S
"0·2 in all the simulations. The

bias of the estimate of the vaccine efficacy parameter VE
S

is similar in all the models we
considered, although there is a minor improvement of the bias in the randomized partner
model. The standard deviation, however, is reduced in non-randomized model compared to
the classical model, and even further reduced in the randomized partner model. The mean
squared error (MSE) of estimation is smaller in the non-randomized model than in the classical
model and is the smallest in the randomized partner model. The 95 per cent confidence intervals
of the parameter estimates appear in the fourth row. We see a slight improvement, that is,
narrower confidence intervals for VE

S
with the two augmented trials compared with the classical

trial.
The power of the test of significance of the null hypothesis H

0
: VE

S
"0 improve considerably

in the two augmentations of the classical model compared with the classical model. In the
classical model, the power is 0·668, in the non-randomized partner model it is 0·784, and in the
randomized partner model it is 0·846. This increase in power is due partly to the increased
number of participants, and partly to our taking into account the within-partnership transmis-
sion probability.

We simulated the power to reject H
0
: VE

S
"0 for the classical trial design with an equal

number of participants as the non-randomized design with 500 partners recruited among
participants in each arm of the study, that is, n

0
"3000 and n

1
"2000. This power is 0·768

(not shown in Table I). If we conduct a trial using the classical design in an equivalently sized
population as the randomized partner design, that is, n

0
"2500 and n

1
"2500, the simulated

power is 0·786. Both of these simulations assume that the probability of being infected during
the study is 0·1, and partnerships are not taken into account. Essentially the power of the study
for VE

S
is similar for the classical and the augmented designs if the sample sizes are the same and

we use the same underlying transmission assumptions to produce the number of events in the
study.

Aside from the power considerations, we emphasize that in the classical model, it is not possible
to estimate or to test for VE

I
at all. In contrast, we can estimate VE

I
with either of the augmented

trial designs. Hence, we can compare the performance of the non-randomized partner model
and randomized partner model solely with respect to the estimation and tests relating VE

I
.

While the bias is almost the same in the non-randomized and randomized partner designs, the
standard deviation improves in the randomized partner model from 0·057 to 0·026. Overall, the
mean squared error for the estimation is also smaller in the randomized partner model. The
confidence intervals of the estimates of VE

I
is narrower in the randomized partner model

compared to the non-randomized partner model. The power of the test involving the parameter
VE

I
increases dramatically from 0·57 with the non-randomized model to 0·86 with the random-

ized partner model. This suggests that if we can augment the trial design by recruiting partners,
there is considerable benefit to assign some of them to vaccine. The power of the likelihood ratio
test of the joint hypothesis involving both VE

I
and VE

S
is also larger in the randomized partner

model.
We provide similar comparisons of these three different models when 1000 principal partici-

pants in each group (vaccinated and unvaccinated) have steady sexual partners (Table II).
The second column of Table II contains the same results of the classical trial with n

0
"n

1
"2000

as Table I. Once again, the bias of the estimates of VE
S

remains almost the same in all the
models. The standard deviations and the mean squared error follow the same pattern as before,
namely, they are the largest for the classical trial and the smallest for the randomized partner
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trial. We see the same patterns with the confidence intervals as well, that is, they are narrower
with the augmented models than with the classical trial model, and narrower with the random-
ized partner model than with non-randomized partner model. The power of the test for H

0
:

VE
S
"0 also has the same ordering of the three models as before, for the reasons discussed above.

The power of the test is 0·668 in the classical trial, 0·822 in the non-randomized partner model,
and 0·932 in the randomized partner model. Comparison of the estimation and tests of VE

I
also

reveals the same pattern. Finally, the power of the likelihood ratio test of the joint parameters
improves from 0·966 with the non-randomized partner model to 0·996 with the randomized
partner model.

We can also compare the performances of the tests as the number of steady sexual partners
increases from 500 to 1000 per trial arm. With more partners recruited, we have more informa-
tion. We expect that this extra information on the partners will result in better estimation and
increased power for tests of VE

I
. For example, in the non-randomized partner model, the power of

the test involving VE
I
in Table I is 0·570, and the power of the same test in Table II is 0·870.

