
Yu et al. Boundary Value Problems  (2016) 2016:113 
DOI 10.1186/s13661-016-0623-6

R E S E A R C H Open Access

A magnetic regularity criterion for the 2D
MHD equations with velocity dissipation
Yanghai Yu, Xing Wu and Yanbin Tang*

*Correspondence:
tangyb@hust.edu.cn
School of Mathematics and
Statistics, Huazhong University of
Science and Technology, Wuhan,
Hubei 430074, P.R. China

Abstract
In this paper we consider an initial value problem of the 2D MHD equations with
velocity dissipation and without magnetic diffusion. We establish a new magnetic
regularity criterion in terms of the magnetic field. In contrast to the magnetic
regularity criterion ∇b ∈ L1(0, T ;BMO(R2)), our regularity criterion∫ T
0 (‖b⊗ b(s)‖B0∞,1(R

2) + ‖b⊗ b(s)‖L2(R2))ds <∞ is different; for example, our simplified

regularity criterion
∫ T
0 ‖b(s)‖2

Bε∞,1(R
2)
ds < ∞ requires higher time integrability and

lower regularity of space.

MSC: 35A07; 35Q53

Keywords: 2D magnetohydrodynamic equations; velocity dissipation; regularity
criterion

1 Introduction
In this paper we consider the global regularity on the D incompressible magnetohydro-
dynamic (MHD) equations with velocity dissipation and without magnetic diffusion,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + u · ∇u + ∇p = b · ∇b + �u, x ∈R
, t > ,

∂tb + u · ∇b = b · ∇u, x ∈R
, t > ,

∇ · u = ∇ · b = , x ∈R
, t ≥ ,

u(, x) = u(x), b(, x) = b(x), x ∈R
,

(.)

where u = u(t, x) stands for the velocity of the fluid, b = b(t, x) for the magnetic field, and
p = p(t, x) for the scalar pressure. Due to the lack of magnetic diffusion, the global well-
posedness is extremely difficult and remains open.

The study of basic equations in fluid kinematics is one of the interesting fields. For ex-
ample, we have the MHD equations [, ], the Benjamin-Bona-Mahony equations [, ],
and the quasi-geostrophic equations [–]. Since the MHD equations have strong physi-
cal backgrounds [, ], the study of the MHD equations has attracted considerable interest
and much progress has been made in the last few years. One of the fundamental problems
regarding the MHD equations is that they develop singularities. This is due to the nonlin-
ear coupling between the Navier-Stokes equations with a forcing induced by the magnetic
field and the induction equation (see [–]).

© 2016 Yu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208806104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13661-016-0623-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0623-6&domain=pdf
http://orcid.org/0000-0001-7445-2817
mailto:tangyb@hust.edu.cn


Yu et al. Boundary Value Problems  (2016) 2016:113 Page 2 of 13

We first recall some of the recent progress in this direction. The local well-posedness
for the system (.) has been proved in [–], respectively. Furthermore, Jiu and Niu []
proved that the solution keeps smoothness up to time T if

b ∈ Lp(, T ; W ,q(
R

)) with

p

+

q

≤ ,  ≤ p ≤ 


,  < q ≤ ∞.

Jiu and Liu [] discussed the global regularity for the D axisymmetric MHD equations
with horizontal dissipation and vertical magnetic diffusion. Fan and Ozawa [], and Zhou
and Fan [] obtained a regularity criterion on the velocity field ∇u ∈ L(, T ; L∞(R)) and
the magnetic field ∇b ∈ L(, T ; BMO(R)), respectively. To the best of our knowledge, for
the MHD equations (.), when the indicator of dissipation is larger than  and without
zero magnetic diffusion the global well-posedness is also open. Due to lack of the magnetic
diffusion, it is very difficult to get global estimates of the local solution in any Sobolev
spaces. Very recently, Jiu, Niu, and Wu et al. [] gave a new regularity criterion by the
Besov space technique. Motivated by the ideas described in [] and [], the main goal
of this paper is to establish another regularity criterion in terms of the condition on the
magnetic field. Our main result is the following.

