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Abstract
In this paper, we establish a central limit theorem and a moderate deviation principle
for the positive diffusions, including the CEV and CIR models. The proof is based on
the exponential approximations theorem and Burkholder-Davis-Gundy’s inequality.
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1 Introduction
Consider the following stochastic differential equation:

dXε
t = b

(
Xε

t
)

dt +
√

εσ
(
Xε

t
)

dBt , Xε
 = x > , (.)

where B is a standard one-dimensional Brownian motion on some filtered probability
space (�,F , (Ft),P), and the diffusion coefficient σ : R → R and the drift coefficient
b : R →R satisfy the following assumption:

(H): σ is Hölder continuous with exponent γ ∈ [ 
 , ] and σ () = ; b is C-continuous,

its derivative b′ is locally Lipschitz continuous and b() > . We assume that there
exists some positive constant L such that

∣∣σ (x) – σ (y)
∣∣ ≤ L|x – y|γ , xb(x) ≤ L

(
 + |x|), ∀x, y ∈ R

+.

Under assumption (H), equation (.) admits a unique strong solution Xε
t and furthermore

Xε
t ≥ ; see [], Chapter IX, Theorem . and [].
Letting b(x) = α(β – x), σ (x) = ρxγ for some constants α > , β > , and γ ∈ [/, ], (.)

is a constant elasticity of variance (CEV) model, with the Cox-Ingersoll-Ross (CIR) model
as a special case for γ = /. CEV and CIR models are widely used in mathematical finance;
see [] or []. CIR can also be defined as a sum of squared Ornstein-Uhlenbeck processes;
see [].

Given T > , let C([, T];R) be the Banach space of continuous functions g : [, T] →R

equipped with the sup-norm ‖g‖ := supt∈[,T] |g(t)|.
When ε → +, we expect that ‖Xε – X‖ →  in probability, where X is the solution of

the non-perturbed dynamical system

dX
t = b

(
X

t
)

dt, X
t = x. (.)
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The purpose of this paper is to consider the moderate deviations and the central limit
theorem for {Xε

t : t ∈ [, T]}. More precisely, we study the asymptotic behavior of

Zε
t =

√
εh(ε)

(
Xε

t – X
t
)
, t ∈ [, T],

where h(ε) is some deviation scale which strongly influences the asymptotic behavior
of Zε .

() The case h(ε) = /
√

ε provides some large deviations estimates, which have been
extensively studied in recent years.

() If h(ε) is identically equal to , we are in the domain of the central limit theorem
(CLT for short). We will show that (Xε – X)/

√
ε converges to a solution of

stochastic differential equation as ε decreases to .
() To fill in the gap between the CLT scale [h(ε) = ] and the large deviations scale

[h(ε) = /
√

ε], we will study the so-called moderate deviation principle (MDP for
short, cf. []), that is, when the deviation scale satisfies

h(ε) → +∞,
√

εh(ε) →  as ε → . (.)

Throughout this paper, we assume that (.) is in place.
Since the original work of Freidlin-Wentzell [], the large deviation principles for small

noise diffusion equations have been extensively studied in the literature; see []. The prob-
lem of large deviations for diffusions of the form (.) has been studied, where the case of
diffusion coefficient σ (x) = ρ

√
x in [] and a general drift case in [].

Like the large deviations, the moderate deviation problems arise in the theory of statisti-
cal inference quite naturally. The estimates of moderate deviations can provide us with the
rate of convergence and a useful method for constructing asymptotic confidence intervals;
see [–] and references therein.

This type of moderate deviations for stochastic (partial) differential equations with
Lipschitz coefficients has been studied; see [, ] and so on. Wang and Zhang [] estab-
lished the moderate deviation principle for stochastic reaction-diffusion equations. Bud-
hiraja et al. [] studied the moderate deviation principles for stochastic differential equa-
tions driven by a Poisson random measure in finite and infinite dimensions.

