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The magnetohydrodynamic stability of an ordinary compressible hollow cylinder pervaded by a
transverse varying magnetic field, under the influence of capillary, inertia, and Lorentz force, has
been developed. The problem is modelized. The basic equations formulated, solved, and, upon
applying appropriate boundary conditions, the singular solutions are excluded. The eigenvalue
relation has been derived and discussed. The capillary force has destabilizing influence only for
long wavelengths in the axisymmetric perturbation but it is stabilizing in the rest and also so in the
nonaxisymmetric perturbations. The compressibility increases the stable domains and simultane-
ously decreases those of instability. The electromagnetic force has different effects due to the axial
uniform field and varying transverse one. The axial field is stabilizing for all wavelengths in all
kinds of perturbations. The transverse field is stabilizing or not according to restrictions. Here, the
high compressibility increases rapidly the magnetodynamic stable domains and leads to shrinking
those of instability.

1. Introduction

The stability of a fluid cylinder subjected to different external forces has been published
and reported by Rayleigh [1] and Chandrasekhar [2]. The instability of the mirror case of
a gas cylinder surrounded by an ideal fluid endowed with surface tension is envised by
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Chandrasekhar [2] for axisymmetric perturbation. See also Drazin and Reid [3] and Cheng
[4]. Kendall [5]made very neat experiments to check the breaking-up of this model due to its
instability as the inertia force of the exterior liquid is predominant over that of the gas cylin-
der. Moreover, he did write about its applications in several domains of science and attracted
the attention of researchers for elaborating the stability of this model. One has to infer here
that the analytical results given by Cheng [4], in (2.4) and (2.5), are incorrect in the third term.
In fact, the term (1−s2−k2R2

0)must be in the numerator as it is clear from (2.3). See also (5.1)–
(6.1) in the present work and Drazin and Reid’s result [3, page 16], and also Chandrasekhar’s
dispersion relation [2, page 538 and page 540], ((147) and (155) there). For other works
extending some of the previous results, we may refer to Radwan [6–9]. In all these foregoing
studies, the fluids are considered to be incompressible and nonviscous. See also Chen and Lin
[10].

In reality, in the model of a gas jet injected into a liquid, we have to consider the fluid
is compressible. In [11, 12], Radwan et al. tried to investigate the instability of that model
pervaded by constant magnetic field.

The stability of different cylindrical models under the action of selfgravitating force in
addition to other forces has been elaborated by Radwan and Hasan [13, 14]. Hasan [15] has
discussed the stability of oscillating streaming fluid cylinder subjected to combined effect of
the capillary, selfgravitating, and electrodynamic forces for all axisymmetric and nonaxisym-
metric perturbation modes.

There are many applications of magnetohydrodynamic stability in several fields of
science such as the following.

(i) Geophysics: the fluid of the core of the Earth and other theorized to be a hugeMHD
dynamo that generates the Earth’s magnetic field due to the motion of the liquid
iron.

(ii) Astrophysics: MHD applies quite well to astrophysics since 99% of baryonic matter
content of the universe is made of plasma, including stars, the interplanetary med-
ium, nebulae and jets, stability of spiral arm of galaxy, and so forth. Many astro-
physical systems are not in local thermal equilibrium and, therefore, require an
additional kinematic treatment to describe all phenomena within the system.

(iii) Engineering applications: there are many forms in engineering sciences include oil
and gas extraction process if it is surrounded by electric field or magnetic field, gas
and steam turbines, MHD power generation systems, magneto-flowmeters, and so
forth.

Here, we present a complete analysis of the stability of compressible hollow cylinder
pervaded by a transverse varying magnetic field for all axisymmetric and nonaxisymmetric
modes of perturbation where the fluid velocity is not solenoidal any more in the present
analysis.

2. Formulation of the Problem

Consider a gas cylinder of radiusR0 surrounded by a non-viscous, compressible and perfectly
conducting liquid. The liquid is pervaded by the uniform magnetic field H0 = (0, 0, H0)
while the gas cylinder is penetrated by the transverse varying magnetic field H

g

0 =
(0, βH0r/R0, 0), where β is a parameter satisfying certain restrictions andH0 is the intensity
of themagnetic field in the liquid region, see Figure 1.We shall use the cylindrical coordinates
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Figure 1: Sketch for MHD hollow jet.

