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Abstract
In this paper we consider the directional short-time Fourier transform (DSTFT) that
was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013). We
analyze the DSTFT and its transpose on test function spaces S(Rn) and S(Y2n),
respectively, and prove the continuity theorems on these spaces. Then the obtained
results are used to extend the DSTFT to spaces of distributions.
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1 Introduction
The idea of Candés to study the wavelet theory using directional sensitivity led to the in-
troduction of the ridgelet transform. He introduced and analyzed the continuous ridgelet
transform which is a combination of continuous wavelet transform and the Radon trans-
form [–]. Motivated by this concept, Grafakos and Sansing [] introduced a new theory
that combines the concept of the Radon transform and time-frequency analysis in a very
natural and useful way. The Radon transform and the time-frequency analysis had been
separately analyzed for a long time. The Radon transform is a powerful and celebrated
tool with many application in astrophysics, computer tomography and seismology. It rep-
resents a collection of integrals of a function over all hyperplanes (see equation (.)). On
the other hand, the short-time Fourier transform (STFT), as a tool of the time-frequency
analysis, contains localized time and frequency information of a function. Grafakos and
Sansing provided the idea to localize information in time, frequency, and direction defin-
ing a directionally sensitive variant of STFT. A slightly different version of their concept
was considered by Giv in []. He defined the directional short-time Fourier transform
(DSTFT) and proved several orthogonality results and reconstruction formulas.

Distribution theory is a very effective device in both pure and applied mathematics and
the extension of integral transforms to generalized function spaces is an important re-
search subject. The authors of [] extended the ridgelet transform on the space of (Li-
zorkin) distributions, while in this paper, we extend the DSTFT introduced by Giv on
Schwartz distribution space S ′(Rn).
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2 Preliminaries
2.1 Notation
The Fourier transform of a function φ is defined as

φ̂(w) =
∫
Rn

φ(x)e–π ix·w dx.

We use the notations N = N ∪ {}, and Y
n for the set Sn– × R × R

n = {(u, b, a) : u ∈
S

n–, b ∈ R, a ∈ R
n}, where S

n– stands for the unit sphere of Rn. We always assume that
n ≥ .

For the L inner product of f and φ we use (f ,φ)L , while for dual pairing we use 〈f ,φ〉.

2.2 Spaces
The linear space of all rapidly decreasing smooth functions at infinity S(Rn) consists of all
functions φ ∈ C∞(Rn) for which

ρν(φ) = sup
x∈Rn ,|p|≤ν

(
 + |x|)ν∣∣φ(p)(x)

∣∣ < ∞, ν ∈N. (.)

The dual space of S(Rn) is the space of tempered distributions S ′(Rn), [].
We also need the Lizorkin test function space S(Rn), that is, the space of highly time-

frequency localized functions overRn []. It is a closed subspace ofS(Rn), and all moments
of an element from S(Rn) are equal to , namely, φ ∈ S(Rn) if

∫
Rn xmφ(x) dx = , for all

m ∈N
n
.

The space of smooth functions on the sphere is denoted by D(Sn–). Let A be a locally
convex space of smooth test functions on R×R

n. Then A(Sn– ×R×R
n) is the space of

functions ρ(u, b, a) that have the properties of A in the variable (b, a) ∈R×R
n and being

smooth in u ∈ S
n–. So, we introduce S(Yn) as the space of functions � ∈ C∞(Yn) for

which

ρ l,m,k
s,r (�) = sup

(u,b,a)∈Yn

(
 + |a|)s/( + |b|)r/

∣∣∣∣ ∂ l

∂al
∂m

∂bm �k
u�(u, b, a)

∣∣∣∣ < ∞ (.)

for all l, m, k, s, r ∈ N. Here, �u stands for the Laplace-Beltrami operator on the unit
sphere S

n–. The topology of this space is defined by means of the seminorms (.). Its
dual space is S ′(Yn), and we will identify a locally integrable function F on Y

n with a
distribution on Y

n as follows. If F satisfies the bound

∣∣F(u, b, a)
∣∣ ≤ C

(
 + |b|)s( + |a|)s, (u, b, a) ∈ Y

n,

for some s, C > , then F could be identified with an element of S ′(Yn) via

〈F ,�〉 :=
∫
Rn

∫
R

∫
Sn–

F(u, b, a)�(u, b, a) du db da, � ∈ S
(
Y

n). (.)

