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Abstract

On-the-fly composition of service-based software solutions is still a challenging task. Even more challenges emerge
when facing automatic service composition in markets of composed services for end users. In this paper, we focus on
the functional discrepancy between “what a user wants” specified in terms of a request and “what a user gets” when
executing a composed service. To meet the challenge of functional discrepancy, we propose the combination of
existing symbolic composition approaches with machine learning techniques. We developed a learning
recommendation system that expands the capabilities of existing composition algorithms to facilitate adaptivity and
consequently reduces functional discrepancy. As a representative of symbolic techniques, an Artificial Intelligence
planning based approach produces solutions that are correct with respect to formal specifications. Our learning
recommendation system supports the symbolic approach in decision-making. Reinforcement Learning techniques
enable the recommendation system to adjust its recommendation strategy over time based on user ratings. We
implemented the proposed functionality in terms of a prototypical composition framework. Preliminary results from
experiments conducted in the image processing domain illustrate the benefit of combining both complementary
techniques.

Keywords: Service composition; Service functionality; Service recommendation; Reinforcement learning;
Service markets; Image processing; On-the-fly computing

1 Introduction
A major goal of the Collaborative Research Centre 901
“On-The-Fly (OTF) Computing” [1,2] is the automated
composition of software services that are traded on mar-
kets and that can be flexibly combined with each other.
In our vision, a user formulates a request for an indi-
vidual software solution, receives an answer in terms of
a composed service, and finally executes the composed
service.
Figure 1 illustrates the very basic idea of OTF Comput-

ing. A so-called OTF provider receives and processes a
user request. The processing step mainly involves auto-
matic composition of individual software solutions based
on elementary services supplied by service providers. The
OTF provider responds in terms of a composed service
that provides the functionality the user specified.
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As an illustrative example, let us assume that someone
wants to post-process a holiday photo. The person, how-
ever, is not able to use a monolithic software solution
(e.g., he does not know how to handle it or a solu-
tion is not available at all). Web based platforms such as
Instagram [3] provide image processing services that can
be applied to an uploaded photo or video. The selection
of appropriate services, however, has still to be done man-
ually by the user. Furthermore, the variety of available
services is restricted.
Now let us consider a market of image processing ser-

vices. The person who wants to post-process his photo
becomes a customer (henceforth referred to as user)
within this market by formulating a request describing
what he expects from the execution result. A solution
that satisfies the user’s request is automatically composed
based on image processing services that are supplied
by different service providers. In this scenario, the user
only has to pay for the actually utilized functionality.
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Figure 1 Basic On-The-Fly (OTF) computing concept for generating individual software solutions. An end user formulates a request, which is
processed by a so-called OTF provider. An OTF provider automatically generates an individual software solution by asking appropriate service
providers for services and by composing those services.

Furthermore, he benefits from the variety of image pro-
cessing services that are provided by different service
providers.
Different major challenges inevitably emerge, when try-

ing to establish automated service composition in such a
market environment. Some of them were already intro-
duced in our previous work [4]. In this paper, however, we
exclusively focus on service functionality, i.e., the discrep-
ancy between the functionality desired by a user and the
actual functionality when finally executing the composed
solution. This gap between “what a user wants” and “what
a user gets” exists due to

• the necessary trade-off between degree of abstraction
and level of detail of the applied composition
formalism in order to ensure feasibility,

• the data-dependency and context-sensitivity of
service functionality, as well as

• inexpert users, who formulate imprecise requests
while additionally having individual preferences that
can hardly be described in all details in advance.

The majority of existing composition approaches can be
considered as symbolic techniques that base on explicitly
given information [5-15]. Alternatively, machine learning
techniques are proposed to replace symbolic techniques
(cf. Section 6). To overcome the mentioned functional dis-
crepancy, however, we propose to not replace symbolic
techniques, but to expand them bymachine learning tech-
niques. In our work, a symbolic composition approach
is responsible for composing solutions that are correct
with respect to formal specifications (service descriptions
and user requests). A Reinforcement Learning (RL) based
recommendation system, in turn, supports the symbolic
approach in deciding between alternative composition
steps based on implicit information in terms of user
feedback from previous composition processes. When
combined, both techniques benefit from each other:
The composition algorithm determines (and restricts) the

learning space of the recommendation system, while the
recommendation system estimates the quality of the com-
position strategy. In case of low quality, i.e., in case of
an unacceptable gap between “what a user wants” and
“what a user gets”, the composition algorithm can adjust
its behaviour to improve the result for future composition
processes (e.g., by choosing an alternative solution). The
contributions of this paper are as follows.

1. We emphasize the necessity to develop more fine
grained methods for selecting services not only based
on their abstract functional properties (and
non-functional attributes, as, e.g., done in [16]) but
also based on their functionality when executed.

2. We introduce and motivate image processing as
appropriate application domain in order to not only
consider service composition on the symbolic level,
but also on the execution level. Furthermore, we
provide an illustrative problem description based on
a realistic image processing example.

3. We descriptively explain the conceptual and technical
integration of our learning recommendation system
into an Artificial Intelligence (AI) planning-based
technique - a representative of symbolic composition
approaches - in order to meet the challenge of
functional discrepancy.

4. Experimental results within the image processing
domain include the entire loop of composition,
execution and learning, and demonstrate the benefits
of combining symbolic approaches with machine
learning techniques.

The remainder of this paper is organized as follows.
Section 2 introduces and motivates image processing as
application domain. It also covers the symbolic approach
for automatically composing simple sequences of image
filters and emphasizes the problem we are tackling in this
paper. Section 3 outlines the functionality of our learning
recommendation approach. The conceptual and technical
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integration is described in Section 4. Experimental results
are presented in Section 5. After discussing related work
in Section 6, the paper finally concludes with Section 7.