(r, ϕ, z) with the z-axis coinciding with the axis of the gas cylinder; the components of H0
and H

g

0 are considered along the coordinates (r, ϕ, z). The model is acting upon the electro-
magnetic, capillary, inertia and pressure gradient forces such that the liquid inertia force is
paramount over that of the gas cylinder. The fundamental equations for such a study are the
combination of the ordinary fluid dynamics, Maxwell electromagnetic equation and those of
the perfect gas. Under the present circumstances these equations are given as follows.

Equations of motion:

∂ur

∂t
+
(
u · ∇)ur −

μ

ρ

(
H · ∇)Hr = −∂Π

∂r
, (2.1)

∂uϕ

∂t
+
(
u · ∇)uϕ −

μ

ρ

(
H · ∇)Hϕ = −1

r

∂Π
∂ϕ

, (2.2)

∂uz

∂t
+
(
u · ∇)uz −

μ

ρ

(
H · ∇)Hz = −∂Π

∂z
, (2.3)

where ρΠ is the total magnetohydrodynamic pressure which is the sum of kinetic and mag-
netic pressures, given by

ρΠ = P +
(μ
2

)(
H ·H). (2.4)

Equation of conservation of flux:

∇ ·H = 0. (2.5)
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Equation of conservation of mass of a compressible fluid:

∂ρ

∂t
+
(
u · ∇)ρ + ρ

(∇ · u) = 0. (2.6)

Equation of state gives the relation between the pressure P and density ρ:

P = ρRcT, (2.7)

Rc is a general constant of gas.
Equation of conservation of energy:

ρCv

(
∂

∂t
+ u · ∇

)
T + P

(∇ · u) = 0. (2.8)

Evaluation equations of a magnetic field (derived from the electromagnetic Maxwell equa-
tion) in a perfectly conducting fluid:

∂Hr

∂t
+
(
u · ∇)Hr +

(∇ · u)Hr =
(
H · ∇)ur, (2.9)

∂Hϕ

∂t
+
(
u · ∇)Hϕ +

(∇ · u)Hϕ =
(
H · ∇)uϕ,

∂Hz

∂t
+
(
u · ∇)Hz +

(∇ · u)Hz =
(
H · ∇)uz.

(2.10)

In the gas cylinder region, surrounded by a liquid, there is no current flow:

∇ ·Hg = 0, (2.11)

∇ΛHg = 0. (2.12)

Along the gas liquid interface, the curvature pressure Ps due to the capillary force is given by

Ps = S

(
1
r1

+
1
r2

)
, (2.13)

with

r−11 + r−12 = ∇ ·N, (2.14)

where S is the surface tension coeffient, while r1 and r2 are the principle radii of curvature
of the gas fluid and N the unit outward drawn normal vector to the perturbed interface,
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F(r, ϕ, z, t) = 0, given by

N =
∇F
(
r, ϕ, z, t

)

∣
∣∇F

(
r, ϕz, t

)∣∣ . (2.15)

Here, (ur, uϕ, uz) and (Hr,Hϕ,Hz) are, respectively, the components of the velocity vector u of
the fluid and the magnetic field intensityH, while ρ, P, Cv, and T are the fluid mass density,
kinetic pressure, specific heat at a constant volume, and temperature of the fluid, and Hg is
the intensity of the magnetic field in the gas cylinder.

The unperturbed state is studied by simplifying the fundamental equation in view of
u0 = 0, ∂/∂ϕ = 0 and ∂/∂z = 0 and integrating the resulting differential equations. Finally, by
means of the continuity of the normal component of the stress tensor across the gas-fluid
interface at r = R0, the kinetic pressure of the fluid in the unperturbed state is obtained,
namely,

P0 = P
g

0 +
(μ
2

)(
β2 − 1

)
H2

0 −
S

R0
. (2.16)

Equation (2.16) gives the kinetic pressure P0 of the fluid and it is a simple linear combination
of the contribution of the different forces effects.

(a) −S/R0 is the contribution due to the capillary force.

(b) (μH2
0/2)β

2 is the contribution due to the magnetodynamic force acting in the gas
region.