The nuclearity of the Schwartz spaces [] yields the equality S(Yn) = D(Sn–) ⊗̂ S(R×
R

n), where X ⊗̂ Y is the topological tensor product space obtained as the completion of
X ⊗ Y in the π-topology or the ε-topology [].
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2.3 The STFT
Let Tbf (·) = f (· – b) and Maf (·) = eπ ia·f (·), a, b ∈ R

n denote the translation and modula-
tion operators, respectively. For the time-frequency shifts MaTb and TbMa the following
relation holds:

MaTbf (x) = eπ ia·xTbMaf (x).

The short-time Fourier transform (STFT) of a function f ∈ L(Rn) with respect to a
window function g ∈ L(Rn) is defined as

Vgf (b, a) =
〈
f (x), MaTbg(x)

〉
x =

∫
Rn

f (x)g(x – b)e–π ia·x dx, b, a ∈R
n. (.)

We have ‖Vgf ‖ = ‖f ‖‖g‖. If ‖g‖ = , then the STFT is an isometry from L(Rn) to
L(Rn). We write V ∗

g for the adjoint of Vg , given by

V ∗
g F(x) =

∫∫
Rn

F(b, a)g(x – b)eπ ia·x da db.

Let g =  and ψ ∈ L(Rn) be a synthesis window for g , where (g,ψ)L = . Then, for any
f ∈ L(Rn),

f =


(ψ , g)L

∫∫
Rn

Vgf (b, a)MaTbψ da db. (.)

The definition of Vgf can be generalized for f in larger classes than L(Rn) if the dual
pairing in (.) is well defined. Whenever A(Rn) is a time-frequency shift invariant topo-
logical vector space, one can take g ∈ A(Rn) and f ∈ A′(Rn), []. We emphasize that if
f ∈ S(Rn) then equation (.) holds pointwise.

2.4 The Radon transform
Let f ∈ L(Rn) be a function that is integrable on hyperplanes of Rn. The Radon transform
of f is defined as

Rf (u, p) = Rfu(p) :=
∫

x·u=p
f (x) dx =

∫
Rn

f (x)δ(p – x · u) dx, (.)

where δ is the Dirac delta, u ∈ S
n–, p ∈R, and x ·u = p specifies a hyperplane ofRn [–].

By Fubini’s theorem Rf ∈ L(Sn– × R). The Fourier transform and the Radon transform
are connected by the Fourier slice theorem. According to it, the Fourier transform of the
Radon transform can be computed as

R̂fu(p) =
∫ ∞

–∞
f (x)e–π ix·up dx = f̂ (up), u ∈ S

n–, p ∈R, (.)

for sufficiently regular f (e.g., for f ∈ L(Rn) such that f̂ ∈ L(Rn)).
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2.5 The directional short-time Fourier transform
Let g ∈ S(R) be a non-zero window function and f ∈ L(Rn). As in the case of ridgelets,
Grafakos and Sansing in [] introduced the Gabor ridge functions

gu,b,a(x) = eπ ia(u·x–b)g(u · x – b), (.)

for (u, b, a) ∈Y
n, which can be viewed as time-frequency analysis elements in the Radon

domain. By pairing the function f with gu,b,a they have defined a directionally sensitive
variant of STFT. Because of the directional modulations of gu,b,a, with this transform one
can obtain time-frequency information of f in the direction of u, while as in the classical
time-frequency theory a and b measure the modulation and translation. These authors
have shown that it is not possible to obtain an exact reconstruction of a signal using the
Gabor ridge functions ([], Theorem ), and therefore they have modified their class of
functions to the weighted Gabor ridge functions (see [] for details).

Based on the relation

Vgf (b, a) = f̂ · Tbg(a), (.)