Theorem . Assume that (u(x), b(x)) ∈ Hs(R) (s > ) with ∇ · u(x) = ∇ · b(x) = .
Let (u(t, x), b(t, x)) be a local smooth solution of system (.). Then (u(t, x), b(t, x)) can be
extended beyond time T if

∫ T



(∥∥b ⊗ b(s)
∥
∥

B∞,(R) +
∥
∥b ⊗ b(s)

∥
∥

L(R)

)
ds < ∞. (.)

Remark . ∀ε > , Bε∞, is a Banach algebra and the embedding Bε∞, ↪→ B∞, ↪→ L∞ hold,
the condition (.) can be replaced by

∫ T



∥
∥b(s)

∥
∥

Bε∞,(R) ds < ∞. (.)

Based on the above observation, the condition (.) demands higher time integrability and
lower regularity of space than the regularity condition imposed by Zhou and Fan [].

The plan of this paper is as follows. In the next section, we state some notations and
preliminary results in the standard theory of Besov spaces. In the third section, we first
establish all tools needed to get a magnetic regularity, then we divide the proof into three
steps to get the magnetic regularity criterion.

2 Notations and preliminaries
We first introduce the following notations. C denotes a positive constant which may vary
from line to line. X � Y means that there exists a positive harmless constant C such that
X ≤ CY . We use the sub-indices (like Cs or �s) to indicate the parameter dependence of
the constant C. Let S(Rd) be the Schwartz class of rapidly decreasing functions and S ′(Rd)
the space of tempered distributions. For all u ∈ S ′, the Fourier transform Fu, also denoted
by û, is defined by

Fu(ξ ) = û(ξ ) =
∫

Rd
e–ix·ξ u(x) dx, ∀ξ ∈ R

d.
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The inverse Fourier transform allows us to recover u from û:

u(x) = F–û(x) = (π )–d
∫

Rd
eix·ξ û(ξ ) dξ .

[A, B] stands for the commutator operator AB – BA, where A and B are any pair of opera-
tors on some Banach space.

We now recall some standard theories of Besov space (more details see []).
Let C denote the annulus {ξ ∈ R

d : / ≤ |ξ | ≤ /}. There exist two radial functions
χ ∈ C∞

c (B(, /)) and ϕ ∈ C∞
c (C) both taking values in [, ] such that

χ (ξ ) +
∑

j≥

ϕ
(
–jξ

)
= , ∀ξ ∈R

d.

For every u ∈ S ′(Rd), the inhomogeneous dyadic blocks �j are defined as follows: �–u =
χ (D)u and �ju = ϕ(–jD)u, ∀j ≥ . The inhomogeneous low-frequency cut-off operator Sj

is defined by

Sju =
j–∑

q=–

�qu.

In the inhomogeneous case, the following Littlewood-Paley decomposition makes sense:

u =
∑

j≥–

�ju, u ∈ S ′(
R

d).

Let s ∈R and p, q ∈ [,∞], the inhomogeneous Besov space Bs
p,q(Rd) is defined by

Bs
p,q =

{

u ∈ S ′(
R

d),‖u‖Bs
p,q(Rd) :=

(∑

j≥–

qjs‖�ju‖q
Lp

)/q

< ∞
}

.

In this paper, two kinds of the coupled space-time Besov spaces Lr
T Bs

p,q and L̃r
T Bs

p,q (r ≥ )
are defined, respectively, as follows:

Lr
T Bs

p,q =
{

u ∈ S ′(
R

d),‖u‖Lr
T Bs

p,q(Rd) :=
∥
∥(

js‖�ju‖Lp
)

lq
∥
∥

Lr
T

< ∞}
,

L̃r
T Bs

p,q =
{

u ∈ S ′(
R

d),‖u‖L̃r
T Bs

p,q(Rd) :=
(
js‖�ju‖Lr

T Lp
)

lq < ∞}
.

The following links between these spaces are direct results due to the Minkowski inequal-
ity:

Lr
T Bs

p,q ↪→ L̃r
T Bs

p,q, if q ≥ r; and L̃r
T Bs

p,q ↪→ Lr
T Bs

p,q, if r ≥ q. (.)

In particular,

Lq
T Bs

p,q ≈ L̃q
T Bs

p,q. (.)