(c) (μH2
0/2)(−1) is the contribution due to the magnetodynamic force acting in the

fluid region.

(d) Pg

0 is the gas kinetic pressure and it must be suitably strong otherwise the model
collapses and the gas spreads into fluid region surrounding the gas cylinder.

One has to refer here that the net magnetodynamic force acting on the model has no contri-
bution in the balance of the total pressure (cf. (2.16)) in the unperturbed state in the following
cases:

(1) asH0 = 0,

(2) asH0 /= 0, β = 1.

To maintain and keep the model without collapsing in the unperturbed state, it must be P0 >
0, this means that the contribution of the capillary force S/R0 must be less than the gas pres-
sure Pg

0 , otherwise, the model will collapse and the gas may spread through the fluid region.
In the general case, in order that P0 ≥ 0, the gas kinetic pressure P

g

0 in the initial state
must satisfy the restriction:

P
g

0 ≥ S

R0
+
μH2

0

2

(
1 − β2

)
. (2.17)

Otherwise, the model collapses and will be a homogeneous fluid medium.
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3. Perturbation Analysis

For small departures from the unperturbed state, due to the perturbation along the gas-fluid
interface, every variable quantity Q(r, ϕ, z, t) may be expressed as its unperturbed part plus
a fluctuation part (see [11, 12], viz.)

Q
(
r, ϕ, z, t

)
= Q0(r) + δ(t)Q1

(
r, ϕ, z

)
. (3.1)

Here, Q stands for each of u, H, ρ, P, T , and the perturbed cross-section radius dis-
tance of the gas-fluid interface. The amplitude δ of the perturbation is given by

δ = δ0 exp(σt), (3.2)

where δ0(=δ at t = 0) is the initial amplitude and σ is the temporal amplification at any instant
of time t.

Consider a sinusoidal wave along the gas-fluid interface, for a single Fourier term, the
perturbed cylindrical radial distance is described by

r = R0 + R1, (3.3)

with

R1 = δ0 exp
[
σt + i

(
kz +mϕ

)]
(3.4)

being the elevation of the surfacewavemeasured from the unperturbed position, where k and
m are the axial and transverse wave numbers. From the view point of the foregoing expan-
sions (3.1)–(3.4), the relevant perturbation equations of the present case could be deduced
from the fundamental equations (2.1)–(2.15) as follows.

For the fluid surrounding the gas jet,

σu1 −
(

μ

ρ0

)
(
H0 · ∇

)
H1 = −∇Π1, (3.5)

ρΠ1 = P1 +
(μ
2

)(
2H0 ·H1

)
, (3.6)

∇ ·H1 = 0, (3.7)

σρ1 + ρ0
(∇ · u1

)
= 0, (3.8)

ρ0a
2(∇ · u1

)
= −σP1, (3.9)

P1

P0
=

ρ1
ρ0

+
T1
T0

, (3.10)

σH1 = ∇Λ
(
u1ΛH0

)
, (3.11)

where a is the sound speed in the gas defined by a = (γP0/ρ0)
1/2, and γ = Cp/Cv is the ratio

of specific heats of the fluids.
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For the gas region surrounded by the fluid,

∇ ·Hg

1 = 0, (3.12)

∇ΛH
g

1 = 0 (there is no current). (3.13)

Along the gas-liquid perturbed interface,

P1s =
S

R2
0

(

R1 + R2
0
∂2R1

∂z2
+
∂2R1

∂ϕ2

)

. (3.14)

By the aid of the series expansion (3.1) and the time-space dependence (3.4), based on the
linear perturbation technique, every physical quantity Q(r, ϕ, z, t) could be expressed as

Q1
(
r, ϕ, z, t

)
= Q∗

1(r) exp
[
σt + i

(
kz +mϕ

)]
. (3.15)

This means that any perturbed quantity could be expressed as an amplitude function of r
times the space-time dependence exp[σt + i(kz +mϕ)].