Similarly, the power of the likelihood ratio test for the non-randomized partner model increases
from 0·856 to 0·966 with the increase from 500 to 1000 steady sexual partners per study arm. The
same trend holds for comparisons of the other statistical measures as the number of steady sexual
partners added to the study increases.

In additional simulations with the same parameter values and study composition except that
VE

S
"0·5, that is, VE

S
is greater than in the previous simulations, the power to estimate

VE
S
'0·999 in each of the three study designs. For estimation of VE

I
, however, the situation

became worse. This is likely due to the reduced number of infected vaccinees exposing their
partners to infection.7 The complex interaction between VE

S
, VE

I
and the requirements for

sample size determination deserves further investigation.
In Table III, b"0·25, just half of that in Tables I and II. The confidence interval on VE

I
is

much wider and the power of the hypothesis tests for VE
I

are much lower at this lower
transmission probability than that in Table II. The power for VE

S
is also lower because there are

fewer total events with the lower transmission probability. If the assumed transmission probabil-
ity is b"0·25 at a particular trial site, then this sample size is inadequate for studying VE

I
at this

assumed level of efficacy. Longini et al.18 give asymptotic results for the size of approximate
confidence intervals as functions of b and c.

Recall that in the classical trial model, the assumption is that none of the principal participants
has a steady sexual partner. A more realistic situation is that some of the primary partici-
pants have steady partners who are not included in the study. For these primary participants,
the simplest approach is to model their probability of infection over the course of the trial
independent of the source of infection. To see how the estimator and the tests perform, in such
a setup in which participants actually have partners, but they are not included in the study or
taken into account in the analysis, we simulate the data from a (larger) non-random partner
model, but use only the information (vaccine and infection status) on the primary participant and
analyse the data as if they had come from a classical trial design. Statistical inference is then
performed using the classical model likelihood. The MSE of the estimators in this modified
classical trial is nearly identical to the classical trial. The power of the test H

0
: VE

S
"0 in the

modified classical trial where data are generated from a non-randomized partner model with
n
0x
"n

1x
"1000, n

00
"n

10
"1000, turned out to be 0·676 compared to 0·668 for the classical

trial with the same total sample size. The power is still lower than the other two augmented
models for the same test.
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5. DISCUSSION

We suggest an augmented design of phase III HIV vaccine trials that enables estimation of the
effect of the vaccine on reducing infectiousness in addition to estimation of protective efficacy.
Using a simple probability model, we have demonstrated that estimation of both the protective
efficacy, VE

S
, and the efficacy in reducing infectiousness, VE

I
, is possible with this design. Indeed,

the simulation results suggest that the extra information provided by inclusion of the steady
sexual partners not only enables us to estimate the vaccine efficacy due to reduction of the
infectiousness of the vaccinated infected individual VE

I
along with VE

S
, it also improves

the accuracy of the estimator of VE
S
and the power of the test related to VE

S
, compared to the

classical model. If the HIV vaccine trials are designed to estimate efficacy simply by the relative
time to infection, or, conditional on infection, the rate of progression to disease, then they are
unable to give any information on the effect of the vaccine on reducing infectiousness. The
increased power and better estimation provided by the randomized partner design compared
with the non-randomized partner design suggest that if we have the ability to augment the trial
design by recruiting partners, we gain considerably with our further ability to assign some of them
to vaccine.

The probability model we presented here is a simple one that has been used with other
infectious diseases where final value data were available for households within a community.16
Magder and Brookmeyer use a similar model for HIV transmission for studying the effect of
covariates on the partnership secondary attack rates with partner studies.24