For the stochastic differential equation with non-Lipschitz diffusion coefficients, Chen
et al. [] established the moderate deviation principles for small perturbation Wishart
processes. Comparing with the results in [], the drift term of Wishart process is the
identity matrix, while the drift term of equation (.) is locally Lipschitz continuous. Chen
et al. also proved that the eigenvalue process satisfies a moderate deviation principle by
using the powerful delta method in large deviation theory proposed by Gao and Zhao [].
One of the key elements in the delta method is to prove the Hadamard differentiability,
which seems to be difficult to verify for the model (.). Here we prove the results directly
by the exponential approximations [], Theorem ...

The main result of this paper is the following theorem.

Theorem . Assume the condition (H). Then as ε → :
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() (CLT) (Xε – X)/
√

ε converges in probability on C([, T];R) to the stochastic process
Y , determined by

{
dY 

t = b′(X
t )Y 

t dt + σ (X
t ) dBt ;

Y 
 = ,

(.)

where b′ is the derivative of b.
() (MDP) Zε := (Xε – X)/(

√
εh(ε)) obeys the LDP on the space C([, T];R) with speed

h(ε) and with the rate function

I(ϕ) =



∫ T



∣∣σ
(
X

t
)–(

ϕ̇t – b′(X
t
)
ϕt

)∣∣ dt, (.)

if ϕ is absolutely continuous with ϕ =  and I(ϕ) = +∞ otherwise. More precisely, for
any Borel measurable subset A of C([, T];R),

– inf
ϕ∈Ao

I(ϕ) ≤ lim inf
ε→

h–(ε) logP
(
Zε ∈ A

)

≤ lim sup
ε→

h–(ε) logP
(
Zε ∈ A

) ≤ – inf
ϕ∈Ā

I(ϕ),

where Ao and Ā denote the interior and the closure of A, respectively.

The rest of this paper is organized as follows. In Section , we first prove that under the
assumption (H), Xε is bounded in the sense of Freidlin-Wentzell’s LDP, so we reduce our
study to the case where b and b′ are globally Lipschitzian. We establish the CLT and MDP
in Section  and Section , respectively.

2 Reduction to the bounded case
At first, we shall prove that under the assumption (H), Xε is bounded in the sense of LDP.
For any R ≥ , let

τ ε
R := inf

{
t;

∣∣Xε
t
∣∣ ≥ R

}
.

Lemma . Under the assumption (H),

lim
R→+∞ lim sup

ε→
ε logP

(
τ ε

R ≤ T
)

= –∞. (.)

Proof One can obtain (.) by a similar argument in Lemma .. of []. For the conve-
nience of reader, we shall give a short proof.

Let f (x) := log( + |x|). By Itô’s formula,

df
(
Xε

t
)

=
√

εf ′(Xε
t
)
σ
(
Xε

t
)

dBt + b
(
Xε

t
)
f ′(Xε

t
)

dt +
ε


σ (Xε

t
)
f ′′(Xε

t
)

dt

=:
√

εf ′(Xε
t
)
σ
(
Xε

t
)

dBt + L εf
(
Xε

t
)

dt,

where L ε is the generator of Xε .
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Consider the local martingale

Mε
t :=

√
ε

∫ t


f ′(Xε

s
)
σ
(
Xε

s
)

dBs.

By the Hölder continuity of σ in (H), its quadratic variation process 〈Mε〉 satisfies

〈
Mε

〉
t = ε

∫ t



∣
∣σ

(
Xε

s
)
f ′(Xε

s
)∣∣ ds ≤ εLt.

Notice that, for all ε ∈ (, ],

L εf (x) =
εσ (x) + b(x)x

 + |x| –
ε|σ (x)x|
( + |x|) ≤ L + L,

where L is the constant in (H). Consequently, for all t ≥  and ε ∈ (, ],

f
(
Xε

t
) ≤ f (x) + Mε

t + (L + )Lt. (.)

For any R >  large enough so that c(R, T) := log( + R) – [log( + |x|) + (L + )LT] > ,
we have by the Bernstein inequality for continuous local martingale and (.)