Bernstein’s inequalities are fundamental in the analysis involving Besov spaces and these
inequalities trade integrability for derivatives.
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Lemma . [] Let C be an annulus and B a ball. Then there is a constant such that for
all k ∈N∪ {},  ≤ p ≤ q ≤ ∞, and f ∈ Lp, we have

supp f̂ ⊂ λB ⇒ ∥
∥Dkf

∥
∥

q = sup
|α|=k

∥
∥∂αf

∥
∥

q ≤ Cλ
k+d( 

p – 
q )‖f ‖p, (.)

supp f̂ ⊂ λC ⇒ C–λk‖f ‖p ≤ ∥
∥Dkf

∥
∥

p ≤ Cλk‖f ‖p. (.)

The Biot-Savart law will be used often to get the control between the gradient of velocity
and the vorticity.

Lemma . [] For any divergence-free vector field u, there exists a universally positive
constant C such that, for any  < p < ∞, we have

‖∇u‖Lp ≤ C
p

p – 
‖w‖Lp , (.)

here w = curl u = ∇ × u is the vorticity.

Next, we state a commutator estimate involving the Riesz operator R = (–�)– curldiv.

Lemma . [] The standard Riesz operator R = (–�)– curldiv is continuous and linear,
it maps Lp(Rd) into Lp(Rd) for any  < p < ∞. In particular, for all f ∈ Lp(Rd) the following
estimate holds true:

‖Rf ‖Lp(Rd) ≤ Cd,p‖f ‖Lp(Rd). (.)

Lemma . [] If u is a smooth divergence-free vector field of R with vorticity, and f is
a smooth function, then for all p ∈ (,∞),

∥
∥[R, u · ∇]f

∥
∥

Lp ≤ C‖∇u‖Lp
(‖f ‖L + ‖f ‖B∞,

)
. (.)

Proof For the sake of convenience, we sketch the proof. Without loss of generality, we
assume that the functions u ∈ C∞

c (R) and f ∈ C∞
c (R). It is easy to verify directly that

[R, u · ∇]f = divx
(
R(uf )

)
– divx(uRf ) =

∑

j=

∂jufj –
∑

i,j=

∂iuRi,jfj. (.)

Due to Hölder’s inequality, Bernstein’s inequality, and the embedding B∞, ↪→ L∞, we get

∥
∥[R, u · ∇]f

∥
∥

Lp ≤ C‖∇u‖Lp
(‖f ‖L∞ + ‖Rf ‖L∞

)

≤ C‖∇u‖Lp

(

‖f ‖B∞,
+ ‖�–Rf ‖L∞ +

∞∑

j=

‖�jRf ‖L∞

)

≤ C‖∇u‖Lp

(

‖f ‖B∞,
+ ‖Rf ‖L +

∞∑

j=

‖�jf ‖L∞

)

≤ C‖∇u‖Lp
(‖f ‖L + ‖f ‖B∞,

)
. (.)
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Moreover, it is easy to see that both inequalities (.) and (.) can be extended to all
functions by a simple density argument. �

3 Proof of Theorem 1.1
In this section we prove our main result Theorem .. The strategy of the proof is as fol-
lows. We first prove the global a priori bounds for ‖w‖H and ‖j‖H . Then we divide the
proof into three steps: () the Lp ( < p < ∞) estimate of the vorticity ω, () the gradient
estimate of the velocity u, () the energy estimate of the vorticity ω and j.

Now we act with the operator curl on the velocity equation in (.) and obtain the fol-
lowing vorticity equation:

∂tw + u · ∇w – �w = curldiv(b ⊗ b). (.)

Multiplying the ith component of the magnetic equation (.) by bj, we obtain

(∂tbi)bj + u · ∇bibj = (b · ∇ui)bj, (.)

similarly, multiplying the jth component of the magnetic equation (.) by bi, we have

(∂tbj)bi + u · ∇bjbi = (b · ∇uj)bi. (.)

Adding (.) and (.), we know that the (i, j)th component of b ⊗ b satisfies

∂t(bibj) + u · ∇(bibj) =
(∇u(b ⊗ b)

)
i,j +

(
(b ⊗ b)∇�u

)
i,j, i, j = , , (.)

equivalently,

∂t(b ⊗ b) + u · ∇(b ⊗ b) = ∇u(b ⊗ b) + (b ⊗ b)∇�u, (.)

where ∇�u denotes the transposed matrix to ∇u.
Applying R = (–�)– curldiv to (.) yields

∂t
(
R(b ⊗ b)

)
+ u · ∇R(b ⊗ b)

= –[R, u · ∇](b ⊗ b) + R
(∇u(b ⊗ b) + (b ⊗ b)∇�u

)
. (.)