Rida17 uses a counting process approach similar to that in Rhodes et al.20 The trans-
mission probability is defined as the per contact probability of transmission from an infected
person to a susceptible person. Once the partner is infected, the probability that the contact
is potentially infectious as defined in Rhodes et al.20 is 1. The hazard rate of infection, say h (t),
is then the rate of contacts times the transmission probability. In the model used by Rida,17
the risk of secondary infection is defined as the competing risk between the within-couple
hazard of infection and the hazard that the index case recovers either by the natural loss
of infection or by change in the risk behaviour whereby he or she no longer exposes the partner
to HIV. Let t

i
denote the time of infection of the first partner, and ¹

i
denote either the infection

time of the second partner, the end of the study, the end of infectiousness of the first infected
partner, or the time at which the partners cease within-partnership risky behaviour. In the
probability model in this paper, the secondary attack rate for any partnership i is approximately
equivalent to

b
i
"1!expA!P

Ti

ti

h (t) dtB
in the notation used by Rida. The different cases with differing lengths of exposure of the
uninfected partner are not distinguished in this simple mode, but subsumed in the use of the final
value data. Thus, b represents a population average for the secondary attack rate over the entire
period of the study in this paper. The vaccine efficacy parameters h and / are defined in this paper
multiplicative to b, the probability of being infected within partnership during the trial, whereas
in Rida’s paper relative to the per contact transmission probability, thus multiplicative to h (t).
Thus, the relation between the efficacy parameters in our paper and those in Rida’s is similar to
that between those based on the transmission probability, hazards, and final value data discussed
elsewhere.3,6,25
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The model of vaccine effect assumes a multiplicative or leaky4 effect of the vaccine on both
susceptibility and infectiousness. Other models for heterogeneous distribution of the vaccine
effect on susceptibility have been discussed elsewhere (see, for example, references 3, 6, 22, 23, 25,
26 and 27). The distribution of the effect of the vaccine on infectiousness does not have to be
the same as that on susceptibility. For example, if a vaccine has an all-or-none effect on
susceptibility, that is, some people are completely protected against infection while others are
not at all, the vaccine could still reduce infectiousness in those people not protected against
infection. In addition, the probability of infection from outside contacts over the course of the
study may be different for an individual who does not have a steady partner than for an individual
who does. An individual without a steady partner may engage in more risky behaviour. Also,
there could be host factors such as age or history of STDs that differ among individuals with and
without steady partners that affect the susceptibility of infection. These relations deserve further
investigation.

Longini, Halloran and co-workers have expanded the model to account for interval censored,
time-to-infection data of the sort expected in these trials with the transmission probability defined
per sex act, not per partnership, and to account for more complicated partnership formations
(unpublished). We can, however, analyse time-to-event data in trials augmented with recruitment
of steady sexual partners using the model presented here. The more complicated model of
partnership formation can accommodate local social and sexual practices where trials are being
planned. These differ considerably within the United States, and across continents where trials
are planned from Brazil to Uganda to Thailand.28 If we expect that many couples will cease risky
behaviour if one partner becomes infected, then we may need to increase either the sample size or
the duration of follow-up to maintain power, depending on the biologic assumptions regarding
distribution of infectiousness after infection. Although the model solved here assumes that all the
recruited partners are susceptible, we could expand the design to include partners who are
already infected.

Previous trials on many different vaccines have often missed the opportunity to estimate the
effect of the vaccine on reducing infectiousness of breakthrough cases because of inadequate
design to estimate anything other than the relative risk of infection or disease in the vaccinated
compared to the unvaccinated. An example of this is the recently licensed chickenpox vaccine in
the U.S.A.5 It is important to design vaccine trials to answer the important questions. We suggest
augmentation of HIV vaccine trials with steady sexual partners to enable estimation of both the
effect of the vaccine on infectiousness in addition to its protective effect.

APPENDIX: LIKELIHOOD WHEN PRIMARY PARTICIPANT HAS MULTIPLE
PARTNERS

Here we present the likelihood function for primary participants who have more than one steady
partner. Suppose a primary participant has r partners who are not randomized into the trial and
that we can ascertain infection status of all or a subset of his or her sexual partners. We let array
m"(l, k

1
,2 ,k

r
) be the vaccination status indicators of the primary participant and his or her

r partners, and array i"(i, j
1
,2, j

r
) be the corresponding infection indicators. Then we let ni

m be
the probability of outcome i, for vaccination status m. The particular form of ni

m will depend on the
structure of the sexual contacts among the r#1 persons. The simplest structure is to assume that
the sexual contacts between the primary participant and a particular sexual partner are indepen-
dent of such contact with any other sexual partner. The infection status of the r sexual partners
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may be obtained through retrospective ascertainment of partners of infected primary partici-
pants, that is, i"(1, j

1
,2 , j

r
). The simplest assumption is that the contacts do not have an

opportunity to infect each other. An additional simple assumption is that none of the sexual
partners of primary participants will be vaccinated, that is, m"(l, 0,2, 0). This corresponds to
the non-randomized partner design.