Upon utilizing the expansion, (3.15), (3.5), and (3.11) yield

(

σ +
Ω2

A

σ

)

u1 = −∇Π1 +
iΩ2

AP1

ka2ρ0
ez, (3.16)

σH1 = ikH0u1 +
σH0

ρ0a2
P1ez, (3.17)

where ez is a unit vector in the z-direction and ΩA is the Alfven wave frequency defined in
terms ofH0 as

ΩA =

(
μH2

0k
2

ρ0

)1/2

. (3.18)

Combining the z-components of (3.16) and (3.17) which are

σ

[

1 +
(
ΩA

σ

)2
]

u1z = −ikΠ1 +
iΩ2

A

ka2ρ0
P1,

σH1z = H0

(
iku1z +

σP1

a2ρ0

)
,

(3.19)

we obtain

H1z =
(ik)2H0(
σ2 + Ω2

A

)

[

−Π1 +
μH2

0

a2ρ0
P1

]

+
H0

a2ρ0
P1. (3.20)
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By substituting (3.6) into (3.20), we finally obtain

H1z =

(
σ2 + a2k2)H0

σ2a2ρ0
P1. (3.21)

Again, inserting (3.21) into (3.6) yields

Π1 =
(

ξ

ρ0

)
P1. (3.22)

With

ξ = 1 +
μH2

0

(
σ2 + a2k2)

σ2a2ρ0
. (3.23)

Consequently, the components u1r , u1ϕ, and u1z of u1 are given, from the vector equation
(3.16), by

(
σ2 + Ω2

A

)
u1r = −σ ∂Π1

∂r
,

(
σ2 + Ω2

A

)
u1ϕ = − imσ

r
Π1,

(
σ2 + Ω2

A

)
u1z = − ikσ

(−a2ξ + μH2
0

)

a2ξ
Π1.

(3.24)

By inserting (3.24) into the nonsolenoid equation (3.9)which is

1
r

∂(ru1r)
∂r

+
1
r

∂u1ϕ

∂ϕ
+
∂u1z

∂z
=

−σP1

a2ρ0
, (3.25)

and by taking into account the space (ϕ, z)-dependence (3.15), we get

1
r

d

dr

(
r
dΠ1

dr

)
−
(

m2

r2
+ η2

)

Π1 = 0, (3.26)

with

η2 = k2 +
σ2

a2ξ
. (3.27)

Equation (3.26) is an ordinary second-order differential equation; its solution is given in terms
of the ordinary Bessel functions of ordermwith imaginary argument. For the problem under
consideration, apart from the singular solution, the finite solution of (3.26) is given by

Π1(r) = AKm

(
ηr
)
. (3.28)
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Therefore, Π1(r, ϕ, z, t) is being

Π1
(
r, ϕ, z, t

)
= AKm

(
ηr
)
exp
[
σt + i

(
kz +mϕ

)]
, (3.29)

where A is a constant of integration to be determined, while Km(ηr) is modified Bessel
function of second kind of order m.

It is worthwhile to mention here that by means of (3.29), the components of u1(=
(u1r , u1ϕ, u1z)) and H1(= (H1r ,H1ϕ,H1z)) and also P1 could be identified from (3.16), (3.17),
and (3.22) explicitly.

Equation (3.13)means that the magnetic fieldH
g

1 in the perturbation state can be deri-
ved by means of a scalar function that, by using (3.12), satisfies Laplace’s equation. The latter,
by means of the expansion (3.15), transforms to an ordinary second-order differential equa-
tion whose solution is given in terms of cylindrical functions. For the problem under consid-
eration, the nonsingular solution gives Hg

1 in the form:

H
g

1 = B∇[Im(kr) exp
[
σt + i

(
kz +mϕ

)]]
, (3.30)

where B is an arbitrary constant of integration to be identified, while Im(kr) is the modified
Bessel function of the first kind of order m.

Based on the space dependence (3.15), the curvature pressure due to the capillary force
along the gas-fluid interface is given, from (3.14), in the form:

P1s =
S

R2
0

(
1 −m2 − k2R2

0

)
R1. (3.31)

4. Boundary Conditions

The solution of the relevant perturbation equations (3.5)–(3.14) represented by (3.15)–(3.31)
and the solution of the unperturbed system of equations represented by (2.16) must satisfy
appropriate boundary conditions. Under the present circumstances for the problem at hand,
these boundary conditions are given as follows.