Set G = w – R(b ⊗ b). Combining (.) and (.), we get

∂tG + u · ∇G – �G = [R, u · ∇](b ⊗ b) – R(∇u(b ⊗ b) + (b ⊗ b)
(∇�u

)
:= f . (.)

By the transport-diffusion equation (.), we can obtain the following desired bounded
estimate.

Lemma . Assume that (u(x), b(x)) fulfills the conditions in Theorem .. Let (u(t, x),
b(t, x)) be the corresponding solution of the initial value problem (.). Then, for p ∈ (,∞)
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and for any T > , we have

‖w‖Lp(R) ≤ C, (.)

where C is a positive constant depending only on T and the initial data.

Proof Multiplying equation (.) by |G|p–G and integrating over R, using the integration
by parts and div u = , we have


p

d
dt

‖G‖p
Lp +

∫

R
(–�)G|G|p–G dx =

∫

R
f |G|p–G dx. (.)

Due to the pointwise inequality
∫
R (–�)G|G|p–G dx ≥  and the Hölder inequality, we

have


p

d
dt

‖G‖p
Lp ≤

∫

R
f |G|p–G dx ≤ ‖f ‖Lp‖G‖p–

Lp

≤ ∥
∥[R, u · ∇](b ⊗ b) – R

(∇u(b ⊗ b) + (b ⊗ b)∇�u
)∥
∥

Lp‖G‖p–
Lp . (.)

Since the singular integral type operator R is bounded on Lp(R) ( < p < ∞), we have

d
dt

‖G‖Lp ≤ ∥
∥[R, u · ∇](b ⊗ b) – R

(∇u(b ⊗ b) + (b ⊗ b)∇�u
)∥
∥

Lp

≤ ∥
∥[R, u · ∇](b ⊗ b)

∥
∥

Lp +
∥
∥R

(∇u(b ⊗ b) + (b ⊗ b)∇�u
)∥
∥

Lp

≤ ∥
∥[R, u · ∇](b ⊗ b)

∥
∥

Lp +
∥
∥∇u(b ⊗ b) + (b ⊗ b)∇�u

∥
∥

Lp

≤ ∥
∥[R, u · ∇](b ⊗ b)

∥
∥

Lp + ‖∇u‖Lp‖b ⊗ b‖L∞ . (.)

Due to Lemma ., we have

∥
∥[R, u · ∇](b ⊗ b)

∥
∥

Lp ≤ C‖∇u‖Lp
(‖b ⊗ b‖B∞,

+ ‖b ⊗ b‖L
)
. (.)

Putting (.) into (.) and using the classical embedding B∞, ↪→ B∞, ↪→ L∞, we get

d
dt

‖G‖Lp ≤ C‖∇u‖Lp
(‖b ⊗ b‖B∞,

+ ‖b ⊗ b‖L
)
,

by the Biot-Savart law (Lemma .), we have

d
dt

‖G‖Lp ≤ C‖ω‖Lp
(‖b ⊗ b‖B∞,

+ ‖b ⊗ b‖L
)
,

as ω = G + R(b ⊗ b), we have

d
dt

‖G‖Lp ≤ C
(‖G‖Lp +

∥
∥R(b ⊗ b)

∥
∥

Lp
)(‖b ⊗ b‖B∞,

+ ‖b ⊗ b‖L
)

≤ C
(‖G‖Lp + ‖b ⊗ b‖Lp

)(‖b ⊗ b‖B∞,
+ ‖b ⊗ b‖L

)
, (.)

where the Lp boundedness of Riesz operator has been used in the last inequality.
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Multiplying equation (.) by |b⊗b|p–(b⊗b) and integrating over R, using integration
by parts and div u = , we have


p

d
dt

‖b ⊗ b‖p
Lp =

∫

R

(∇u(b ⊗ b) + (b ⊗ b)(∇u)�
)|b ⊗ b|p–(b ⊗ b) dx.

Hölder’s inequality and the Biot-Savart law (Lemma .) yield

d
dt

‖b ⊗ b‖Lp ≤ C
(‖G‖Lp + ‖b ⊗ b‖Lp

)(‖b ⊗ b‖B∞,
+ ‖b ⊗ b‖L

)
. (.)