P
(
τ ε

R ≤ T
)

= P

(
sup

t∈[,T]

∣∣Xε
t
∣∣ ≥ R

)
= P

(
sup

t∈[,T]
f
(
Xε

t
) ≥ log

(
 + R)

)

≤ P

(
sup

t∈[,T]

∣∣Mε
t
∣∣ ≥ c(R, T)

)

≤  exp

{
–

c(R, T)

εLT

}
,

where the desired result follows. �

Now for any R >  large enough so that c(R, T) > , let σ (R)(x) = σ (x) and b(R)(x) = b(x)
for |x| ≤ R, such that σ (R) is bounded, b(R) is C and (b(R))′ is Lipschitz continuous and
bounded. Consider the solution Xε,R

t of the corresponding stochastic differential equation
(.) with (σ , b) replaced by (σ (R), b(R)). We have by Lemma . and the proof above

lim sup
ε→

ε logP
(
Xε

t = Xε,R
t for some t ∈ [, T]

)

≤ lim sup
ε→

ε logP
(
τ ε

R ≤ T
) ≤ –

c(R, T)

LT
.

Hence by the approximation lemma ([], Theorem ..), (Xε – X)/(
√

εh(ε)) and (Xε,R –
X)/(

√
εh(ε)) obey the same LDP.

In the rest of paper, considering (σ (R), b(R)) if necessary, we may and will suppose that
(L): b and b′ are global Lipschitz continuous on R, i.e., there exists a constant L such

that

max
{∣∣b(x) – b(y)

∣
∣,

∣
∣b′(x) – b′(y)

∣
∣} ≤ L|x – y|, ∀x, y ∈ R

+.
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3 Central limit theorem
In this section, we will establish the central limit theorem.

Lemma . There exists some constant C(x, T , L) >  such that, for any ε ∈ (, ],

E
[∥∥Xε

∥∥] ≤ C(x, T , L).

Proof Notice that

Xε
t = x +

∫ t


b
(
Xε

s
)

ds +
√

ε

∫ t


σ
(
Xε

s
)

dBs.

Thus

∣
∣Xε

t
∣
∣ ≤ x

 + 
(∫ t


b
(
Xε

s
)

ds
)

+ ε

∣∣
∣∣

∫ t


σ
(
Xε

s
)

dBs

∣∣
∣∣



. (.)

Taking the supremum up to time s ∈ [, t] in (.), and then taking the expectation, by the
Burkholder-Davis-Gundy inequality, we have

E

[
sup

≤s≤t

∣
∣Xε

s
∣
∣

]
≤ x

 + E
[(∫ t



∣
∣b

(
Xε

s
)∣∣ds

)]
+ εE

[
sup

≤s≤t

∣∣
∣∣

∫ s


σ
(
Xε

u
)

dBu

∣∣
∣∣

]

≤ x
 + E

[
t
∫ t



∣
∣b

(
Xε

s
)∣∣ ds

]
+ εE

[∫ t



∣
∣σ

(
Xε

s
)∣∣ ds

]

≤ x
 + tLE

[∫ t



(
 +

∣∣Xε
s
∣∣)ds

]
+ LεE

[∫ t



(
 +

∣∣Xε
s
∣∣)ds

]
.

By Gronwall’s inequality, we have

E
[∥∥Xε

∥
∥] ≤ (

x
 + εTL + TL

) · exp
(
εTL + TL

)
.

The proof is complete. �

Lemma . There exists some constant C(T , L) >  such that

E
[∥∥Xε – X∥∥] ≤ εC(T , L).

Proof Notice that

Xε
t – X

t =
∫ t



[
b
(
Xε

s
)

– b
(
X

s
)]

ds +
√

ε

∫ t


σ
(
Xε

s
)

dBs. (.)