(i) The normal component of the magnetic field must be continuous across the gas-
fluid interface (3.3) at r = R0. This condition may be formulated as follows:

No ·H1 +N1 ·Ho = No · H
g

1 +N1 ·H
g
o, (4.1)

where N(= N0 + εN1) is a unit outward vector normal to the gas-fluid interface
given by (2.15), with

F
(
r, ϕ, z, t

)
= r − R0 − R1 = 0 (4.2)

being the equation of the perturbed interface. Then,

No = (1, 0, 0), N1 =
(
0,

− im

Ro
,−ik

)
R1. (4.3)
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By substituting from (4.3) and the required expressions concerningH0, H1, H
g

0 , andH
g

1 into
(4.1), we obtain

B =
imβH0

xI ′m(x)
, (4.4)

where x(= kR0) is the dimensionless longitudinal wave number.

(ii) The normal component ur of the velocity umust be compatible with the velocity of
the deformed gas-fluid interface (3.3) at r = R0. This condition reads

N0 · u1 +N1 · u0 =
∂r

∂t
. (4.5)

By substituting u0, u1, N0, N1,and r into (4.5), this yields

A =
−(σ2 + Ω2

A

)

ηK′
m

(
ηR0
) . (4.6)

As we seen, complete nonsingular solutions for the variables of the problem have been ob-
tained. Here, for the aim of stability theory, one has to make one more step to identify the
stability criterion upon applying some compatibility condition.

(iii) This compatibility condition states that the normal component of the total stress
tensor concerning the kinetic and magnetic pressures must be discontinuous by the
curvature pressure due to the capillary force, across the gas-fluid interface (3.3) at
r = R0.

Mathematically, this reads

P1 + R1
∂P0

∂r
+
(μ
2

)[(
2H0 ·H1

)
+ R1

∂

∂r

(
H0 ·H0

)
]

= P1s +
(μ
2

)[(
2Hg

0 ·H
g

1

)
+ R1

∂

∂r

(
H

g

0 ·H
g

0

)]
.

(4.7)

Upon substituting into the condition (4.7) about the different variables, the following eigen-
value relation is obtained:

σ2 =
−S
ρR3

0

(
1 −m2 − x2

)yK′
m

(
y
)

Km

(
y
) +

μH2
0

ρoR
2
o

{

−x2 +
[
−β2 + (mβ

)2 Im(x)
xI ′m(x)

]
yK′

m

(
y
)

Km

(
y
)

}

, (4.8)

where y(= ηR0) is the dimensionless longitudinal wave number due to compressibility.

5. Limiting Cases

Equation (4.8) is the required capillary instability eigenvalue relation for a compressible
gas cylinder surrounded by a liquid and pervaded by a transverse varying magnetic field.
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It relates the temporal amplification σ or alternatively the oscillation frequency ω (i.e., if
σ(= iω) is imaginary)with the dimensionless (ordinary) longitudinal x and y (compressible)
wave numbers, azimuthal wave number m, the fundamental quantity (S/ρ0R3

0)
−1/2, as well

as (μH2
0/ρ0R

2
0)

−1/2 as a unit of time, the modified Bessel functions Im and Km of the first
and second kind of order m and their derivatives of different arguments, the parameter β of
the magnetic field pervading the interior of the gas cylinder, and with the parameters S, ρ0,
R0, μ, and H0 of the problem.

Several reported works may be obtained as limiting cases from the general result (4.8).
For incompressible (a → ∞), nonconducting (μ = 0, H0 = 0) fluid and axisymmetric

perturbation m = 0, the relation (4.8) yields

σ2 = − S

ρR3
0

(
xK′

0(x)
K0(x)

)(
1 − x2

)
, (5.1)

where (a → ∞), we find (y → x). Upon using the recurrence relation,

K′
0(x) = −K1(x), (5.2)

the relation (5.1) becomes

σ2 =
S

ρR3
0

(
xK1(x)
K0(x)

)(
1 − x2

)
. (5.3)

The relation (5.3) is indicated by Chandrasekhar [2, page 540], for the first time as a dis-
persion relation for the mirror case of a full fluid cylinder surrounded by vacuum. For the
discussion of this relation, we may refer to Radwan and Elazab [6] as we neglect the contri-
bution of the viscosity there.