Giv in [] introduced another transform which is also a directionally sensitive variant of
STFT, letting enter of the directional parameter u only in the window g , unlike the ap-
proach of Grafakos and Sansing. Let g ∈ L∞(R) be a non-zero function. For (u, b, a) ∈Y

n,
he defined the function gu,b,a : Rn →C, as

gu,b,a(x) = eπ ix·ag(x · u – b), x ∈R
n,

which behaves like a one-dimensional window in the direction of u and is constant along
its orthogonal complement, and as in (.) the parameter a is used only for taking the
Fourier transform.

Giv defines the directional short-time Fourier transform (DSTFT) of an integrable func-
tion f ∈ L(Rn) with respect to g via

DSgf (u, b, a) :=
∫
Rn

f (x)g(u · x – b)e–π ix·a dx =
〈
f (x), gu,b,a(x)

〉
x, (.)

where (u, b, a) ∈ Y
n. Let we note that with (.) we obtain information for the time of

the signal along the direction u. If we want to obtain information for the time and the
frequency of the signal along the direction u, we can simply use the relation (.).

We must be careful if we want to extend the definition of the directional short-time
Fourier transform to more general spaces. Even if f ∈ L(Rn) the defining integral in (.)
may not converge. Moreover, when trying to extend the directional short-time Fourier
transform to distributions, (.) is not well defined for f ∈ S ′(Rn) because gu,b,a /∈ S(Rn).
This problem will be analyzed in Section . where the directional short-time Fourier
transform of tempered distributions for g ∈ S(R) will be defined.

The following lemma gives a useful relation between the directional STFT and the
Fourier transform of the function f .
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Lemma . For g ∈ S(R) and f ∈ L(Rn) ∩ L(Rn)

DSgf (u, b, a) =
∫
R

(
T–âf (u · ω)

)
M–bĝ(ω) dω. (.)

Proof From the definition of the Radon transform, the Fourier slice theorem (.), and
Plancherel’s theorem it is easy to obtain

DSgf (u, b, a) =
∫
R

∫
u·x=s

f
(
tu + su⊥)

g(s – b)e–π ia(tu+su⊥) du ds

=
∫
R

R(M–af )u(s)Tbg(s) ds =
∫
R

̂R(M–af )u(ω)T̂bg(ω) dω

=
∫
R

T–af̂ (uω)(M–bĝ)(ω) dω. �

In [], Theorem ., it is shown that for non-trivial g ∈ S(R) with synthesis window ψ ∈
S(R), and f ∈ L(Rn) for which f̂ ∈ L(Rn), the following reconstruction formula holds
pointwise:

f (x) =


(g,ψ)L

∫
Rn

∫
R

∫
Sn–

DSgf (u, b, a)ψu,b,a(x) du db da. (.)

Equation (.) takes the form (DS∗
ψ ◦ DSg)f = (g,ψ)L f .

The reconstruction formula (.) suggests to define an operator that maps functions on
Y

n to functions on R
n as superposition of functions gu,b,a. Given g ∈ S(R), we introduce

the directional synthesis operator as

DS∗
g �(x) :=

∫
Rn

∫
R

∫
Sn–

�(u, b, a)gu,b,a(x) du db da, x ∈R
n. (.)

We note that for � ∈ S(Yn), the integral (.) is absolutely convergent.

Proposition . Let g ∈ S(R). If f ∈ L(Rn) and � ∈ S(Yn), then

∫
Rn

f (x)DS∗
g �(x) dx =

∫
R

∫
Rn

∫
Sn–

DSgf (u, b, a)�(u, b, a) du db da. (.)

We may write (.) as

〈
f , DS∗

ḡ �
〉

= 〈DSgf ,�〉.

This means that DS∗
g and DSg are formal transposes, and we will follow this idea when

defining the distributional directional short-time Fourier transform.

3 Main results
3.1 Continuity of the directional STFT on S(Rn)
The aim of this section is to prove that the mapping DSg : S(Rn) → S(Yn) is continuous
when g ∈ S(R), and DS∗

g : S(Yn) → S(Rn) is continuous for g ∈ S(R).
For non-trivial g , the DSTFT DSg is injective and DS∗

g is surjective, due to the reconstruc-
tion formula (.). Recall that we endow S(Yn) with the system of seminorms (.).
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Notice that we can extend the definition of the DSTFT as a sesquilinear mapping
DS : (f , g) �→ DSgf , whereas the directional synthesis operator extends to the bilinear form
DS∗ : (�, g) �→ DS∗

g �.