2 Motivation and problem description
In our work, wemake an extensive use of image processing
examples for investigating and clarifying open challenges
as well as developing and evaluating newmethods in order
to meet these challenges. From the image processing per-
spective (cf. Section 2.1), we investigate to what extent
currently existing service composition techniques facili-
tate automatic composition of image processing solutions
and how to overcome possible shortcomings. In doing so,
we obtain new insights in a domain with specific char-
acteristics. This, in turn, enables us to come up with
more specialized concepts. These concepts can then be
generalized and transferred back to the service-oriented
computing (SOC) domain.
From the SOC perspective (cf. Section 2.2), the charac-

teristics of the image processing domain such as

• high variability of existing, simple services,
• demand for complex services providing

data-dependent and context-specific functionality,
• availability of executable implementations provided

by open source libraries,
• inherent vividness for motivating new challenges and

new concepts,

enable us to realize examples of high practical relevance,
while the complexity of those examples can be gradually
increased. In our experience, increased practical rele-
vance has a highly positive impact on the awareness and
acceptance of SOC techniques in general.

2.1 From the image processing perspective
Developing image processing solutions heavily depends
on the area of application and the underlying conditions.
In embedded systems, e.g., image processing software is
usually optimized for specific hardware while the imple-
mented algorithms are often highly specialized for certain
tasks. In order to reduce redundant implementation steps,
a functional prototype can be realized in advance. In doing
so, developers primarily focus on the desired function-
ality. They determine at an early stage, if and how the
underlying image processing task can be solved.
A possible way of solving an image processing task is to

follow a component-based approach. Existing algorithms
are considered to be distinct components. Components
can be interconnected in a loosely coupled manner in
order to generate a composition of image processing algo-
rithms. A composition is subsequently executed and eval-
uated in an application-specific test case. If the evaluation
result does not satisfy the requirements, the respective
composition is partially refined by adding, removing or

adjusting available components. The modified compo-
sition is again executed and evaluated. These steps are
repeated until either a prototype that provides the desired
functionality was realized, or until the task itself is modi-
fied, since no feasible solution could be found.
In the end-user domain of photo and video post-

processing, users do not implement a complete post-
processing approach by programming new software. They
use existing algorithms that are provided by monolithic
solutions (such as Adobe Photoshop, Corel Photo-Paint,
and GIMP) or by web-based solutions (like, e.g., Insta-
gram) and combine them in an arbitrary order. End-users,
whether or not being an expert, however, follow a strategy
that is similar to the previously outlined way of proto-
typing. In order to get a solution that satisfies individual
preferences, existing algorithms are consecutively applied
in a trial and error manner.
Dependent on a user’s degree of expertise, this trial and

error process can be highly time consuming. Consider,
e.g., an end-user, who has a concrete idea of how his holi-
day photos should look like. If he is a novice, however, he
has no idea about which algorithms have to be applied in
order to achieve the desired result. As a consequence, he
simply tries different algorithms or combinations of algo-
rithms in order to come up with a satisfying result. But
even being an expert in image processing does not neces-
sarily mean that you are able to come up with a satisfying
solution from scratch. In any case, a composition of con-
crete algorithms has to be identified, most likely by a trial
and error like strategy. Regardless of whether being an
expert or a novice, users almost always have to deal with
one and the same question: Which composition of avail-
able algorithms solves the image processing task as good
as possible?
By automating this composition process, both novices

and experts can be supported and the effort for find-
ing a satisfying solution can be minimized. In the best
case, an optimal solution that perfectly satisfies a user’s
expectations is identified and the problem is solved fully
automatically. However, users can even benefit from non-
optimal solutions: The composition information can be
used as starting point for manual modifications while the
search space for possibly promising modifications was
also reduced. In general, the problem of automatically
composing image processing software solutions is similar
to the service composition problem.
Throughout this paper, we use a simple yet expressive

pre-processing use case for illustration and evaluation
purposes. Figure 2a shows a photo of a sleeping dog. In
order to modify only those parts of the image that belong
to the dog’s gray muzzle, the associated pixels shall be iso-
lated as good as possible. Figures 2b and 2c show example
images that can be achieved by applying a sequence of
simple image processing filters.
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Figure 2 Example for functional discrepancy in the image
processing domain. Based on original image (a), desired image (b)
and undesired image (c) were produced by means of two formally
equivalent solutions.

2.2 From the service-oriented computing perspective
In order to design image processing services that serve as
loosely coupled, functional components for the composi-
tion process, we adhered to the relevant key principles of
SOC [17]. Statelessness is achieved by encapsulating exist-
ing OpenCV algorithms [18], which do not depend on any
state information, but consume a single image and provide
a modified version of that image. Since the functionality of

some of these algorithms can be influenced by changing
parameters and in order to ensure autonomy, we inter-
pret an algorithmwith different parameter sets as separate
services.
To support composability of simple image processing fil-

ters, the functionality of our services is formally specified
in terms of abstract propositions. In this context, we fol-
low an IOPE (input, output, postconditions, effects) [19]
approach to facilitate AI planning techniques. In the most
general sense, propositions correspond to attributes of an
image that are changed by applying a service.
We specify an image processing service s in terms of

the tuple (i, o, p+, p−, e+, e−), where each element corre-
sponds to a set of propositions. Input i and output o rep-
resent signature information (basic input and output data
types) of a service. They ensure syntactically correct solu-
tions and a successful execution. Required preconditions
p+, prohibited preconditions p−, positive effects e+, and
negative effects e− correspond to semantic information.
Semantic information reduces the set of syntactically cor-
rect solutions to only those solutions that are really useful.
Table 1 lists four specifications of services that provide

functionality for solving our example. Service s1 converts
a multi-channel image into a single-channel image that
only contains gray level information. Any existing color
information is lost during the conversion step. Service
s2 applies a binary thresholding method. The seman-
tic description ensures, that images are processed only
once by a thresholding service. Services s3 and s4 real-
ize a blurring functionality for reducing image noise. They
can be applied to both single-channel images and multi-
channel images. Furthermore, the services can be applied
arbitrarily often. However, although having the same for-
mal specification, the services differ in their implemented
blurring methods.
We use the same formalism for specifying a request; that

is, a request r is defined in terms of tuple (i, o, pre, post),
with i and o denoting input and output, respectively, pre
denoting the preconditions and post denoting the post-
conditions. The request for the desired functionality in
our example is defined as

i = {multi-channel},
o = {single-channel},

pre = {colored},
post = {blurred, threshold, gray} ,

(1)

with i and pre describing the original image (Figure 2a) as a
multi-channel, color picture, and o and post describing the
desired image (Figure 2b) as well as the undesired image
(Figure 2c) as a single-channel, grayscale picture, which
was blurred and additionally modified by a thresholding
filter.
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Table 1 Specifications of image processing services (simple filters)