If we suppose that (a → ∞) so (y → x),H0 = 0 for m/= 0, the relation (4.8) gives

σ2 = − S

ρR3
0

(
xK′

m(x)
Km(x)

)(
1 −m2 − x2

)
. (5.4)

This relation coincides with the relation given by Drazin and Reid [3].
The capillary eigenvalue relation of a compressible hollow cylinder is given from (4.8)

asH0 = 0, in the form:

σ2 =
−S
ρR3

0

(
1 −m2 − x2

)yK′
m

(
y
)

Km

(
y
) . (5.5)

Themagnetodynamic eigenvalue relation of a compressible hollow cylinder is given from the
general relation (4.8) as = 0, in the form

σ2 =
μH2

0

ρoR
2
o

{

−x2 +
[
−β2 + (mβ

)2 Im(x)
xI ′m(x)

]
yK′

m

(
y
)

Km

(
y
)

}

. (5.6)
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6. Stability Discussions

The general eigenvalue relation (4.8) of the model under consideration is a quadratic relation
in σ2. Therefore, we have to distinguish between the following different cases.

(i) The model will be ordinary stable, as σ2 is negative.

(ii) The model will be ordinary unstable, as σ2 is positive.

(iii) The model will be marginally stable, as σ2 is zero.

In order to judge such cases and investigate the stability of the present model, we have
to write down about the character and behavior of the modified Bessel functions Im and Km

and their derivatives.
Consider the recurrence relations (cf. [16]):

2I ′m(x) = Im−1(x) + Im+1(x),

2K′
m(x) = −Km−1(x) −Km+1(x).

(6.1)

For each nonzero real value of x. Also Im(x) is positive definite and monotonic increasing,
while Km(x) is monotonic decreasing but never negative:

Im(x) > 0, Km(x) > 0. (6.2)

Therefore, we may see, for a nonzero real value of x, that

I ′m(x) > 0, K′
m(x) < 0. (6.3)

In view of (3.27), we see that y → x as a → ∞, where the fluid in this case is an
incompressible one. Consequently, the stability of the hollow cylinder under the action of the
combined effects of the capillary and electromagnetic forces could be discussed.

As the model of a hollow cylinder is acted by the capillary force while the effect of the
electromagnetic force is neglected, the eigenvalue relation (4.8) reduces to (5.5). By means
of the relation, the capillary stable and unstable regions of the hollow cylinder could be
identified. By an appeal to the relations (6.1) and the inequalities (6.2) and (6.3), the sign of
σ2 depends on the sign of the quantity (1 −m2 − x2). Henceforth, we have the different cases:

⎧
⎪⎪⎨

⎪⎪⎩

σ∗2 = 0, as x = 1,

σ∗2 < 0 as 1 < x < ∞
σ∗2 > 0 as 0 < x < 1,

for m = 0,

σ∗2 < 0, as 0 ≤ x < ∞, for m/= 0,

(6.4)

where

σ∗ = σ

(
S

ρ0R
3
0

)−1/2
(6.5)

is the dimensionless growth rate at the instant of time t.
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This means that the hollow cylinder is stable in the case 1 ≤ x < ∞ for m = 0 and
0 ≤ x < ∞ for m ≥ 1, while it is unstable only as 0 ≤ x ≤ 1 for m = 0. This results, of
course, as a−1 → 0. However, for ordinary values of a: in such case, we have the modified
Bessel functions with argument y which in turn is a function of the compressibility factor
a(= (γP0/ρ0)

1/2). Now, for x /= 0, y /= 0 and y > x, we have

Im
(
y
)
> Im(x), Km(x) > Km

(
y
)
,

I ′m
(
y
)
> I ′m(x), K′

m(x) > K′
m

(
y
)
.

(6.6)

In view of these inequalities, the discussion of the relation (5.5) reveals that the compressibil-
ity has a stabilizing effect in all (m = 0 andm/= 0)modes of perturbation for all wavelengths.
The stabilizing effect becomes stronger for high compressibility and, therefore, it acts to
overcome the capillary destabilizing influence.