Taking the supremum up to time s ∈ [, t] in (.), and then taking the expectation, by the
Burkholder-Davis-Gundy inequality, we have

E

[
sup

≤s≤t

∣
∣Xε

s – X
s
∣
∣

]
≤ E

[∫ t



∣
∣b

(
Xε

s
)

– b
(
X

s
)∣∣ds

]

+ εE

[(
sup

≤s≤t

∫ s


σ
(
Xε

u
)

dBu

)]
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≤ LtE
[∫ t



∣∣Xε
s – X

s
∣∣ ds

]
+ εE

[∫ t



∣∣σ
(
Xε

s
)∣∣ ds

]

≤ LtE
[∫ t



∣
∣Xε

s – X
s
∣
∣ ds

]
+ εL

E

[∫ t



(
 +

∣
∣Xε

s
∣
∣)ds

]
.

By Gronwall’s inequality and Lemma ., we have

E
[∥∥Xε – X∥∥] ≤ εC(T , L).

The proof is complete. �

For any ε > , let

Y ε :=
√
ε

(
Xε – X).

The proof of the CLT in Theorem . relies on the following theorem.

Theorem . Under the assumptions (H) and (L), there exists a constant C(T , L) depend-
ing on T , L such that

E
[∥∥Y ε – Y ∥∥] ≤ ε

γ
 C(T , L) →  as ε → .

Proof Notice that

Y ε
t – Y 

t =
∫ t



(
b(Xε

s ) – b(X
s )√

ε
– b′(X

s
)
Y 

s

)
ds +

∫ t



(
σ
(
Xε

s
)

– σ
(
X

s
))

dBs

= Iε
 (t) + Iε

(t) + Iε
(t), (.)

where

Iε
 (t) :=

∫ t



(
b(Xε

s ) – b(X
s )√

ε
– b′(X

s
)
Y ε

s

)
ds,

Iε
(t) :=

∫ t



(
b′(X

s
)(

Y ε
s – Y 

s
))

ds,

Iε
(t) :=

∫ t



(
σ
(
Xε

s
)

– σ
(
X

s
))

dBs.

By Taylor’s formula, there exists a random variable ηε(t) taking values in (, ) such that

b
(
Xε

t
)

– b
(
X

t
)

= b′(X
t + ηε(t)

(
Xε

t – X
t
)) × (

Xε
t – X

t
)
.

Since b′ is Lipschitz continuous, we have

∣∣b′(X
t + ηε(t)

(
Xε

t – X
t
))

– b′(X
t
)∣∣ ≤ Lηε(t)

∣∣Xε
t – X

t
∣∣ ≤ L

∣∣Xε
t – X

t
∣∣.

Hence,

sup
≤s≤t

∣∣Iε
 (s)

∣∣ ≤ L√
ε

∫ t



∣∣Xε
s – X

s
∣∣ ds. (.)
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Taking the expectation, by Lemma ., we have, for any t ∈ [, T],

E

[
sup

≤s≤t

∣
∣Iε

 (s)
∣
∣
]

≤ L√
ε
E

[∫ t



∣
∣Xε

s – X
s
∣
∣ ds

]
≤ √

εC(T , L). (.)

Since |b′| ≤ L, for any t ∈ [, T],

E

[
sup

≤s≤t

∣
∣Iε

(s)
∣
∣
]

≤ LE
[∫ t



∣
∣Y ε

s – Y 
s
∣
∣ds

]
. (.)

By Lemma ., the Burkholder-Davis-Gundy inequality, Hölder’s inequality and Fubini’s
theorem, we have, for any t ∈ [, T],

E

[
sup

≤s≤t

∣∣Iε
(s)

∣∣
]

≤ cLE
[(∫ t



∣∣Xε
s – X

s
∣∣γ ds

) 

]

≤ cL
(∫ t


E

[∣∣Xε
s – X

s
∣∣γ ]

ds
) 



≤ cL
(∫ t



(
E

[∣∣Xε
s – X

s
∣
∣])γ ds

) 


≤ ε
γ
 C(T , L). (.)

Putting (.), (.)-(.) together, by Gronwall’s inequality, we have

E
[∥∥Y ε – Y ∥∥] ≤ ε

γ
 C(T , L).

The proof is complete. �

4 Moderate deviation principle
Notice that

d
(

Y 
t

h(ε)

)
= b′(X

t
)
(

Y 
t

h(ε)

)
dt +


h(ε)

σ
(
X

t
)

dBt , Y 
 = .