Theorem . The mapping DS : S(Rn) × S(R) → S(Yn) is continuous.

Proof We will show that, given s, r, m, l, k ∈N, there exist ν, τ ∈ N and C >  such that

ρ l,m,k
s,r (DSgφ) ≤ Cρν(φ)ρτ (g), φ ∈ S

(
R

n), g ∈ S(R). (.)

We may assume that r is even and s ≥ .
. Using the definition of the directional STFT, we have

∣∣∣∣ ∂ l

∂al
∂m

∂bm �k
uDSgφ(u, b, a)

∣∣∣∣

=
∣∣∣∣ ∂ l

∂al
∂m

∂bm

∑
|α|,j≤k

Pα,j(u)
∫
Rn

xαφ(x)g(j)(u · x – b)e–π ia·x dx
∣∣∣∣

=
∣∣∣∣

∑
|α|,j≤k

Pα,j(u)
∫
Rn

xαφ(x)g(j+m)(u · x – b)(–)me–π ia·x(–π ix)l dx
∣∣∣∣

≤ C
∑

|α|,j≤k

∫
Rn

xα+l∣∣φ(x)
∣∣∣∣g(j+m)(u · x – b)

∣∣dx,

where Pα,j(u) are certain bounded polynomials. Setting φα+l(x) = xα+lφ(x), this yields

ρ l,m,k
s,r (DSgφ) ≤ C

∑
|α|,j≤k

ρ,,
s,r

(
DSg(j+m) (φα+l)

)
.

Because multiplication by xα+l and differentiation are continuous operators on S , we can
assume that m = l = k = .

. Observe that, by (.),

(
 + b)r/DSgφ(u, b, a) =

∫ ∞

–∞
φ̂(ωu + a)ĝ(ω)

(
 –

∂

∂ω

)r/

e–π ibω dω

=
∫ ∞

–∞
e–π ibω

(
 –

∂

∂ω

)r/(
φ̂(ωu + a)ĝ(ω)

)
dω

=
∑

|α|,j≤r

Qα,j(u)
∫ ∞

–∞
e–π ibωφ̂(α)(ωu + a)ĝ(j)(ω) dω,

for some polynomials Qα,j. From (.), and writing gj(x) = xjg(x) and also φα(x) = xαφ(x),
we conclude that

ρ,,
s,r (DSgφ) ≤ C

∑
|α|,j≤r

ρ
,,
s,

(
DSgj (φα)

)
.

Consequently, we can assume r = .
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. Finally, we consider the term that involves multiplication by ( + |a|)s/ in ρ
,,
s, .

(
 + a)s/∣∣DSgφ(u, b, a)

∣∣ =
∣∣∣∣
∫
Rn

φ(x)g(u · x – b)
(

 –
∂

∂x

)s/

e–π ia·x dx
∣∣∣∣

≤
∫
Rn

∣∣∣∣e–π ia·x
(

 –
∂

∂x

)s/(
φ(x)g(u · x – b)

)∣∣∣∣dx

≤
∑

|α|,j≤s

Qα,j(u)
∫
Rn

∣∣φ(α)(x)
∣∣∣∣g(j)(u · x – b)

∣∣dx

≤ Cρs+(φ)ρs+(g).

. From the previous three estimates, we find that (.) holds if we take ν = k + l +r +s+
and τ = k + m + r + s + . �

We now analyze the directional synthesis operator.

Theorem . The bilinear mapping DS∗ : S(Yn) × S(R) → S(Rn) is continuous.

Proof Let g ∈ S(R), � ∈ S(Yn), and φ = DS∗
g �. Observe that

φ(x) =
∫
Sn–

∫
R

ωn–e–π iωu·x
(∫

Rn
�̂(u,ω, a)

ĝ(ω)
ωn– eπ ix·a da

)
dω du;

hence, by Fourier inversion in polar coordinates,

φ̂(–ωu) =
∫
Rn

�̂(u,ω, a)
ĝ(ω)
ωn– eπ ix·a da, (.)

