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ABSTRACT
Empirical genetic datasets used for estimating contemporary dispersal in wild
populations and to correctly identify dispersers are rarely tested to determine if they
are capable of providing accurate results. Here we test whether a genetic dataset
provides sufficient information to accurately identify first-generation dispersers. Using
microsatellite data from three wild populations of common starlings (Sturnus vulgaris),
we artificially simulated dispersal of a subset of individuals; we term this ‘Simulated
Disperser Analysis’. We then ran analyses for diminishing numbers of loci, to assess
at which point simulated dispersers could no longer be correctly identified. Not
surprisingly, the correct identification of dispersers varied significantly depending on
the individual chosen to ‘disperse’, the number of loci used, whether loci had high or
low Polymorphic Information Content and the location to which the dispersers were
moved. A review of the literature revealed that studies that have implemented first-
generation migrant detection to date have used on average 10 microsatellite loci. Our
results suggest at least 27 loci are required to accurately identify dispersers in the study
system evaluated here. We suggest that future studies use the approach we describe to
determine the appropriate number of markers needed to accurately identify dispersers
in their study system; the unique nature of natural systems means that the number
of markers required for each study system will vary. Future studies can use Simulated
Disperser Analysis on pilot data to test marker panels for robustness to contemporary
dispersal identification, providing a powerful tool in the efficient and accurate design
of studies using genetic data to estimate dispersal.

Subjects Genetics, Population Biology
Keywords Ecological Genetics, Population Genetics, Power Analysis, Migrant, GeneClass2

INTRODUCTION
Dispersal is a major contributor to population processes, and can strongly influence
genetic diversity, local adaptation, speciation, levels of inbreeding, sexual selection and
many other biologically important processes (Clobert et al., 2012). Knowledge of dispersal
patterns can improve evaluation of the maintenance of source–sink population dynamics
(Walsh et al., 2012), the identification of habitat corridors or barriers to movement
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(Dzialak et al., 2005;Kozakiewicz et al., 2009), the determination of biological limitations to
dispersal (e.g., sex biased dispersal, Goudet, Perrin & Waser, 2002), and our understanding
of how the environment affects dispersal behaviour (Pruett-Jones & Lewis, 1990). Such
knowledge can contribute to a theoretical understanding of ecological processes and be
applied to improve conservation management practices (Fahrig & Merriam, 1994; Selonen,
Hanski & Painter, 2010; Keller et al., 2010). For over a century, direct measures of dispersal
have been collected using mark-recapture data (Sandercock, 2003), and more recently using
telemetry techniques (Harris et al., 1990) and Geographic Position Systems (GPS) tracking
(Cagnacci et al., 2010). Unfortunately, these methods have practical constraints, including
expense and the difficulty of deploying and retrieving a large number of units. Alternatively,
genetic methods that identify individual contemporary dispersers are commonly used
because they are relatively cheap and easy to implement (Broquet & Petit, 2009). These
methods include Bayesian statistics to identify the probability that a particular genotype
arises from each of a group of populations (Pritchard, Stephens & Donnelly, 2000; Piry et al.,
2004; Jombart et al., 2008). If an individual’s genotype has alleles that are more common to
a population other than where it was sampled, the individual is considered to be a potential
disperser (Rannala & Mountain, 1997).

The accuracy of genetic assignment methods depends on the demographic parameters
of the species being investigated (e.g., rates of dispersal; Bohonak, 1999; Whitlock &
McCauley, 1999), experimental design (e.g., proportion of populations sampled, number of
individuals sampled; Cornuet et al., 1999; Paetkau et al., 2004; Schwartz & McKelvey, 2008),
and the markers chosen (e.g., levels of polymorphism, number of loci; Berry, Tocher &
Sarre, 2004). Given the number of factors that can influence the correct identification of
dispersers using genetic assignment techniques, it is important that studies robustly test if
themarker system and population structure allow for reliable identification and assignment
of dispersers to the populations being studied. For example, Berry, Tocher & Sarre (2004)
were able to determine the number of loci needed to accurately assign dispersers of
grand skink (Oligosoma grande) populations by directly comparing genetically identified
dispersers with mark-recapture data collected over a seven year period. Ideally, estimates of
dispersal between populations should be carried out using multiple approaches to confirm
congruence between estimation methods; however, most ecological studies are restricted to
using a single approach either due to logistical or budget constraints (or both). Genetic data
may permit the identification of dispersers and assignment to their source populations, but
also provide the ability to estimate a range of other population parameters often of interest
to ecological researchers (e.g., estimates of genetic diversity and heterozygosity, levels of
inbreeding, multiple paternity, and historical patterns of connectivity; Excoffier, Laval &
Schneider, 2005; Peakall & Smouse, 2006; Porras-Hurtado et al., 2013; Waser & Hadfield,
2011;Waser, Paetkau & Strobeck, 2001).