Let j"+r
k/1

j
k
be the total number of partners infected. We assume that we can ascertain the

infection status of all r partners. Thus, one of the partners must be the source of infection for the
infection primary participant. Then, the probability of interest is

n i
m"A

r!1

j!1B [1!(1!c) (1!/lb)]j~1[(1!c)(1!/lb)]r~j, j"1,2 , r, l"0, 1. (7)

This probability can be factored into the appropriate likelihood function. If all of the r partners
cannot be located and tested, then (7) can be modified to allow that the source of infection for the
primary participants may not be among the tested partners. This can be done using straightfor-
ward probability arguments. If some of the r partners are known to have sexual contact with one
another, then (7) can be formulated for that particular situation following the recursive methods
developed by Addy et al.29 We can expand expression (7) so that some of the partners are
vaccinated. We can also account for the possible ordering of the partnerships. This leads to the
introduction of time and other models being developed elsewhere.

ACKNOWLEDGEMENTS

This work was partially supported by NIH NIAID T32-AI07442 and R01-AI32042.

REFERENCES

1. Dixon, D. O., Rida, W. N., Fast, P. E. and Hoth, D. F. ‘HIV vaccine trials: some design issues including
sampling size calculations’, Journal of the Acquired Immune Deficiency Syndrome, 6, 485—496 (1993).

2. Fleming, T. R. ‘Intermediate-sized trials for the evaluation of HIV vaccine candidates (abstract)., in
Conference on advances in AIDS vaccine development: 8th Annual Cooperative Vaccine Development
Groups for AIDS Meeting Program book, National Institutes of Health, Bethsada, 1996, p. 108.

3. Halloran, M. E., Haber, M. J., Longini, I. M. and Struchiner, C. J. ‘Direct and indirect effects in vaccine
field efficacy and effectiveness’, American Journal of Epidemiology, 133, 323—331 (1991).

4. Halloran, M. E., Struchiner, C. J. and Spielman, A. ‘Modeling malaria vaccines II: Population effects of
stage-specific malaria vaccines dependent on natural boosting’, Mathematical Biosciences, 94, 115—149
(1989).

5. Halloran, M. E., Cochi, S., Lieu, T., Wharton, M. and Fehrs, L. ‘Theoretical epidemiologic and
morbidity effects of routine immunization of preschool children with live-virus varicella vaccine in the
U.S.’, American Journal of Epidemiology, 140, 81—104 (1994).

6. Halloran, M. E., Longini, I. M., Struchiner, C. J., Haber, M. J. and Brunet, R. C. ‘Exposure efficacy and
change in contact rates in evaluating prophylatic HIV vaccines in the field’, Statistics in Medicine, 13,
357—377 (1994).

7. Halloran, M. E. and Struchiner, C. J. ‘Causal inference for infectious diseases’, Epidemiology, 61, 142—151
(1995).

8. Halloran, M. E. ‘Evaluating HIV vaccines: Discussion’, Statistics in Medicine, 15, 2405—2412 (1996).
9. DeGruttola, V., Seage, G. R., Mayer, K. H. and Horsburgh, C. R. ‘Infectiousness of HIV between male

homosexual partners’, Journal of Clinical Epidemiology, 42, 849—856 (1989).
10. Wiley, J. A., Herschkorn, S. J. and Padian, N. S. ‘Heterogeneity in the probability of HIV transmission

per sexual contact: the case of male-to-female transmission in penile-vaginal intercourse’, Statistics in
Medicine, 8, 93—102 (1989).