As the hollow cylinder model is acted upon the electromagnetic force due to the per-
vading magnetic fields in the initial states and pressure gradient forces as S = 0, the eigen-
value relation of such case is given, in its general form, by the relation (5.6). The effect
of the axial magnetic field in the liquid region is represented by the term −x2 following
μH2

0/ρ0R
2
0. It contributes as a negative part in σ2, that is, σ is imaginary in this case.

This means that it has a stabilizing effect on the model. The transverse varying magnetic
field pervaded into the gas region is presented by the terms −β2yK′

m(y)/Km(y) and
(m2β2)(yIm(x)K′

m(y)/xI
′
m(x)Km(y)) following the natural quantity μH2

0/ρ0R
2
0. In the axi-

symmetric mode, m = 0, the transverse magnetic field is purely destabilizing. In the non-
axisymmetric modes, m ≥ 1, the transverse magnetic field is purely destabilizing in the term
−β2yK′

m(y)/Km(y)while it is stabilizing due to the other terms. Therefore, we conclude that
the transverse magnetic field is stabilizing or destabilizing according to restrictions.

Consequently, the electromagnetic forces in the gas and liquid regions are strongly sta-
bilizing the model in the axisymmetric modem = 0, while they have a destabilizing influence
inm ≥ 1modes in the gas region only. Also, in suchmagnetodynamic case the compressibility
has a stabilizing tendency not only in m = 0 mode but also in the non-axisymmetric modes
m ≥ 1. Its influence is decreasing the magnetodynamic unstable domain in m ≥ 1 and simul-
taneously increasing those of stability in m = 0 mode.

One has to mention here it is argued that when the effects of materials compressibility
are considered, the growth rate value may be reduced in comparison with the incompressible
case. This is due to the fact that compression absorbs some of the energy which would, other-
wise, go into fluidmotion and causesmore instability. For this reason, it is stated that the com-
pressibility has a stabilizing tendency.

It is worth to mention here that the stabilizing effect of the electromagnetic force
μ(∇ΛH)ΛH may be interpreted as follows.

This force is interpreted as arising from the action on the fluid of Maxwell’s stresses: a
magnetic tension μ(H ·H)/2 per unit area along the magnetic lines of force and equal mag-
netic pressure acting in all the directions in the conducting fluid. Taking into account that the
latter is not perpendicular to the magnetic lines of force and acting in all directions because
the diffusion term is neglected in the evolution equations of the magnetic field (2.9). Due to
these stresses, the lines of force are able to endow the fluid with a sort of rigidity.
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7. Numerical Analysis

The main purpose of the numerical analysis is that one could determine exactly where are the
MHD stable and unstable domains of the model under consideration influenced by the com-
bined effects of the electromagnetic and capillary forces. In addition, we may identify the
critical points which separate the stable and unstable domains for different values of the pro-
blem parameters.

To perform that, we have to write down the eigenvalue relation (4.8) in dimensionless
form in the most important mode m = 0 of perturbation. Now, since the natural quantity
(S/ρ0R3

0)
−1/2 has a unit of (time)−1, we have σ∗ = σ(S/ρ0R3

0)
−1/2 which is the dimensionless

growth rate. For m = 0, the relation (4.8) leads to

σ∗2 =
(
1 − x2

)yK1
(
y
)

K0
(
y
) +

(
H0

Hs

)2
{

−x2 + β2
yK1

(
y
)

K0
(
y
)

}

, (7.1)

where σ∗ is the nondimensional growth rate.
If σ∗2 is negative, we write σ∗ = iω∗ (with i =

√−1 being the imaginary factor) where
ω/2π is the oscillation frequency. The notation H2

s = S/μR0 is with Hs as a unit of magnetic
field, and we have used the notation I ′0 = I1 and K′

0 = −K1. The dispersion relation (7.1) has
been computed for all short and long wavelengths in the new form in relation (7.2)which is

σ∗2 =
(
1 − x2

)y K1
(
y
)

K0
(
y
) +M

{

−x2 + β2
yK1

(
y
)

K0
(
y
)

}

(7.2)

such calculations have been elaborated for different values of β andM for regular values of y.
The values of σ∗ corresponding the unstable domains and those of corresponding the stable
domains are collected, tabulated, and presented graphically.

It is found that there are many features of interest in this numerical analysis as we see
in the following.