Here we perform a Simulated Disperser Analysis, using microsatellite data from three
Australian common starling (Sturnus vulgaris) populations to test the power of a marker
system to accurately identify ‘dispersers’ (individuals that are not native to their collection
locality) using genetic assignment tests and genetic data only. This approach simulates
dispersal between populations and then tests a number of parameters (number of loci,
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levels of variability of loci, and effect of disperser genotype) on the ability to identify
dispersers and to correctly assign these to their collection locality.

METHODS
Ethics statement
The collection of all samples followed the strict guidelines outlined in the ethics application
(permit number: 05/011A) approved by The University of New South Wales ethics
committee.

Sample collection and DNA methods
We investigated dispersal in Australian invasive starlings (Sturnus vulgaris), a highly vagile
species that maintains an extensive distribution across southeast Australia. Samples were
taken from three populations previously shown to have low levels of genetic differentiation
(Rollins et al., 2009; FST = 0.02–0.07): Orange (New South Wales, 33◦17′S, 149◦06′E,
N = 32); Mallala (South Australia, 34◦27′S, 138◦30′E, N = 32); and Munglinup (Western
Australia, 33◦42′29′′S, 120◦51′54′′E, N = 30).

DNA was extracted using Gentra PureGene DNA extraction kit (Qiagen) following
the manufacturer’s instructions. Microsatellites were developed using next generation
sequencing on the GS-FLX 454 platform (Roche, Manheim, Germany) following methods
described by Abdelkrim et al. (2009). QDD v 0.9.0.0 Beta (Meglécz et al., 2010) was used
to identify microsatellites from the sequencing data and primers were designed using
the program PRIMER 3 (Rozen & Skaletsky, 2000). A panel of 20 polymorphic markers
was chosen (see Table S1). PCR reactions were multiplexed using universal fluorescently
labelled primers (Neilan, Wilton & Jacobs, 1997). A step-down PCR protocol was used for
each reaction consisting of ten cycles each at the following annealing temperatures: 70 ◦C,
64 ◦C, 58 ◦C, 54 ◦C, 50 ◦C. Reactions containing DNA from the same individual but with
differently labelled universal markers (e.g., PET, NED, 6-FAM and VIC) were combined
in equivalent amounts, so that all loci for each individual could be multi-loaded into three
tubes prior to fragment analysis (see Table S1). Samples were genotyped using an ABI 3730
(Applied Biosystems, Foster City, CA, USA) using GS-500 (Liz) in each capillary as a size
standard. Allele sizes were estimated on GENEMAPPER version 3.7 (Applied Biosystems).
These data were combined with data from 11 microsatellite loci for the same individuals
as detailed in Rollins et al. (2009) giving us a total of 31 loci.

Microsatellite markers were checked for departures from Hardy-Weinberg equilibrium
(Arlequin version 3.5.1.2, Excoffier, Laval & Schneider, 2005) and linkage disequilibrium
(GenePop version 4.0.10, Rousset, 2008). PIC was calculated for each locus using PICcalc
(Nagy et al., 2012). Arlequin was used to calculate Pairwise FST values. Pairwise values for
Shannon’s mutual information index (I, formerly called SHUA, Sherwin et al., 2017) were
calculated in GenAlEx (Peakall & Smouse, 2006) because mutual information is better than
FST at handling a range of population sizes and dispersal rates (Sherwin et al., 2006; Dewar
et al., 2011).
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Ninety-four samples were successfully genotyped for 31 microsatellite loci. Of the 20
new species-specific loci developed here, two showed significant deviation from Hardy-
Weinberg equilibrium (Svu002 and Svu010) and were removed from further analyses
(see Table S3). None of the remaining 18 loci showed significant departures from linkage
equilibrium after Bonferroni correction. Data from the other 11 loci previously have been
shown to be in Hardy-Weinberg equilibrium in these populations by Rollins et al. (2009).