Signature Preconditions Effects

Service si Description isi osi p+
si p−

si e+
si e−

si

s1 Multi-channel to single-channel Multi-channel Single-channel - - Gray Colored

s2 Binary thresholding Single-channel Single-channel - Threshold Threshold -

s3 Gaussian filter Single-channel Single-channel - - Blurred -

Multi-channel Multi-channel - - Blurred -

s4 Median filter Single-channel Single-channel - - Blurred -

Multi-channel Multi-channel - - Blurred -

Figure 3 shows the composition state space based on
the specified services and the specified request. An action
(edge) corresponds to appending a service to the present
sequence of services. States encode attributes of an image.
The depicted automaton produces all solutions that are
syntactically and semantically correct. The composition
problem itself is now to find a path from initial state
q0 to goal state q∗. The identified path is equivalent to
the composed solution. That said, the major question we
are facing becomes clear: Which path solves the problem
the best? That is, which composed solution produces an
execution result that approximates the desired solution
(Figure 2b) and not a formally equivalent solution such as
Figure 2c?
For solving the composition problem on the symbolic

level, we applied a forward search algorithm. From the
AI perspective, the algorithm can be considered as a
tree-search approach [20], which allows different search
nodes to correspond to the same state in the composition
space. These redundant paths enable our search algorithm
to identify solutions that contain loops (e.g., consecu-
tive invocations of blurring filters). In order to decide
which action (service) should be chosen next in each

Figure 3 Composition state space for request (1) based on the
service specifications listed in Table 1.

state, our learning recommendation system comes into
play.

2.3 Possible reasons for functional discrepancy
Before presenting our learning recommendation system,
let us take a closer look at some possible reasons for
functional discrepancy in our OTF context. For a bet-
ter understanding, Figure 4 illustrates the so-called OTF
Computing process. A user only interacts with an OTF
provider. He formulates a request (Step 1), gets a response
in terms of a composed service (Step 2), executes the com-
posed service (Step 3) and rates his degree of satisfaction
regarding the execution result (Step 4).

2.3.1 Abstraction
Functionality of services is usually described by ser-
vice providers in terms of abstract, functional proper-
ties. Desired functionality, in turn, is abstractly described
by users. Due to the abstraction, similar services most
likely end up with identical formal descriptions, although
they provide different functionality when executed. The
expressiveness of specification languages might theoreti-
cally be high enough to make a difference between similar
services. Abstraction, however, is necessary to ensure fea-
sibility of composition processes. Furthermore, the more
precise and restrictive functional properties are specified,
the higher the probability to exclude solutions that might
be desired by users.

2.3.2 Data- and context-dependency
In certain domains, service functionality heavily depends
on the concrete data that has to be processed. Although
the functional description of a service might be very
detailed, there is always a high probability that a service is
not or not sufficiently fulfilling the required functionality
when executing it with concrete data. It is usually impos-
sible to predict, consider and formalize every possible
execution context in advance.

2.3.3 Inexpert users
Users are not necessarily experts in the domain in which
they formulate a request. As a consequence, although
having the possibility to describe a request on a very
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Figure 4 The OTF Computing process, involving end user, OTF provider and service providers.

detailed level, inexpert users are not able to describe all
details that are necessary for composing a solution that
exactly produces desired execution results. Most of the
time, indeed, user requests will likely be imprecise or
incomplete. A composition process is able to automati-
cally produce solutions that satisfy a user request. How-
ever, that does not necessarily mean that the composed
solution also produces execution results that satisfy the
user.

2.3.4 Divergent user preferences
In a market of composed services, users with different
preferences will occur. As a consequence, although users
specify the same request and provide the same data, the
actually desired functionality might still differ. Assum-
ing that users rate their satisfaction regarding the result
of a composition process, an OTF provider most likely
receives divergent feedback for identical requests. An
OTF provider has to analyse user feedback in order to
group user profiles according to similar preferences. New
requests have to be assigned to existing or new groups,
so that an OTF provider can compose a service according
to the specific preferences of a group. Handling this so-
called concept drift, however, is beyond the scope of this
paper.

3 Learning recommendation system
Recommendation systems are applied to provide users
with the most suitable services to their specific interests.
Chan et al., e.g., developed a recommendation system that
captures implicit knowledge by incorporating historical
usage data [21]. In their work, however, generated recom-
mendation values are neither used for automatic service
composition, nor do they evolve by learning from history.
In our work, we interpret service composition as

sequential application of composition steps such as
appending a service to a sequence (cf. Section 2.2). When-
ever alternative composition steps occur, our recom-
mendation mechanism supports the composition process
in identifying the most appropriate candidate. The rec-
ommendation strategy is adjusted over time based on

feedback. For adjusting the decision-making processes, we
apply RL [22] techniques.
RL addresses the problem faced by an autonomous

agent that must learn to reach a goal through sequen-
tial trial-and-error interactions with its environment. RL
techniques, however, do not try to reach a particular goal.
They try to maximize reward in the long run by identi-
fying optimal actions. Depending on its actions, an agent
receives reward values. These values are incorporated into
the decision-making process in order to adjust the future
action selection strategy.
In our context, the agent corresponds to the OTF

provider, who has the goal to compose a solution that
satisfies the user. A single action corresponds to a com-
position step. A sequence of composition steps generates
a composed service that can be executed by the user. The
reward values an OTF provider receives are provided by
users in terms of ratings.