Combining the estimates (.) and (.), we get

d
dt

(‖G‖Lp + ‖b ⊗ b‖Lp
) ≤ C

(‖G‖Lp + ‖b ⊗ b‖Lp
)(‖b ⊗ b‖B∞,

+ ‖b ⊗ b‖L
)
. (.)

Assuming

∫ t



(‖b ⊗ b‖B∞,
+ ‖b ⊗ b‖L

)
ds < ∞, (.)

by Gronwall’s inequality we have

‖G‖Lp + ‖b ⊗ b‖Lp ≤ C exp

(∫ t



(‖b ⊗ b‖B∞,
+ ‖b ⊗ b‖L

)
ds

)

≤ C. (.)

This implies that, for any  < p < ∞,

‖w‖Lp ≤ ‖G‖Lp + ‖b ⊗ b‖Lp ≤ C. (.)

This completes the proof of Lemma .. �

Next, we give a key bounded estimate which is crucial in the proof of Theorem ..

Lemma . Assume that (u(x), b(x)) fulfills the conditions in Theorem .. Let (u(t, x),
b(t, x)) be the corresponding solution of the initial value problem (.). Then, for p ∈ (,∞)
and for any T > ,

∫ T



∥
∥∇u(s)

∥
∥

L∞ ds ≤ C, (.)

where C is a positive constant depending only on T and the initial data.

Proof In view of (.), for j ≥ –, acting with the Littlewood-Paley operator �j on (.),
one has

∂t�jG + �j(u · ∇G) – ��jG

= �j[R, u · ∇](b ⊗ b) – �jR
(∇u(b ⊗ b) + (b ⊗ b)∇�u

)
. (.)
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For convenience, we take

fj = �j[R, u · ∇](b ⊗ b) – R
(∇u(b ⊗ b) + (b ⊗ b)∇�u

)
– [�j, u · ∇]G.

Thus, equation (.) is written as

∂t�jG + u · ∇�jG – ��jG = fj. (.)

Multiplying equation (.) by |�jG|q–�jG with q >  and integrating over R, with the
help of the Hölder inequality and div u = , we derive that


q

d
dt

‖�jG‖q
Lq +

∫

R
(–�)�jG|�jG|q–�jG dx ≤ ‖fj‖Lq‖�jG‖q–

Lq .

For j ≥ , the Fourier transform of �jG is supported away from the origin and the dissi-
pative part possesses a lower bound,

∫

R
(–�)�jG|�jG|q–�jG dx ≥ cq‖�jG‖q

Lq ,

where c is an absolute positive constant independent of q.
Therefore, we have

d
dt

‖�jG‖Lq + cq‖�jG‖Lq ≤ ‖fj‖Lq ,

thus Gronwall’s inequality implies that

‖�jG‖Lq � e–ctq‖�jG‖Lq +
∫ t


e–c(t–s)q∥∥fj(s)

∥
∥

Lq ds. (.)

Taking the L[, t] norm and using Young’s inequality, we obtain

‖�jG‖L
t Lq �

∥
∥e–ctq∥∥

L
t

(‖�jG‖Lq + ‖fj‖L
t Lq

)

� –q
(

‖�jG‖Lq +
∫ t



∥
∥fj(s)

∥
∥

Lq ds
)

. (.)

For j = –, we have

∫ t



∥
∥�–G(s)

∥
∥

Lq ds ≤ C
∫ t



∥
∥G(s)

∥
∥

Lq ds ≤ C(t). (.)

Gathering the above high-low-frequency estimations, multiplying the corresponding in-
equality by j 

q , and then summing over j from – to ∞, one has
∫ t



∥
∥G(s)

∥
∥

B

q
q,

ds = ‖G‖
L

t B

q
q,

,

due to the fact L
t B


q
q, ≈ L̃

t B

q
q,, we have

∫ t



∥
∥G(s)

∥
∥

B

q
q,

ds = ‖G‖
L

t B

q
q,

≈ ‖G‖
L̃

t B

q
q,

,
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thus
∫ t



∥
∥G(s)

∥
∥

B

q
q,

ds

� ‖G‖
B


q –
q,

+
∫ t



∞∑

j=–

j( 
q –)∥∥fj(s)

∥
∥

Lq ds + C(t)

� ‖G‖
B


q –
q,

+
∫ t



∞∑

j=–

j( 
q –)∥∥[�j, u · ∇]G(s)

∥
∥

Lq ds + C(t)

+
∫ t



∥
∥[R, u · ∇](b ⊗ b) – R

(∇u(b ⊗ b) + (b ⊗ b)∇�u
)∥
∥

Lq ds. (.)