ω ∈R, u ∈ S
n–. In (.), �̂ denotes the Fourier transform of �(u, b, a) with respect to the

variable b.
We now prove the continuity of the bilinear directional synthesis mapping. Since the

Fourier transforms g �→ ĝ and � �→ �̂ are continuous automorphisms on the S spaces,
the families (cf. (.) and (.))

ρ̂ν(g) = ρν(ĝ), g ∈ S(R),ν = , , . . .

and

ρ̂ l,m,k
s,r (�) = ρ l,m,k

s,r (�̂), � ∈ S
(
Y

n), l, m, k, s, r ∈N,

are bases of seminorms for the topologies of S(R) and S(Yn), respectively. We will define
a different family of seminorms on S(Rn). The seminorms ρ̇N ,q,k , given by

ρ̇N ,q,k(φ) := sup
(u,ω)∈Sn–×R

∣∣∣∣ωN ∂q

∂ωq �k
uφ̂(ωu)

∣∣∣∣, N , q, k ∈N,
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are a base of continuous seminorms for the topology ofS(Rn). We show that given N , q, k ∈
N there is C >  and ν ∈N such that

ρ̇N ,q,k
(
DS∗

g �
) ≤ Cρ̂n–+q(g)

∑
m≤ν

ρ̂
,m,k
,N (�).

Now, setting again φ(x) := DS∗
g �(x), using equation (.), the Leibniz formula, and the

Taylor expansion for g , we get

∣∣∣∣ωN ∂q

∂ωq �k
uφ̂(ωu)

∣∣∣∣ ≤ C
q∑

j=

j∑
d=

∫
Rn

∣∣∣∣ωN ∂q–j

∂ωq–j �
k
u�̂(u,ω, a)

ĝ(j–d)(ω)
ωn–+d

∣∣∣∣da

= C
q∑

j=

j∑
d=

∫
Rn

∣∣∣∣ωN ∂q–j

∂ωq–j �
k
u�̂(u,ω, a)ĝ(j+n–)(ω)

∣∣∣∣da

≤ Cρ̂n–+q(g)
q∑

j=

ρ̂
,q–j,k
,N (�)

∫
Rn

da
a + 

,

as claimed. �

3.2 The directional STFT on S ′(Rn)
Using the obtained continuity results, we will define the directional STFT on distributions.

Definition . Let g ∈ S(R). The directional STFT of f ∈ S ′(Rn) with respect to g is the
element DSgf ∈ S ′(Yn) whose action on test functions is given by

〈DSgf ,�〉 :=
〈
f , DS∗

g �
〉
, � ∈ S

(
Y

n). (.)

The consistence of Definition . is guaranteed by Theorem ..

Definition . Let g ∈ S(R). The directional synthesis operator DS∗
g : S ′(Yn) → S ′(Rn)

is defined as

〈
DS∗

g F ,φ
〉

:= 〈F , DSgφ〉, F ∈ S ′(
Y

n),φ ∈ S
(
R

n). (.)

This definition of the directional synthesis operator DS∗
g for g ∈ S(R) is guaranteed by

Theorem ..
The following continuity result is obtained by taking transposes in Theorems . and ..

Proposition . Let g ∈ S(R). The directional STFT DSg : S ′(Rn) → S ′(Yn) and the
directional synthesis operator DS∗

g : S ′(Yn) → S ′(Rn) are continuous linear maps.

Now, we can generalize the reconstruction formula (.) on distributions.