3.1 Independent state models
Reinforcement Learning bases on the major assumption,
that the underlying decision-making process does not
depend on history, but is memoryless and can be modeled
as Markov Decision Process (MDP) [23]. The fundamen-
tal assumption behind modelling a sequential decision-
making problem as MDP is that the reward function is
Markovian [24]. All information needed to determine the
reward (and to choose an action) at a given state must
be encoded in the state itself, i.e., states have to satisfy
the Markov property. In case of the composition state
space shown in Figure 3, the Markov property is not
fulfilled, since not enough information is encoded in a
single state. To decide whether to append a service or
not heavily depends on previous composition steps. For
that reason, the composition model’s state space is auto-
matically transformed into a Markovian state space by
augmenting the composition model’s states with addi-
tional information in terms of the actual composition
structure. Roughly speaking, a Markov state encodes a
composition model’s state’s history. As a consequence,
the recommendation system can estimate the quality of a
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service as a function of the previous actions of the search
algorithm.

3.2 Markov model based on composition rules
From the recommendation system’s perspective, we inter-
pret a service composition step as an application of a com-
position rule that compactly describes a formally correct
modification during the composition process. The syntax
of composition rules is identical to the syntax of produc-
tion rules for specifying a formal grammar. A grammar
G is defined by the tuple (N ,�,P, S), where N denotes a
finite set of non-terminal symbols, � denotes a finite set
of terminal symbols, P denotes a finite set of production
rules, and S ∈ N denotes a distinguished start symbol.
In our context, non-terminal symbols correspond to func-
tionality that still has to be realized, i.e., the remaining
path in the search tree from the current node to the goal
node. Terminal symbols correspond to concrete services,
which cannot be replaced anymore. The start symbol cor-
responds to the formally specified request. In case of our
example, it corresponds to the path from initial state q0 to
goal state q∗.

Note: In this paper, we omit an introduction of the mathe-
matical basis as well as a formal description of the Markov
model, but present the basic idea only. A comprehen-
sive formal description of the underlying Markov model
was already introduced in our previous work [25,26].
In the paper at hand, we focus on the combination of
symbolic approaches and our learning recommendation
system.

Table 2 shows the right regular composition grammar
for our running example addressed by the forward search
algorithm. This grammar is automatically generated by
the recommendation system during the search process of
the composition algorithm (see Section 4.2 for an exam-
ple). In terms of composition rules, two formally correct

Table 2 Right regular composition grammar for producing
all solutions provided by the automaton in Figure 3

N : {V,W, X, Y, Z}
V = (q0, . . . , q∗) W = (q1, . . . , q∗) X = (q2, . . . , q∗)
Y = (q3, . . . , q∗) Z = (q4, . . . , q∗)

� : {si|1 ≤ i ≤ 4}
P : {ri|1 ≤ i ≤ 14}

r1 = V → s1W r2 = V → s3X r3 = V → s4X

r4 = W → s2Z r5 = W → s3Y r6 = W → s4Y

r7 = X → s3X r8 = X → s4X r9 = X → s1Y

r10 = Y → s3Y r11 = Y → s4Y r12 = Y → s2

r13 = Z → s3 r14 = Z → s4

S : V

solutions for our example correspond to the following two
derivations:

V r1−→ s1W
r6−→ s1s4Y

r11−→ s1s4s4Y
r12−→ s1s4s4s2

(2)

V r1−→ s3X
r9−→ s3s1Y

r12−→ s3s1s2 (3)

Figure 5 depicts the graphical representation of the
Markovian state space, based on the composition gram-
mar defined in Table 2. Nodes correspond to states. Edges
correspond to possible actions that can be performed
in order realize a transition from one state to another.
A single state is equivalent to the current composition
structure described in terms of terminal and non-terminal
symbols. Performing an action is equivalent to applying
a composition rule. Initial states correspond to distin-
guished start symbols. States without any non-terminal
symbols are final states. The annotated quality values
Q(s, r) can be interpreted as an estimation of how good
it is to apply a composition rule r based on the current
composition structure. Roughly speaking, the higher a so-
called Q-value, the better the evaluation of an alternative
composition rule in a specific state. Adjusting these so-
called Q-values based on feedback is up to the applied RL
method.

3.3 Incorporating temporal difference learning
According to our idea of OTF Computing, OTF providers
do not know in advance which services are available on the
market. Hence, also the recommendation system’s compo-
sition rules must be created at runtime. A complete model
of the environment is not available a priori.
In such situations, Temporal-Difference (TD) learn-

ing can be used. TD learning is one central concept of
RL. It combines the advantages of Monte Carlo meth-
ods with the advantages of dynamic programming. Monte
Carlo methods allow for learning without relying on a
model of the environment. Dynamic programming pro-
vides techniques for estimating value functions in terms
of Q-values without waiting for a final outcome. Hence,
Q-values are already updated during the composition
process for adjusting the recommendation strategy in
an on-line manner, and not only after a user gave his
feedback.
In order to maximize the final reward in the long run,

TD learning algorithms try to identify the most appropri-
ate sequence of actions by trial-and-error. A fundamental
question in this context is how to choose an action when
there are multiple alternatives. If only the action with
the highest Q-value is always selected (exploitation), the
learning algorithm may be stuck in a local maximum. If,
in turn, Q-values are not considered at all but actions
are always selected randomly (exploration), the learning
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Figure 5 Snippet from the Markovian state space based on the composition grammar defined in Table 2. Terminal states with dashed
borders correspond to the solutions (2) and (3), respectively.

behaviour will never converge. There already exist dif-
ferent approaches to cope with this problem in the RL
domain, such as the ε-greedy strategy or softmax action
selection strategy [22].