Simulations
Initially, we used GeneClass2 (Piry et al., 2004) to determine the probability of each
individual originating in the population where it was sampled (see method below). One
individual from each population was randomly assigned to be a ‘simulated disperser’;
individuals with low probabilities of population membership were excluded from being
simulated dispersers because they were potentially real dispersers. Simulated dispersers
were moved in every possible combination relative to other simulated dispersers creating
a total of 27 (33) treatments (including a treatment of no movement, Table 1).

Loci were ranked by their Polymorphic Information Content (PIC) (see statistical
analysis below). Each treatment was analysed using 57 genetic datasets. The first analysis
started with the locus with the highest PIC and then consecutively adding the next highest
PIC locus until all loci were added (N = 29, including the dataset having all markers;
referred to as highest PIC hereafter). The second analysis started with the locus with the
lowest PIC and then consecutively adding the next lowest PIC locus until all loci were
added (N = 28, because the dataset with all markers was analysed in the previous analysis;
referred to as lowest PIC hereafter).

The partial Bayesianmethod (Rannala & Mountain, 1997) implemented inGeneClass2.0
was used to detect simulated dispersers. We ran 10,000 MCMC simulations per population
using the Lh/Lmax likelihood computation (Paetkau et al., 2004). Individuals were
considered first-generation dispersers if they had an Lh/Lmax p-value that was below
0.01. An individual can incorrectly be identified as a disperser in two ways: if they are
identified as a disperser when they are not one (False Positive), or, when they fail to be
identified as a disperser when they are one (False Negative). Once identified, GeneClass2.0
assigns dispersers to the most likely source population.

In our assessment of the ability of GeneClass2.0 to detect simulatedmigrants, assignment
tests were repeated for treatments and individuals, resulting in the non-independence of
data. To account for this, we used Generalised Linear Mixed Models (GLMMs), specifying
treatment and individual as random effects, and predictor variables (number of loci,
highest/lowest PIC loci used, location the simulated disperser was moved to, and I) as fixed
effects (Zuur et al., 2009). The response variable ‘dispersal status correctly identified’ was
a binary indicator of the ability of GeneClass2.0 to correctly identify whether a simulated
disperser was a disperser or not (0 = incorrectly identified, 1 = correctly identified) and
was specified as having a binomial distribution of errors with a logit link function. For
example, if an individual was identified as a resident in the population from which it
was sampled, it was classed as ‘dispersal status correctly identified’. The response variable
(dispersal status correctly identified) was modelled as a function of (a) the number of
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Table 1 List of simulated disperser movement combination used in analysis. Simulated dispersers were
moved in every possible combination relative to other simulated dispersers creating a total of 27 (33) treat-
ments. This table indicates the location of each simulated disperser for each of the 27 treatments. Treat-
ment 0 is the collection locality of each of the simulated dispersers before any simulated movement has
taken place. For example, for treatment 0, simulated disperser A is located in Munglinup, B is located
in Mallala and C in Orange (their collection localities). In treatment 1 simulated disperser A stayed in
Munglinup while B and C were both moved from their collection localities (treatment 0) to Munglinup.

Treatment Munglinup Mallala Orange

0 A B C
1 ABC 0 0
2 0 ABC 0
3 0 0 ABC
4 AB C 0
5 AB 0 C
6 AC B 0
7 AC 0 B
8 BC A 0
9 BC 0 A
10 0 BC A
11 A BC 0
12 A 0 BC
13 0 A BC
14 0 AB C
15 C AB 0
16 0 AC B
17 B AC 0
18 0 C AB
19 C 0 AB
20 B 0 AC
21 0 B AC
22 C A B
23 B C A
24 C B A
25 A C B
26 B A C

loci, (b) whether the highest/lowest PIC loci were used, (c) the population in which
the simulated disperser was located (either its collection locality or one of the other
two populations) and (d) the pairwise I value between populations when moved. The
number of loci was a discrete numeric variable, while highest / lowest PIC loci used (PIC
range = 0.251–0.862) was specified as a categorical variable with two levels, location was
specified as a categorical variable where individuals were coded as either being from their
collection locality or one of the other two populations (collection locality was used as the
reference group with which other groups were compared), and pairwise I was specified as
a continuous numeric variable. Model fit was estimated from marginal (R2

GLMM/(m)) and
conditional (R2

GLMM/(c)) coefficients of determination, following Nakagawa & Schielzeth
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(2013). R2
GLMM/(m) estimates model fit using fixed effects only, while R2

GLMM/(c) estimates
model fit including both fixed and random effects. By comparing these estimates it is
possible to compare the contribution that random effects and fixed effects have on the
response variable.