Next, we estimate the last term in the right hand side of the above inequality. Due to the
commutator estimate in Lemma . and the boundedness of R in Lp ( < p < ∞), we have

∫ t



∥
∥[R, u · ∇](b ⊗ b) – R

(∇u(b ⊗ b) + (b ⊗ b)∇�u
)
(s)

∥
∥

Lq ds

�
∫ t


‖∇u‖Lq

(‖b ⊗ b‖B∞,
+ ‖b ⊗ b‖L + ‖b ⊗ b‖L∞

)
ds

� . (.)

For the second term, using the Bernstein inequality, we have

I =
∫ t



∞∑

j=–



q –∥∥[�j, u · ∇]G(s)

∥
∥

Lq ds

�
∫ t



∞∑

j=–

j( 
q –)(∥∥�j(u · ∇G)

∥
∥

Lq + ‖u · �j∇G‖Lq
)

ds

�
∫ t



∞∑

j=–

j( 
q –)(∥∥�j∇ · (uG)

∥
∥

Lq + ‖u · ∇�jG‖Lq
)

ds

�
∫ t



∞∑

j=–

j( 
q –)(j‖uG‖Lq + j‖u‖Lq‖G‖Lq

)
ds

�
∫ t



∞∑

j=–

j( 
q –)‖u‖Lq‖G‖Lq ds

≤ C(t), (.)

where we have used the inequalities: ‖u‖Lq ≤ C(t) and ‖G‖Lq ≤ C(t) for q > . Putting
the above estimates together, one has

∫ t



∥
∥G(s)

∥
∥

B

q
q,

ds ≤ C‖G‖
B


q –
q,

+ C(t). (.)

Consequently, for any fixed t > , we get

∫ t



∥
∥G(s)

∥
∥

B

q
q,

ds ≤ C < ∞. (.)
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With the aid of the standard embedding B

q
q,(R) ↪→ B∞,(R), we have

∫ t



∥
∥G(s)

∥
∥

B∞,
ds ≤

∫ t



∥
∥G(s)

∥
∥

B

q
q,

ds ≤ C < ∞. (.)

Furthermore, we have the following estimate:

∫ t


‖w‖B∞,

ds ≤
∫ t



(‖G‖B∞,
+

∥
∥R(b ⊗ b)

∥
∥

B∞,

)
ds

≤
∫ t



(‖G‖B∞,
+ C‖b ⊗ b‖B∞,

+ C‖b ⊗ b‖L
)

ds

≤ C. (.)

Consequently, we derive the following key bound:

∫ t



∥
∥∇u(s)

∥
∥

L∞ ds ≤ C
∫ t



(∥
∥u(s)

∥
∥

L + ‖w‖B∞,

)
ds ≤ C < ∞. (.)

This completes the proof of Lemma .. �

With the aid of the boundedness of
∫ t

 ‖∇u(s)‖L∞ ds, we obtain the global bounds of
‖w‖H and ‖j‖H .

Lemma . If (u(t, x), b(t, x)) is a solution of system (.), then for any T > ,

∥
∥w(t)

∥
∥

L +
∥
∥j(t)

∥
∥

L +
∫ t


‖∇w‖

L ds ≤ C, ∀t ∈ [, T], (.)

∥
∥∇w(t)

∥
∥

L +
∥
∥∇j(t)

∥
∥

L +
∫ t


‖�w‖

L ds ≤ C, ∀t ∈ [, T], (.)

where C is a positive constant depending only on T and the initial data.

Proof Taking the inner products of the first equation in (.) with u and the second equa-
tion in (.) with b, respectively, adding the resulting equations, and integrating by parts,
we obtain

∥
∥u(t)

∥
∥

L +
∥
∥b(t)

∥
∥

L +
∫ t


‖∇u‖

L ds = ‖u‖
L + ‖b‖

L . (.)

Now, w and j satisfy the equations

∂tw + u · ∇w – �w = b · ∇j, (.)