4 Integration
Figure 6 shows the main components and interaction
processes of our combined approach. The service compo-
sition component and the service recommendation com-

ponent are two distinct modules that interact with each
other in order to generate service-based software solu-
tions that i) are formally correct with respect to user
requests and ii) approximate implicit user requirements
over time based on user ratings. Without any additional
information, the service composition component imple-
ments an uninformed search strategy [20]. In combination
with the recommendation system as learning evalua-
tion function, the composition component realizes an
informed search strategy.

Figure 6 Structural overview andmain interactions (circles) of the integrated approach.
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4.1 Conceptual overview
The service discovery encapsulates (and currently
abstracts) the functionality to discover services in a
market. For the remainder of this paper, we assume
the service discovery to work in a synchronous man-
ner; that is, services and their descriptions are kept in
stock in a local repository, while a discovery request is
answered by the service discovery in terms of a mes-
sage containing all possible candidates for a composition
step. In a distributed market environment with mul-
tiple service providers, however, the service discovery
has to be exchanged by an asynchronous approach, e.g.,
realized by means of publish/subscribe techniques. Fur-
thermore, an independent matching mechanism such
as [27] has to be integrated to ensure that an OTF
provider receives only appropriate services from service
providers.
The service compositionmodule implements a breadth-

first forward search algorithm [20]. It considers only for-
mal specifications in terms of pre- and postconditions
(effects). It does not only consider goals that exactly sat-
isfy a user’s postconditions, but also goals that are likely
to be the actual goal of a user, by accepting states as goal
states, that are supersets of the specified postconditions.
In contrast to the recommendation module, the compo-
sition module is memoryless. Each composition process
starts from scratch without relying on knowledge from
previous composition processes. In order to identify the
most up to date actions (services) during the search pro-
cess, the composition module interacts with the service
discovery.
Technically, the service recommendationmodule can be

interpreted as a learning evaluation function that supports
the composition module in deciding what action is best in
a specific context. The recommendation module consists
of two components: Composition Rule Manager (CRM)
and Temporal Difference Learner (TDL). The CRM gen-
erates and stores composition rules based on formally
correct actions identified by the composition module.
Composition rules are generated only once, are aggre-
gated over time, and represent all formally correct modi-
fications that were identified by the composition module
so far.
The TDL maintains the learned knowledge in form of

state transition values (Q-values) in a Markovian state
space. A state in the TDL corresponds to a composition
structure, and an action is equivalent to a rule that mod-
ifies the composition structure. Whenever the CRM gen-
erates a new composition rule, the TDL modifies the state
space. The TDL stores a Q-value for each state-action pair.
TheQ-values are adjusted during the composition process
and after a user has rated a solution – according to the
implemented learning algorithm and the corresponding
Q-value update function (see Section 4.3).

4.2 Automatic rule and state generation
Whenever a new composition process starts, the com-
position module notifies the recommendation module
by means of an initialization message (Interaction 1 in
Figure 6) containing the initial state and the goal state of
the composition task. The CRM identifies (or generates)
the non-terminal symbol that corresponds to the desired
functionality. Subsequently, the TDL marks the respec-
tive non-terminal as initial state for the upcoming search
process.
After initialization, the search process starts. For each

service returned by the service discovery, the composition
module sends a request to the recommendation module
in order to evaluate how good it is to apply the service
in the current context (Interaction 2 in Figure 6). Each
request comprises the search algorithm’s current state qn,
the respective service s and the next state qn′ ; we write
(qn, s,qn′). Based on this information, the CRM identi-
fies (or generates) a composition rule r. In case of forward
search, a rule corresponding to a right regular grammar is
constructed (cf. Section 3.2). If the rule is not yet assigned
to the current state within the Markov state space, the
TDL integrates the rule and the corresponding successor
state into its state space and assigns an initial Q-value. The
recommendation system returns the ids of the rule and the
two corresponding Markov states that reflect the search
algorithm’s composition step in the TDL state space. After
selecting a service, the composition module informs the
recommendation module about its decision by transmit-
ting the associated ids of the service’s related rule and
Markov states (Interaction 3 in Figure 6). Based on this
information, the recommendation module’s TDL updates
its internal state.

4.2.1 Forward search example
By way of illustration, let us consider our running exam-
ple. The composition problem is addressed by a forward
search algorithm. An initialization message comprising
initial state q0 and goal state q∗ is sent to the recommen-
dationmodule. The CRM cannot identify a corresponding
non-terminal symbol. Hence, it introduces a new symbol
V as a placeholder for the path from q0 to q∗; we write
V = (q0, . . . ,q∗). The TDL then sets its initial state to V
(cf. Figure 7).
The composition module’s forward search now enters

its search loop. Three syntactically and semantically valid
services s1, s3, and s4 are discovered, resulting in three
successor nodes. Two of these successor nodes represent
the same state, namely q2, while the third node repre-
sents state q1 (cf. Figure 8). For each new search node,
the composition module formulates evaluation requests.
For request tuple (q0, s1,q1), a corresponding composi-
tion rule is not yet available.The CRM generates a new
composition rule r1 = V → s1W with W = (q1, . . . ,q∗).
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Figure 7 Initialization of the integrated composition process.
Search tree (a) and TDL state space (b) after initialization.

The TDL extends its state space by incorporating rule r1
for performing a state transition from state V to a new
state s1W .
Analogously, two new composition rules r2 = V → s3X

and r3 = V → s4X with X = (q2, . . . ,q∗) are generated
for tuple (q0, s3,q2) and tuple (q0, s4,q2), respectively, and
integrated into the TDL state space. Let us assume that
the composition module chooses service s1 over services
s3 and s4; that is, it selects node q1 as next search node.
The composition module notifies the recommendation
system, so that the TDL can update its internal state from
state V to state s1W by applying r1.
After two additional iterations, the sequence 〈s1, s4, s2〉

was identified as solution for our composition problem
(cf. Figure 9). During the composition process, the right
regular composition grammar shown in Table 2 was par-
tially generated. While the search tree is discarded, the
Markovian state space is preserved. In case of a similar

user request, the grammar as well as the state space will
be extended according to new alternative services that are
discovered or according to alternative search paths that
are explored by the search algorithm.