Literature search
To assess how studies have addressed parameters that affect power to detect dispersers
(number of individuals, number of loci, levels of genetic differentiation) we used Google
Scholar to conduct a literature search (on 19/12/2016) for articles that cited the publication
that originally presented the GeneClass2 analysis (Piry et al., 2004). We used the key term
‘dispersal’ to narrow the search and of 1,280 articles identified, we randomly chose 160
articles to assess. If the article did not use GeneClass2.0’s migrant detection analysis we
disregarded it; if the article did use this method we collected information on the number of
loci used, global FST value, and general article meta-data such as author(s), year published,
common name and species name. Of the 160 papers that were assessed, 132 matched the
selection criteria, including a total of 136 datasets (Table S2).

Generalised Linear Models (GLMs) were used to determine the relationship between
the global FST values of studies using genetic assignment tests and the number of loci that
were used by these studies to identified dispersers. The number of loci used was specified
as a continuous response variable, with a Poisson distribution, which was determined
graphically and the global FST value was a fixed effect.

To demonstrate the continuing relevancy of this work (see De Barba et al., 2016), we
searched within the 1,280 articles we identified above for those containing the search
term ‘microsatellite’ by year since this technique was published (2005–2016) to determine
whether the number of papers using this approach was decreasing over time.

Statistical analysis
Regression models and graphics were generated using the statistical programming
environment R (version 2.15.2, R Development Core Team, 2012). GLMMs were generated
using the function glmer within the package lme4 (version 0.999999-2, Bates, Maechler
& Bolker, 2012). Graphics were generated using the package ggplot2 (version 0.9.3.1,
Wickham, 2009).

RESULTS
Sample inclusion and genetic analysis
Populations from Orange (New South Wales) and Mallala (South Australia) showed the
lowest levels of differentiation from each other (FST= 0.026, P value < 0.001; I = 0.081),
while the population from Munglinup (Western Australia) displayed higher levels of
genetic differentiation from Orange (FST= 0.082, P value ≤ 0.001; I = 0.152) and Mallala
(FST= 0.081, P value≤ 0.001; I = 0.139) indicating that Munglinup is the most genetically
distinct area sampled.

One of 94 individuals was identified as a potential disperser within the original dataset,
which included all loci and no simulated dispersal. We avoided using this individual as a
simulated disperser.
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Table 2 Results of model testing the impact of variables on correctly identifying simulated dispersers. Genetic assignment tests were used to de-
termine whether three common starlings (Sturnus vulgaris) from three genetically distinct collection localities would be identified as dispersers when
their movement to a new location was simulated. Given are results from a Generalised Linear Mixed Model used to determine the effect of the pre-
dictor variables, the number of loci, loci with high or low Polymorphic Information Content (PIC) and simulated disperser movement, on the abil-
ity to correctly identify the status of simulated dispersers. The relationship of the response variable (simulated disperser’s status correctly identified
by a genetic assignment test) was tested by specifying movement in two ways. The first model specified movement as the location to which a simu-
lated disperser was moved (i.e., ‘In Mallala’ means a simulated disperser was moved from its collection locality to Mallala). Genetic distance (I) be-
tween the two locations (collection locality and simulated dispersal location) was used as a predictor variable in the second model. C, coefficient;
SE, standard error; Z, test statistic. Model fit was estimated from marginal (R2

GLMM/(m)) and conditional (R2
GLMM/(c)) coefficients of determination;

R2
GLMM/(m) estimate model fit using fixed effects only, while R2

GLMM/(c) estimates model fit including both fixed and random effects.