By Freidlin-Wentzell’s theorem [], Y 

h(ε) satisfies the LDP on C([, T];R) with the speed
h(ε) and with the rate function

I(ϕ) :=

⎧
⎨

⎩



∫ T

 | ϕ̇(t)–b′(X
t )ϕ(t)

σ (X
t )

| dt, if ϕ is absolutely continuous with ϕ() = ;

+∞, otherwise.
(.)

Now, let us prove the MDP in Theorem ..

Proof of MDP By Theorem .. of [], to prove the LDP for (Xε – X)/(
√

εh(ε)), it is
enough to show that Y ε/h(ε) is h(ε)-exponentially equivalent to Y /h(ε), i.e., for any δ > ,

lim sup
ε→


h(ε)

logP

(‖Y ε – Y ‖
h(ε)

> δ

)
= –∞. (.)
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Recalling (.), we have

sup
≤s≤t

∣∣Y ε
s – Y 

s
∣∣ ≤ sup

≤s≤t

∣∣Iε
 (s)

∣∣ + L
∫ t



(
sup

≤u≤s

∣∣Y ε
u – Y 

u
∣∣
)

ds + sup
≤s≤t

∣∣Iε
(s)

∣∣.

By Gronwall’s inequality, we have

∥∥Y ε – Y ∥∥ ≤ (∥∥Iε

∥∥ +

∥∥Iε

∥∥)

eLT . (.)

By (.), to prove (.), it is sufficient to prove that, for any δ > ,

lim sup
ε→


h(ε)

logP

(‖Iε
i ‖

h(ε)
> δ

)
= –∞, i = , . (.)

Now we estimate those two terms.
Step . For the continuous martingale Iε

 , let 〈Iε
〉t be its quadratic variation process. For

any η > , by Bernstein’s inequality, we have

P
(∥∥Iε


∥∥ > h(ε)δ

)

≤ P
(∥∥Iε


∥
∥ > h(ε)δ,

∥
∥Xε – X∥∥ < η

)
+ P

(∥∥Xε – X∥∥ ≥ η
)

≤ P
(∥∥Iε


∥
∥ > h(ε)δ,

〈
Iε


〉
T ≤ TLηγ

)
+ P

(∥∥Xε – X∥∥ ≥ η
)

≤ exp

{
–

h(ε)δ

TLηγ

}
+ P

(∥∥Xε – X∥∥ ≥ η
)
, (.)

where we have used the Hölder continuity of σ .
By Theorem . in [], Xε satisfies the LDP on C([, T];R) with a good rate function Ĩ .

Hence, for any η > ,

lim sup
ε→

ε logP
(∥∥Xε – X∥∥ ≥ η

) ≤ – inf
{

Ĩ(f ) :
∥∥f – X∥∥ ≥ η

}
.

Since the good rate function Ĩ has compact level sets, the inf{Ĩ(f ) : ‖f –X‖ ≥ η} is obtained
at some function f. Because Ĩ(f ) =  if and only if f = X, we conclude that

– inf
{

Ĩ(f ) :
∥∥f – X∥∥ ≥ η

}
< .

By (.), we have

lim sup
ε→


h(ε)

logP
(∥∥Xε – X∥∥ ≥ η

)
= –∞. (.)

Since η >  is arbitrary, putting together (.) and (.), we obtain

lim sup
ε→


h(ε)

logP

(‖Iε
‖

h(ε)
> δ

)
= –∞. (.)

Step . For the first term Iε
 , by (.), we have

∥∥Iε

∥∥ ≤ C(T , L)√

ε

∥∥Xε – X∥∥.
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By (.) and Gronwall’s inequality, we have

∥∥Xε – X∥∥ ≤ √
εC(T , L) sup

≤t≤T

∫ t


σ
(
Xε

s
)

dBs.