(i) For β = 0.7 and x = 1, see Figure 2. Corresponding to M = 0.5, 1, 1.5, 2, 2.5, and 3,
it is found that the unstable domains are 0 < y < 1.6209, 0 < y < 1.6209, 0 < y <
1.6209, 0 < y < 1.6209, 0 < y < 1.6209, and 0 < y < 1.6209 while the neighbouring
stable domains are 1.6209 ≤ y < ∞, 1.6209 ≤ y < ∞, 1.6209 ≤ y < ∞, 1.6209 ≤ y < ∞,
1.6209 ≤ y < ∞, and 1.6209 ≤ x < ∞ where the equalities correspond to the mar-
ginal stability states.

(ii) For β = 0.8 and x = 1, see Figure 3. Corresponding to M = 0.5, 1, 1.5, 2, 2.5, and 3,
it is found that the unstable domains are 0 < y < 1.1383, 0 < y < 1.1383, 0 < y <
1.1383, 0 < y < 1.1383, 0 < y < 1.1383, and 0 < y < 1.1383 while the neighbouring
stable domains are 1.1383 ≤ y < ∞, 1.1383 ≤ y < ∞, 1.1383 ≤ y < ∞, 1.1383 ≤ y < ∞,
1.1383 ≤ y < ∞, and 1.1383 ≤ x < ∞ where the equalities correspond to the
marginal stability states.

(iii) For β = 0.9 and x = 1, see Figure 4. Corresponding toM = 0.5, 1, 1.5, 2, 2.5, and 3, it
is found that the unstable domains are 0 < y < 0.829, 0 < y < 0.829, 0 < y < 0.829,
0 < y < 0.829, 0 < y < 0.829, and 0 < y < 0.829 while the neighbouring stable
domains are 0.829 ≤ y < ∞, 0.829 ≤ y < ∞, 0.829 ≤ y < ∞, 0.829 ≤ y < ∞,
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Figure 2: Stable and unstable domains for β = 0.7 and x = 1.
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Figure 3: Stable and unstable domains for β = 0.8 and x = 1.

0.829 ≤ y < ∞, and 0.829 ≤ x < ∞ where the equalities correspond to the marginal
stability states.

(iv) For β = 1 and x = 1, see Figure 5. Corresponding toM = 0.5, 1, 1.5, 2, 2.5, and 3, it is
found that the unstable domains are 0 < y < 0.6179, 0 < y < 0.6179, 0 < y < 0.6179,
0 < y < 0.6179, 0 < y < 0.6179, and 0 < y < 0.6179 while the neighbouring stable
domains are 0.6179 ≤ y < ∞, 0.6179 ≤ y < ∞, 0.6179 ≤ y < ∞, 0.6179 ≤ y < ∞,
0.6179 ≤ y < ∞, and 0.6179 ≤ x < ∞ where the equalities correspond to the mar-
ginal stability states.
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Figure 4: Stable and unstable domains for β = 0.9 and x = 1.
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Figure 5: Stable and unstable domains for β = 1 and x = 1.

(v) For β = 1.1 and x = 1, see Figure 6. Corresponding to M = 0.5, 1, 1.5, 2, 2.5, and 3,
it is found that the unstable domains are 0 < y < 0.4439, 0 < y < 0.4439, 0 < y <
0.4439, 0 < y < 0.4439, 0 < y < 0.4439, and 0 < y < 0.4439 while the neighbouring
stable domains are 0.4439 ≤ y < ∞, 0.4439 ≤ y < ∞, 0.4439 ≤ y < ∞, 0.4439 ≤ y < ∞,
0.4439 ≤ y < ∞, and 0.4439 ≤ x < ∞ where the equalities correspond to the
marginal stability states.
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Figure 6: Stable and unstable domains for β = 1.1 and x = 1.

8. Conclusion

From the numerical discussion, we deduce that the compressibility has a strong stabilizing
tendency for all wavelengths. The capillary force is destabilizing for a small domain of long
wavelengths in the axisymmetric mode while it is stabilizing in all the rest. The electromag-
netic force interior the gas is stabilizing. The electromagnetic force in the liquid region is
stabilizing also. These results are in good agreement with the analytical discussions of relation
(4.8).
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