Theorem . (Inversion formula) Let g ∈ S(R) be non-trivial. If ψ ∈ S(R) is a synthesis
window for g , namely, (ψ , g)L = , then

idS ′(Rn) =


(g,ψ)L

(
DS∗

ψ ◦ DSg
)
. (.)
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Proof Using Definitions . and ., and reconstruction formula (.), we obtain at once

〈
DS∗

ψ (DSgf ),φ
〉

=
〈
f , DS∗

g (DSψφ)
〉

= (ψ , g)L〈f ,φ〉 = (g,ψ)L〈f ,φ〉. �

3.3 The directional STFT on D′
L1 (Rn)

Here we will employ the Schwartz space D′
L (Rn), defined in Schwartz’ book [], p.. It

contains all the distributions f which can be represented as

f =
∑

|α|≤m

∂αfα , fα ∈ L(
R

n) (.)

for some m ∈N.
It turns out the directional short-time Fourier transform can be canonically defined with

(.) for distributions f ∈ D′
L (Rn), because the test function gu,b,a ∈ DL∞ (Rn) and thus

the integral formula can be still interpreted in the sense of Schwartz integrable distribu-
tions [], p..

The following theorem shows that Definition . is consistent with (.). Let us note
that our definition of the directional STFT for distributions coincides with the one given
for the test functions.

Theorem . Let f ∈D′
L (Rn). Then the directional STFT of f can be determined by (.),

that is,

〈DSgf ,�〉 =
∫
Rn

∫
R

∫
Sn–

DSgf (u, b, a)�(u, b, a)du db da, � ∈ S
(
Y

n). (.)

Proof Following Schwartz’ structural theorem [], we can write f =
∑N

j= f (mj)
j , where each

fj ∈ L(Rn). Observe first that from (.) and the Leibniz formula

〈
f (mj)
j , gu,b,a

〉
= (–)mj

mj∑
k=

(
mj

k

)〈
fj, uk(π ia)mj–k(g(k))

u,b,a

〉
.

On the other hand, since

(–)|mj| ∂
|mj|

∂xmj
DS∗

g � =
mj∑

k=

(
mj

k

)
DS∗

g(k)

(
uk(π ia)mj–k�

)
,

the directional STFT, defined via (.), satisfies

DSg
(
f (mj)
j

)
=

mj∑
k=

(
mj

k

)
uk(π ia)mj–kDSg(k) fj.

Therefore, we may assume that f ∈ L(Rn). But in the latter case, the result is a consequence
of Proposition .. �

Competing interests
The authors declare that they have no competing interests.



Hadzi-Velkova Saneva and Atanasova Journal of Inequalities and Applications  (2016) 2016:124 Page 10 of 10

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Received: 18 December 2015 Accepted: 6 April 2016

References
1. Giv, HH: Directional short-time Fourier transform. J. Math. Anal. Appl. 399, 100-107 (2013)
2. Candès, EJ: Ridgelet: theory and applications. Ph.D. thesis, Department of Statistics, Stanford University (1998)
3. Candès, EJ: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6, 197-218 (1999)
4. Candès, EJ, Donoho, DL: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R. Soc., Math. Phys. Eng.

Sci. 357, 2495-2509 (1999)
5. Grafakos, L, Sansing, C: Gabor frames and directional time-frequency analysis. Appl. Comput. Harmon. Anal. 25(1),

47-67 (2008)
6. Kostadinova, S, Pilipovic, S, Saneva, K, Vindas, J: The ridgelet transform of distributions. Integral Transforms Spec.

Funct. 25, 344-358 (2014)
7. Schwartz, L: Théorie des Distributions. Hermann, Paris (1966)
8. Wavelets, HM: An Analysis Tool. The Clarendon Press, Oxford University Press, New York (1995)
9. Trèves, F: Topological Vector Spaces, Distributions and Kernel. Academic Press, New York-London (1967)
10. Gröchenig, K: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)
11. Helgason, S: The Radon Transform, 2nd edn. Birkhäuser, Boston (1999)
12. Ludwig, D: The Radon transform on Euclidean space. Commun. Pure Appl. Math. 19, 49-81 (1966)
13. Ramm, AG: The Radon transform on distributions. Proc. Jpn. Acad., Ser. A, Math. Sci. 71, 202-206 (1995)


	Directional short-time Fourier transform of distributions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Notation
	Spaces
	The STFT
	The Radon transform
	The directional short-time Fourier transform

	Main results
	Continuity of the directional STFT on S(Rn)
	The directional STFT on S'(Rn)
	The directional STFT on D'L1(Rn)

	Competing interests
	Authors' contributions
	References