4.3 Prototypical realization
We implemented the presented concepts in terms of a
prototypical composition framework. Figure 10 depicts
the structural overview. The Service Composition compo-
nent controls the overall composition process. It imple-
ments the forward search algorithm. This algorithm
interacts with a Service Repository to get the most up to
date service specifications and associated executable ser-
vices that can be applied in the current search state. In
this context, a simple matching operator ensures syntac-
tically correct interconnections based on signature infor-
mation. The Learning Recommendation System provides
learned knowledge in order to support the composition
component. However, the recommendation system does
not dictate which search node should be visited next.
As the name implies, it only recommends a node selec-
tion strategy based on learned knowledge. In contrast to
the recommendation system, the composition component
is memoryless. Each search process starts from scratch
without relying on knowledge from previous search
processes
The CRM generates and maintains composition rules

that were identified by the composition component dur-
ing all search processes so far. The TDL implements the
relevant concepts for reinforced learning. Based on the
CRM and the behaviour of the composition component,
the TDL automatically constructs, extends and maintains
a Markovian state space. The TDL also maintains and

Figure 8 First search loop iteration of the integrated composition process. Forward search tree (a) and TDL state space (b) after choosing
service s1 over services s3 and s4.
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Figure 9 The integrated composition process identified a solution. Forward search tree (a) and TDL state space (b) after solution 〈s1, s4, s2〉
was found.

updates Q-values based on reward given by theAutomatic
Evaluation component after automatically executing a
composed solution by means of the Service Execution
component.

4.3.1 Composition process
First of all, the composition component initializes the
recommendation system in order to set its initial state
to the corresponding start symbol. Subsequently, the
informed search algorithm enters its search loop. When-
ever a node is visited the first time, service candidates
are requested from the service repository and corre-
sponding child nodes are computed. Subsequently, the

recommendation system rates the candidates by two
mechanisms:

1. Each alternative child node is assigned its current
Q-value for enabling the search algorithm to select
the globally best candidate.

2. The complete list of the current node’s child nodes is
sorted according to the TDL’s action selection
strategy in order to enable the search algorithm to
select the locally best alternative. In case of ε-greedy,
with a probability 1 − ε, the list of alternatives is
sorted in a greedy manner, i.e., alternatives with the
highest Q-value are in the first place, whereas

Figure 10 Overall structure of our prototypical service composition framework.
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alternatives with the lowest Q-value are in the last
place (exploitation phase). With probability ε,
however, the list of alternatives is randomly shuffled
(exploration phase).

After choosing a node (either globally or locally) and
entering a new node, the composition module informs the
recommendation system to update both the current state
in the MDP and the corresponding Q-value. As soon as
a formally correct solution was identified, the framework
immediately proceeds with execution. Subsequently, the
execution result is automatically evaluated by comparing
it with the desired result (image). The evaluation result is
finally fed back as reward to the recommendation system
for a final update of the corresponding Q-value.

4.3.2 Search node selection strategy
As described in the previous section, alternative nodes can
be selected by the composition component either glob-
ally based on absolute Q-values, or locally by picking a
child node from a sorted list. On the one hand, when
only selecting globally, the TDL’s action selection strat-
egy is completely bypassed. The TDL’s action selection
strategy, however, is crucial for balancing exploitation of
already learned knowledge and exploration of new and
possibly better alternatives. On the other hand, when only
selecting locally, the search algorithm may be stuck in a
branch that does not contain a formally correct solution at
all. Only selecting nodes from all globally available nodes
enables the algorithm to leave such a branch again. As a
consequence, we allow the search algorithm to randomly
choose how to select the next search node. The weights κ ,
ν, and μ for selecting globally greedy, globally randomly,
and locally, respectively, have to be adjusted in advance.

4.3.3 Q-Learning as TDL implementation
In our prototype, we integrated Q-Learning to adjust
the Q-values over time based on user feedback [28]. Q-
Learning is a TD learning algorithm that directly approxi-
mates Q-values by means of its update function

Q(st , rt) ← Q(st , rt)

+ α
[
γ max

r
[Q(st+1, r)] − Q(st , rt)

]
,

(4)

with current state st , next state st+1, current composition
rule rt , next composition rule rt+1, discount factor γ , and
learning rate α.
Figures 11b,c,d,e illustrate the actual learning process

(with α = 0.9 and γ = 0.9) based on a right regular com-
position grammar, whereas the search nodes are selected
only locally (based on ε-greedy). Each figure shows the
Markovian state space and the associated Q-values after
a composition process was completed and a user rating

was incorporated as final reward. Thick arrows indicate
the chosen path from initial state to final state. Q-values
Q(X, r1), Q(s1Y , r2), and Q(s1Y , r3) are initialized with 0.
Figure 11b: Service s1s3 was composed and executed.

During the composition process, composition rule r3 was
chosen randomly. The execution result was rated with
value 0.5. The rating value was immediately integrated as
final reward by adjusting Q(s1Y , r3).

Note: Final reward is always incorporated unmodified
and replaces the Q-value of the lastly applied composition
rule.