AUGMENTED HIV VACCINE TRIAL DESIGN 199

( 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 185—200 (1998)



11. Longini, I. M., Clark, W. S., Haber, M. J. and Horsburgh, R. C. ‘The stages of HIV infection: Waiting
times and infection transmission probabilities’, ¸ecture Notes in Biomathematics, 83, 111—137 (1989).

12. Kim, M. Y. and Lagakos, S. W. ‘Estimating the infectivity of HIV from partner studies’, Annals of
Epidemiology, 1, 117—128 (1990).

13. Jewell, N. P. and Shiboski, S. C. ‘Statistical analysis of HIV infectivity based on partner study data’,
Biometrics, 46, 1133—1150 (1990).

14. Shiboski, S. C. and Jewell, N. P. ‘Statistical analysis of the time-dependence on HIV infectivity based on
partner study data’, Journal of the American Statistical Association, 87, 360—372 (1992).

15. Koopman, J. S. and Little, R. J. ‘Assessing HIV vaccine effects’, American Journal of Epidermiology, 142,
1113—1120 (1995).

16. Longini, I. M. and Koopman, J. S. ‘Household and community transmission parameters from final
distributions of infections in households’, Biometrics, 38, 115—126 (1982).

17. Rida, W. N. ‘Assessing the effect on HIV vaccination on secondary transmission’, Statistics in Medicine,
15, 2393—2404 (1996).

18. Longini, I. M., Datta, S. and Halloran, M. E. ‘Measuring vaccine efficacy for both susceptibility to
infection and reduction in infectiousness for prophylactic HIV-1 vaccines’, Journal of Acquired Immune
Deficiency Syndrome and Human Retrovirus, 13, 440—447 (1996).

19. Halloran, M. E. and Struchiner, C. J. ‘Evaluating vaccine effects: changes in susceptibility, infectiousness,
contacts, direct and indirect effects’, in Proceeding of the III Brazilian/II Ibero American/¸atin American
Congress on Epidemiology, April, 1995.

20. Rhodes, P. H., Halloran, M. E. and Longini, I. M. ‘Counting process models for differentiating exposure
to infection and susceptibility’, Journal of the Royal Statistical Society, Series B, 58, 751—762 (1996).

21. Greenwood, M. and Yule, U. G. ‘The statistics of anti-typhoid and anti-cholera inoculations, and the
interpretation of such statistics in general’, Proceedings of the Royal Society of Medicine, 8 (part 2),
113—194 (1915).

22. Longini, I. M. and Halloran, M. E. ‘A frailty mixture model for estimating vaccine efficacy’, Applied
Statistics, 45, 165—173 (1996).

23. Halloran, M. E., Longini, I. M. and Struchiner, C. J. ‘Estimability and interpretation of vaccine efficacy
using frailty mixing models’, American Journal of Epidemiology, 144, 83—97 (1996).

24. Magder, L. and Brookmeyer, R. ‘Analysis of infectious disease data from partners studies with unknown
source of infection’, Biometrics, 49, 1110—1116 (1993).

25. Smith, P. G., Rodrigues, L. C. and Fine, P. E. M. ‘Assessment of the protective efficacy of vaccine against
common diseases using case-control and cohort studies’, International Journal of Epidemiology, 13,
87—93 (1984).

26. Halloran, M. E., Haber, M. J. and Longini, I. M. ‘Interpretation and estimation of vaccine efficacy under
heterogeneity’, American Journal of Epidemiology, 136, 328—343 (1992).

27. Brunet, R. C., Struchiner, C. J. and Halloran, M. E. ‘On the distribution of vaccine protection under
heterogeneous response’, Mathematical Biosciences, 116, 111—125 (1993).

28. Cohen, J. ‘News and comment: Thailand weighs AIDS vaccine tests’, Science, 270, 904—970 (1995).
29. Addy, C. L., Longini, I. M. and Haber, M. J. ‘A generalized stochastic model for the analysis of infectious

disease final size data’, Biometrics, 47, 961—974 (1991).

.

200 S. DATTA, M. HALLORAN AND I. LONGINI

Statist. Med., 17, 185—200 (1998) ( 1998 John Wiley & Sons, Ltd.