Response variable Predictor variable C SE Z

Simulated disperser status correctly identified by genetic
assignment test

Number of loci 0.30 0.01 26.98

(R2
GLMM/(m)= 0.6260; R2

GLMM/(c)= 0.8035) Highest/lowest PIC loci used 1.32 0.11 11.62
Moved to Mallala −4.75 0.24 −19.91
Moved to Munglinup −3.18 0.20 −15.71
Moved to Orange −5.75 0.25 −23.31

Simulated disperser status correctly identified by genetic
assignment test

Number of loci 0.38 0.01 25.39

(R2
GLMM/(m)= 0.7390; R2

GLMM/(c)= 0.8039) Highest/lowest PIC loci used 2.18 0.14 15.07
I 37.16 3.03 12.25

Simulations
The simulation results showed that the ability to correctly identify a simulated disperser
was strongly associated with an increase in the number of loci used and when the highest
PIC loci were used rather than the lowest (Table 2, Fig. 1). For a subset of the simulation
data (treatments where simulated dispersers were moved outside their collection locality),
I values showed a strong positive relationship with correct identification of simulated
dispersers. When a simulated disperser was moved to a location that had a relatively high
pairwise I to its collection locality, it was more likely to be correctly identified as a disperser
(Table 2). For two of our simulated dispersers, no False Positive errors were identified.
However, False Negative errors were common.

Simulated disperser A (SD-A), artificially moved from its collection locality
at Munglinup
SD-A was always identified as a resident when located in its collection locality, whether
using the highest or lowest PIC loci. We were able to identify SD-A to its collection locality
when using the three highest PIC loci available, whereas 11 loci were needed when using
those having the lowest PIC values. The minimum number of loci required to identify
SD-A to its collection locality 100% of the time did not vary between locations (Fig. 2).

Simulated disperser B (SD-B), moved from Mallala
SD-B was incorrectly identified as a disperser when located in its collection locality when
using the highest PIC loci but was always identified as a resident when using the lowest
PIC loci. When using the lowest PIC, 20 or more loci were needed to assign SD-B to its
collection locality 100% of the time, while 27 loci were needed when using the highest
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Figure 1 Probability of correctly identifying a simulated disperser by the number of loci used.Genetic
assignment tests were used to determine whether three common starlings (Sturnus vulgaris) from three ge-
netically distinct collection localities would be identified as dispersers when their movement to a new loca-
tion was simulated. Shown is the relationship between the probabilities (y-axis), from a Generalised Lin-
ear Mixed Model, of correctly identifying a simulated disperser plotted against an increase in the number
of loci used. The top line indicates the response when using loci with the highest Polymorphic Informa-
tion Content (PIC) first (blue line), and the bottom line indicates the response when using loci with the
lowest PIC first (red line). The coloured shading corresponding to each line encompasses the upper and
lower confidence intervals of the models.

Full-size DOI: 10.7717/peerj.4573/fig-1

PIC loci. SD-B was identified as a disperser after using the 18 highest PIC loci; however,
detection broke down between 21 to 24 loci. When using the lowest PIC loci SD-B was
not correctly assigned 1.66% of the time, and only when located in Orange. SD-B was not
correctly assigned 14.94% of the time when using the highest PIC loci (Fig. 2).

Simulated disperser C (SD-C), moved from Orange
SD-Cwas always identified as a resident when located in its collection locality whether using
the highest or lowest PIC loci. Fifteen loci were required to identify SD-C to its collection
locality 100% of the time, whether using the highest or lowest PIC loci. When using the
highest PIC loci, 21 out of 27 treatments correctly identified SD-C with 10 or more loci. For
treatments from 1 to 15 loci where SD-C was incorrectly identified, the location of SD-A
contributed to the incorrect identification. SD-C was not correctly assigned to Mallala
2.81% of the time when using the highest PIC loci and was not correctly assigned only
when located in Munglinup (Fig. 2).