Figure 11c: The composition process again produced
composed service s1s3. Composition rule r3, however, was
not selected randomly, but greedily based on Q(s1Y , r3),
which was modified in the previous composition pro-
cess. After selecting r3 and before transitioning to state
s1s3, update rule (4) is applied to adjust Q(X, r1). Q-value
Q(s1Y , r3) does not change, since it is equivalent to the
rating result, which is the same as before.
Figure 11d: Composition rule r2 was randomly selected

during the composition process. Executing composed ser-
vice s1s2 results in an image that is identical to the
desired result image. Hence, the rating value is 1. Q-value
Q(s1Y , r2) is immediately updated. During the composi-
tion process, however, this value was not yet available. Due
to the max operator in the Q-Learning update function,
Q(X, r1) was again updated based on Q(s1Y , r3).
Figure 11e: The composition process operated in a

greedy manner again. Furthermore, Q(X, r1) was updated
based onQ(s1Y , r2) this time. As a consequence, the value
significantly increased.
By consecutively applying the update rule when moving

through the state space and by continually incorporating
ratings of consecutive composition processes, user ratings
are propagated throughout the state space. In the most
general sense, the overall composition process adapts its
composition strategy to produce a composed service that
approximates the desired functionality, which is implicitly
determined by user feedback.

Note: Another TD learning algorithm that could be
applied is SARSA [29,30]. The off-policy Q-Learning
algorithm directly approximates the optimal Q-values –
independent of the action that was selected (max opera-
tor). The on-policy SARSA algorithm, in turn, does always
update Q-values based on the selected action.

5 Experiments and results
We conducted several experiments for investigating the
difference between a planning only (purely symbolic)
composition strategy (e1 in Table 3) and a combined
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Figure 11 Demonstration of the learning process in terms of Q-Learning. Based on the Markovian state space (a), user ratings are incorporated
as feedback and propagated throughout the state space dependent on the action selection strategy during each consecutive composition process
(b)-(e).

planning and learning strategy with only local search node
selection (e2 in Table 3). Selecting search nodes only
locally is possible in our example, since there exists no
branch in which the search algorithm might be stuck.
There is always the possibility to find a formally correct
solution and to terminate. Furthermore, we experimen-
tally investigated the influence of additionally selecting
search nodes globally based on Q-values (e3 in Table 3).
To investigate how good the three different strategies can
cope with imprecise request specifications, we repeated
experiments e1, e2, and e3 for three different request spec-
ifications (r1, r2, and r3 in Table 4). Technically, the amount
of valid goal states is increased by removing propositions
from the request’s postconditions.
We implemented the set of services described in

Section 2.2 based on OpenCV algorithms [18]. Service
s1 was implemented by exactly one executable service.
The functionality for service s2 was provided by 14 exe-
cutable services with different thresholding techniques
and threshold values. Both service s3 and service s4 were
each implemented by two executable services with differ-
ent kernel sizes. Furthermore, we added 10 additional ser-
vices that realize a morphological filtering functionality: 5

Table 3 Different search node selection settings

Search node selection

Global, greedy Global, random Local
Experiment ei κei νei μei

e1 0 1 0

e2 0 0 1

e3 1 0 1

services for dilating, and 5 services for eroding an image.
These services serve as optional functionality, that might
be selected by the composition algorithm to improve the
execution result.
The goal of the composition processes during the exper-

iments was to compose a service that solves our running
example; that is, a solution that approximates the desired
image (Figure 2b) as good as possible by processing the
original image (Figure 2a). Regarding the recommenda-
tion system, we chose a typical though static setting for
the Q-Learning update function and the ε-greedy action
selection mechanism; that is, α = 0.9, γ = 0.9, and
ε = 0.1.
We executed 30 independent simulation runs for each

of the nine combinations (experiments × requests). Each
simulation run involved 1000 consecutive composition
processes. We compare the quality of the composition
processes by means of the final reward per composition
process (smoothed mean value and 95% confidence inter-
val). Recall: The higher the final reward, the more similar
is the automatically produced image to the desired image
and consequently the higher the quality of the composed
solution.

Table 4 Requests with different level of precision

Semantic information

Request ri Preri Postri
r1 Colored Blurred, gray, threshold

r2 Colored Blurred, gray

r3 Colored Threshold
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5.1 Preliminary results
Across all following figures, red plots correspond to final
reward values of the purely planning composition strategy
(experiment e1). Search nodes are always selected ran-
domly from all available candidates. Blue plots represent
the results of the combined approach including planning
and learning with local search node selection only (experi-
ment e2). Next search nodes always correspond to the first
node in the list of child nodes as provided by the recom-
mendation system. In fact, this setting can be interpreted
as an informed depth first search strategy. The green plot
represents the results of the combined approach including
planning and learning with uniformly distributed weights
(experiment e3) for selecting search nodes either glob-
ally, based on their Q-values, or locally, as described
before.
Figure 12 shows the results for request r1; the original

request of our running example. Both composition strate-
gies that include learning clearly outperform the purely
planning based approach, whereas the strategy including
only local node selection performs best in the long run.
As expected, the purely planning approach is not able to
improve its composition strategy over time. The mean
values of the final reward almost always remain between
0.5 and 0.6. Furthermore, the randomness in selecting
search nodes is reflected by the confidence interval, which
is the widest of all depicted plots. The learning com-
position strategy with local node selection significantly
improves during the first 400 composition processes.
The benefit of our combined approach is clearly visible.
The benefit is also visible, when regarding the results of
the third composition strategy. However, selecting search

nodes also globally has a mostly negative influence to
the learning process. Although the composition strategy
improves the fastest during the first 170 composition pro-
cesses, it considerably worsen once in a while during the
following composition processes (e.g., between composi-
tion process 170 and 190). The relation between local and
global search node selection seems to be highly unbal-
anced – at least for our example. Identifying a good
balance (or even trying to do some dynamic balancing) is
beyond the scope of this paper. It needs a more thorough
investigation, based on examples that do not allow local
search node selection only.
Figure 13 shows the results for request r2; a reduced

version of the original request of our running example.
We removed the (most likely) most important proposi-
tion threshold from the postconditions. The effect of this
modification is clearly visible, when comparing the results
in Figure 13 with the corresponding results in Figure 12.
The mean value of the purely planning composition strat-
egy is significantly lower then before (≈ 0.1). The tighter
confidence interval indicates, that less different solutions
were composed by chance. Again, the second composition
strategy performs best. In this scenario, it performs even
significantly better than the third composition strategy.
However, the results from the previous scenario cannot
be achieved. Furthermore, the confidence interval is much
wider than before, meaning that more different solutions
where chosen by chance. Roughly speaking, the recom-
mendation system lacks the guidance of the search algo-
rithm based on the important threshold proposition. The
TDL counters this circumstance by increased exploration,
which, in turn, guides the search algorithm in identifying