∂t j + u · ∇j = b · ∇w + T(∇u,∇b), (.)

respectively, where

T(∇u,∇b) = ∂b(∂u + ∂u) – ∂u(∂b + ∂b). (.)
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Taking the inner product of (.) with w and (.) with j, respectively, adding the
resulting equations and integrating by parts, we obtain




d
dt

[∥∥w(t)
∥
∥

L +
∥
∥j(t)

∥
∥

L
]

+ ‖∇w‖
L =

∫

R
T(∇u,∇b)j dx ≤ ‖∇u‖L∞‖j‖

L . (.)

With the help of the estimate (.) and Gronwall’s inequality, we obtain

∥
∥w(t)

∥
∥

L +
∥
∥j(t)

∥
∥

L +
∫ t


‖∇w‖

L ds ≤ C. (.)

Taking the inner product of (.) with –�w yields




d
dt

∥
∥∇w(t)

∥
∥

L + ‖�w‖
L =

∫

R
(–∇w · ∇u · ∇w) dx dy

+
∫

R

(∇w · ∇b · ∇j + b · ∇(∇j) · ∇w
)

dx dy. (.)

Similarly, taking the inner products of (.) with –�j yields




d
dt

∥
∥∇j(t)

∥
∥

L =
∫

R
(–∇j · ∇u · ∇j + ∇j · ∇b · ∇w) dx dy

+
∫

R

(
b · ∇(∇w) · ∇j + ∇T(∇u,∇b)∇j

)
dx dy. (.)

Adding the above equations and integrating by parts, we have




d
dt

[∥
∥∇w(t)

∥
∥

L +
∥
∥∇j(t)

∥
∥

L
]

+ ‖�w‖
L ≤

∑

i=

Ii, (.)

where

I =
∫

R
|∇u||∇w| dx dy;

I =
∫

R
|∇u||∇j| dx dy;

I =
∫

R
|∇w||∇b||∇j|dx dy;

I =
∫

R
|∇j||∇b||∇w|dx dy;

I =
∫

R

(∣∣∇u
∣
∣|∇b| + |∇u|∣∣∇b

∣
∣)|∇j|dx dy.

Obviously, I = I. We only need to estimate the other four terms.
For the terms I and I, by the Hölder inequality, we have

I ≤ ‖∇u‖L∞‖∇w‖
L ,

I ≤ ‖∇u‖L∞‖∇j‖
L .
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For the term I, by the Hölder inequality, we have

I ≤ ‖∇j‖L‖∇w‖L‖∇b‖L .

By the Gagliardo-Nirenberg inequality ‖f ‖L ≤ C‖f ‖ 

L‖∇f ‖ 


L , one has

I ≤ C‖∇j‖L‖∇w‖ 

L‖�w‖ 


L‖∇b‖ 


L‖∇j‖ 


L

≤ 


‖�w‖
L + C‖∇j‖

L‖∇w‖ 

L .

For the term I, it is easy to obtain

I ≤ 


‖�w‖
L + C‖∇j‖

L
(‖∇w‖ 


L + ‖∇u‖L∞

)
.

Adding the estimates of Ii (i = , , , , ), we get

d
dt

[∥
∥∇w(t)

∥
∥

L +
∥
∥∇j(t)

∥
∥

L
]

+ ‖�w‖
L

≤ C
(‖∇w‖ 


L + ‖∇u‖L∞

)∥
∥∇w(t),∇j(t)

∥
∥

L . (.)

Due to Lemma .,
∫ t

 ‖∇w‖
L ds ≤ C, Gronwall’s inequality immediately yields

∥
∥∇w(t)

∥
∥

L +
∥
∥∇j(t)

∥
∥

L +
∫ t


‖�w‖

L ds ≤ C < ∞. (.)

This completes the proof of Lemma .. �

Proof of Theorem . By the estimate (.), we know that ‖∇w(t)‖
L + ‖∇j(t)‖

L ≤ C,
∀t ∈ [, T]. Due to the classical embedding H(R) ↪→ BMO(R), we obtain

∫ T



(∥
∥w(s)

∥
∥

BMO +
∥
∥j(s)

∥
∥

BMO

)
ds < ∞. (.)

By an argument which generalizes the classical BKM criterion [] to the MHD system,
we complete the proof of Theorem .. �
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