Literature search
The studies we evaluated were published between 2005 and 2016. Studies that implemented
first-generation migrant detection in GeneClass2.0 to identify dispersers used on average
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Figure 2 Heatmap showing the assignment status of each simulated disperser.Genetic assignment tests
were used to determine whether three common starlings (Sturnus vulgaris) from three genetically distinct
collection localities (A, Munglinup; B, Mallala; C, Orange) would be identified as dispersers when their
movement to a new location was simulated. Each small coloured rectangle (continued on next page. . . )

Full-size DOI: 10.7717/peerj.4573/fig-2
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Figure 2 (. . .continued)
represents the results of a genetic assignment test; blue, individual was correctly assigned to its collec-
tion locality; red, individual was not recognised as a disperser or resident; orange, individual was identi-
fied as a disperser but assigned to the incorrect collection locality. The three panels represent the results
for simulated disperser A, C and B. Within each panel the top heat map shows the results when first us-
ing loci with the highest Polymorphic Information Content (PIC) and the bottom heat map shows the re-
sults when first using loci with the lowest PIC. The grey arrows below each inset show the direction the
loci were sorted, from high PIC to low PIC (top) or vice versa (bottom). Each inset is sorted on the y-axis
by the location the individual was found and the movement treatment. Each row corresponds to a differ-
ent treatment. The treatment order of each simulated migrant’s heat map row can be found in Table S4.

Figure 3 Data extracted during a literature review showing the relationship between the number of
loci used and FST value. A literature review was conducted to gather data on studies that used genetic as-
signment tests in GeneClass2.0 and their global FST. This graph shows the non-significant relationship
(GLM, t71 =−1.312) between the number of loci used and global FST of 72 datasets. The grey band shows
the 95% confidence interval on the fitted values.

Full-size DOI: 10.7717/peerj.4573/fig-3

11.2 ±5.1 loci. For a subset of these data (N = 72), where global FST was available, the
average global FST was, 0.120 ±0.119. There was no relationship between the global FST
of these studies and the number of loci used when conducting genetic assignment tests
(GLM, t71=−1.312; Fig. 3).

Figure 4 demonstrates that, despite the recent increase in population genetic papers
based on next-generation sequencing data, microsatellite data sets continue to be used for
contemporary disperser identification at a similar rate over the past eight years (more than
100 papers per year during this period).
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Figure 4 Number of papers that cited Piry et al. (2004) and contained the search term ‘microsatellite’
each year between 2005 and 2016.

Full-size DOI: 10.7717/peerj.4573/fig-4

DISCUSSION
Many studies have emphasised the need to have sufficient numbers of highly variable
loci in order to carry out population assignment tests with a high degree of confidence
(Manel, Berthier & Luikart, 2002; Berry, Tocher & Sarre, 2004; Evanno, Regnaut & Goudet,
2005). Here we artificially force dispersal between a set of populations and test the power
of the marker system (i.e., number of loci and levels of variability) to identify dispersers.
Our results show that we should be validating genetic assignment tests by testing the
power of the marker systems we use. Without validation of genetic data sets we cannot be
confident in the inferences we make about dispersal. Our results confirm that the number
of loci is one of the best predictors that a marker system has adequate power to detect
real dispersal events (Smouse & Chevillon, 1998; Bernatchez & Duchesne, 2000). However,
both false positive (identified as a disperser when they are not one) and false negative
(not identified as a disperser when they are one) assignments can result even when using
many loci with high levels of polymorphism (e.g., simulated disperser B). The approach we
present highlights the number of false positive and false negative assignments (see Fig. 2).

Similar to previous studies (Bernatchez & Duchesne, 2000; Berry, Tocher & Sarre, 2004),
our data indicated that the number of loci used to identify dispersers strongly influences the
results of contemporary genetic disperser analysis. As more loci are added to an analysis the
total information available for discriminating between the genotype of an individual and the
background population increases, which increases the detectability of dispersers. Others
have suggested that approximately 10 loci are required to correctly identify dispersers
when using assignment tests with microsatellite data (Cornuet et al., 1999; Bernatchez &
Duchesne, 2000); however, for our study system, ideally 27 loci were required (Fig. 1).
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In our study, false negatives (i.e., not identifying an individual as a migrant when they
were) were more common than false positives (i.e., when an individual was identified as a
migrant when they were not). This difference highlights the fact that every study requires an
individual validation of the marker system in order to be confident of identifying dispersers
using genetic assignment tests.