For any η > , by Bernstein’s inequality and the Hölder continuity of σ , we have

P
(∥∥Iε


∥∥ > h(ε)δ

)

≤ P
(∥∥Iε


∥∥ > h(ε)δ,

∥∥Xε – X∥∥ < η
)

+ P
(∥∥Xε – X∥∥ ≥ η

)

≤ P

((
sup

≤t≤T

∫ t


σ
(
Xε

s
)

dBs

)

≥ h(ε)δ√
εC(L, T)

,
∥∥Xε

∥∥ <
∥∥X∥∥ + η

)

+ P
(∥∥Xε – X∥∥ ≥ η

)

≤ P

((
sup

≤t≤T

∫ t


σ
(
Xε

s
)

dBs

)

≥ h(ε)δ√
εC(L, T)

,
〈∫ ·


σ
(
Xε

s
)

dBs

〉

T
≤ TL(∥∥X∥∥ + η

)γ

)

+ P
(∥∥Xε – X∥∥ ≥ η

)

≤ exp

{
–

h(ε)δ

√

εC(L, T)TL(‖X‖ + η)γ

}
+ P

(∥∥Xε – X∥∥ ≥ η
)
. (.)

By (.), (.), and (.), we have

lim sup
ε→


h(ε)

logP

(‖Iε
 ‖

h(ε)
> δ

)
= –∞. (.)

The proof is complete. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors are grateful to the anonymous referees for conscientious comments and corrections. This work was
supported by National Natural Science Foundation of China (11471304, 11401556).

Received: 24 July 2015 Accepted: 24 February 2016

References
1. Revuz, D, Yor, M: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)
2. Baldi, P, Caramellino, L: General Freidlin-Wentzell large deviations and positive diffusions. Stat. Probab. Lett. 81(8),

1218-1229 (2011)
3. Aït-Sahalia, Y, Hansen, L: Handbook of Financial Econometrics: Tools and Techniques, vol. 1. North-Holland,

Amsterdam (2009)
4. Mackevic̆ius, V: Verhulst versus CIR. Lith. Math. J. 55, 119-133 (2015)
5. Donati-Martin, C, Rouault, A, Yor, M, Zani, M: Large deviations for squares of Bessel and Ornstein-Uhlenbeck

processes. Probab. Theory Relat. Fields 129(2), 261-289 (2004)
6. Dembo, A, Zeitouni, O: Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics, vol. 38.

Springer, Berlin (1998)
7. Freidlin, MI, Wentzell, AD: Random Perturbation of Dynamical Systems. Springer, Berlin (1984). Translated by J Szuc
8. Ermakov, M: The sharp lower bound of asymptotic efficiency of estimators in the zone of moderate deviation

probabilities. Electron. J. Stat. 6, 2150-2184 (2012)
9. Gao, F, Zhao, X: Delta method in large deviations and moderate deviations for estimators. Ann. Stat. 39, 1211-1240

(2011)
10. Miao, Y, Shen, S: Moderate deviation principle for autoregressive processes. J. Multivar. Anal. 100, 1952-1961 (2009)
11. Guillin, A: Averaging principle of SDE with small diffusion: moderate deviations. Ann. Probab. 31, 413-443 (2013)



Li and Zhang Journal of Inequalities and Applications  (2016) 2016:87 Page 10 of 10

12. Ma, Y, Wang, R, Wu, L: Moderate deviation principle for dynamical systems with small random perturbation.
arXiv:1107.3432

13. Wang, R, Zhang, TS: Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise.
Potential Anal. 42(1), 99-113 (2015)

14. Budhiraja, A, Dupuis, P, Ganguly, A: Moderate deviation principles for stochastic differential equations with jumps.
Ann. Probab. (to appear)

15. Chen, L, Gao, F, Wang, S: Moderate deviations and central limit theorem for small perturbation Wishart processes.
Front. Math. China 9(1), 1-15 (2014)

http://arxiv.org/abs/arXiv:1107.3432

	Moderate deviations and central limit theorem for positive diffusions
	Abstract
	MSC
	Keywords

	Introduction
	Reduction to the bounded case
	Central limit theorem
	Moderate deviation principle
	Competing interests
	Authors' contributions
	Acknowledgements
	References