Not surprisingly, when using loci with low PIC more loci are usually required to reach
the same level of discrimination than loci with high PIC because low PIC loci provide
less discriminatory power for the analysis. However, this is not always true as seen with
individual B when using 21 to 24 of the highest PIC loci. A single locus can result in
inconsistent assignment of dispersers even when using a large number of loci. It is possible
that a single locus can play a comparatively large role in distinguishing the multi-locus
genotype of an individual. For example, if an individual has alleles at a locus that are rare
in its population but more common in another population, inclusion of this locus may
increase the incorrect assignment of that individual. Post-hoc analyses, where locus 21
was removed, resulted in correct assignment of SD-B for all locus combinations. This
demonstrates how our approach can help to identify problematic loci (i.e., those that yield
inaccurate assignments). Although spurious results might occur with any combination of
loci, it is reasonable to assume that such results would generally become less likely as more
discriminatory information becomes available with an increased number of loci.

Our results confirm those of previous studies (Cornuet et al., 1999; Berry, Tocher &
Sarre, 2004) by showing that it was easier to identify a disperser when they were moved into
a population that had a relatively high pairwise differentiation (e.g., I) from their collection
locality. Although Berry, Tocher & Sarre (2004) clearly showed this effect in a natural
system over a decade ago, there has been surprisingly little response to these findings. If
researchers were to take into account the relationship between population differentiation
(e.g., I, FST ) and the number of loci required and the ability to correctly identify dispersers,
studies that use genetic assignment tests should use more loci when their global FST is
lower. As shown by our analysis of the literature (Fig. 3), studies with lower FST values are
not consistently using more loci to compensate for detection ability. By not dealing with
this relationship, published studies may have incorrectly identified dispersers, potentially
leading to misleading conclusions. To be confident of research outcomes, we recommend
that studies only using genetic assignment test to identify dispersers should employ an
approach similar to the Simulated Disperser Analysis that we describe here to validate their
marker panel.

For a quick and stringent method capable of determining the number of loci necessary to
accurately identify dispersers (e.g., an approach that is able to distinguish individuals that
are easy to identify and hard to identify, such as SD-A and SD-B respectively) a ‘worst-case
scenario’ is necessary. This study showed that a worst-case scenario can be expected to
occur when individuals are moved to the most genetically similar population and the
lowest PIC loci are used. Therefore, for future studies to validate their disperser analysis,
they could move simulated dispersers to the most genetically similar population, start with
the lowest PIC locus and continue by adding the next lowest PIC locus (Fig. 5). Such a
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Figure 5 Recommended workflow indicating the steps necessary for validating genetic assignment
tests.

Full-size DOI: 10.7717/peerj.4573/fig-5

simulated dispersal scenariomakes biological sense given that genetic populations that have
the lowest pairwise FST values are likely to be geographically closest to one another, and
dispersers are more likely to move to a population closer to their own rather than further
away (Sutherland et al., 2000). If spurious results are observed (false positive), such as when
using the 21st locus to detect SD-B caused consistently incorrect results in our study, the
offending loci may require greater scrutiny because this could result from mis-scoring.

In studies where some information on levels of genetic differentiation and levels of loci
polymorphism are known, a preliminary ‘‘true’’ simulation study (i.e., based on synthetic
samples) can potentially provide guidance on sample sizes needed to correctly identify
dispersers. However, a simulated dispersal approach is applicable in cases where there is
no prior information on levels of genetic differentiation and levels of loci polymorphism.
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It is also important to note that a simulated dispersal approach will only be valuable when
estimates of the underlying allele frequencies are gained from a robust sampling protocol.

CONCLUSION
An increase in the number of loci and the pairwise differentiation (e.g., I, FST) between a
disperser’s collection locality and its final destination increases the accuracy of genetically
assigning the disperser (Cornuet et al., 1999; Bernatchez & Duchesne, 2000; Berry, Tocher &
Sarre, 2004). Our study showed similar patterns to previous research on natural systems
(Berry, Tocher & Sarre, 2004), however, the magnitude of the effect varied. Although basic
patterns may be discernible when determining the number of loci necessary to accurately
identify dispersers, the unique nature of natural systems means that every study system
will be different. By validating our genetic disperser analysis, we were able to determine
the number of loci required to increase the accuracy of identifying dispersers in a wild
population without the need for direct measures of dispersal (e.g., tracking data, etc).
Although next-generation sequencing data sets are becoming more prevalent in population
genetic studies, we demonstrate here that microsatellite data are still commonly used to
estimate contemporary dispersal and believe they will continue to do so (De Barba et al.,
2016). Although our demonstration of this approach used microsatellite data, the process
is also applicable analyses of next-generation sequencing data sets.
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