Figure 12 Results of e1 (red; pure planning with random search node selection), e2 (blue; planning + learning with local search node
selection only), and e3 (green; planning + learning with global and local search node selection) for request r1.
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Figure 13 Results of e1 (red; pure planning with random search node selection), e2 (blue; planning + learning with local search node
selection only), and e3 (green; planning + learning with global and local search node selection) for request r2.

better solutions. This reciprocal relationship is exactly
what we intended to achieve. It can be interpreted as self-
balancing mechanism of the entire approach. However,
more experiments are necessary in order to investigate,
to which degree the recommendation system can counter
missing (formal) specifications. It may even be possible
to achieve better results in the long run by (dynamically)
adjusting the settings of the TDL module.
Figure 14 shows the results for request r3; an alter-

native, reduced version of the original request of our

running example. This time, all goal propositions except
for proposition threshold were omitted. The results are
indeed surprising. While the purely planning strategy per-
forms as good as in the r1 case, the two strategies including
learning perform even better. The composition strategy
including local and global node selection is even able to
catch up to the composition strategy including only local
node selection. Now, what general conclusions can be
drawn from these – to be honest – unexpected results?
First, there might be parts of a formal specification that

Figure 14 Results of e1 (red; pure planning with random search node selection), e2 (blue; planning + learning with local search node
selection only), and e3 (green; planning + learning with global and local search node selection) for request r3.
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are more important than others. This leads to the initial
idea of assigning, let’s say, statements about the impor-
tance or influence to single propositions (e.g., in terms of
fuzzy expressions). Second, precise formal specifications
are not always the best choice when search algorithms
are supported in decision-making by a learning evaluation
function.

6 Related work
In the last years, there has been an increasing amount of
research on automated service composition incorporating
Markov models and RL. However, we are not aware of any
approach that combines reinforced learning techniques
with symbolic techniques in order to realize adaptive
service composition for markets of composed services.
Ignoring feedback such as user ratings in the composition
process is troublesome, because a user might not be sat-
isfied with a solution even if it is formally correct. The
novelty of this paper is the integration of automated ser-
vice composition with a learning recommendation system
in order to narrow the gap between “what a user wants”
and “what a user gets”. To the best of our knowledge, such
an integration has not been done before.
The general idea of incorporating Markov models or RL

into service composition, however, is not new.Wang et al.,
e.g., propose an approach that enables composed services
to adapt to dynamic environments [31]. By modelling
composed services as MDPs, multiple alternative work-
flows and services are integrated into a composed service.
During execution, workflow selection is controlled by a
RL mechanism. Similar to our approach, there is no sepa-
ration between building abstract workflows and concrete,
composed services. In contrast to our work, however, the
composition process itself is not interpreted as MDP, but
the result of the process.
One approach that considers service composition and

RL at a time is proposed by Todica et al. [32]. They divide
service composition into abstract work-flow generation
and service instantiation. RL is then applied to the abstract
work-flow generation phase. Their motivation is identical
with ours, namely to improve the entire composition pro-
cess by involving learning from previous attempts. In our
work, however, RL is not applied for solving the service
composition problem directly, but to support it in terms
of a recommendation system during decision making. By
doing so, RL is not replacing but extending classical search
algorithms or AI planning approaches.
Kun et al. combine a MDP model and Hierarchical Task

Networks (HTN) planning to increase flexibility of auto-
matic service composition [33]. Their proposed model
enhances HTN planning in order to decompose a task
in multiple ways and to identify more than one possi-
ble solution. An evaluation mechanism then identifies a
composition out of the set of possible solutions that is

optimal with respect to non-functional properties. RL,
however, is not applied in their work. In contrast to our
work, again, the composition process itself is not mod-
elled as MDP, but the result of the composition process.
Similar to the work of Wang et al. [31], the identified
solutions are aggregated in a single model. In case of fail-
ures, e.g., alternative solutions enhance the probability of
a successful execution. In our work, we currently do not
compose solutions with alternative execution branches.
However, in our opinion, our approach would most likely
benefit from it. Similar to collecting knowledge from con-
secutive composition processes, an extended approach
would additionally collect knowledge from consecutive
execution processes of a composed service. This informa-
tion could then be integrated as additional learning sam-
ples into our recommendation system. As a consequence,
services that, e.g., were not reliable during execution,
would be considered less often during future composition
processes.
Moustafa and Zhang introduce two RL algorithms for

multi-objective optimization of competitive service prop-
erties during service composition [34]. Both approaches
mainly base on Q-Learning and allow for identifying
Pareto optimal solutions. The first approach addresses
each service property in a separate learning process. For
selecting a distinct service during the composition pro-
cess, the separate learning processes are coordinated. The
second approach is an extended version of the approach
that was originally proposed by Dehousse et al. [35]. In
comparison to the first approach, the second approach
considers a complete vector of all competitive service
properties in a single learning process. In our work, we
currently do not consider competitive service properties.
In fact, we do not consider non-functional (QoS, per-
formance) properties at all. Incorporating multi-objective
optimization of functional and non-functional properties,
however, is an important and necessary step for our future
work.
Two other composition approaches that incorporate

Q-Learning are proposed by Wang et al. [36] and
Yu et al. [37]. Wang et al. introduce a service compo-
sition concept based on a multi-agent Q-Learning algo-
rithm. Agents benefit from the experiences other agents
made before. As a consequence, the convergence speed
of the overall learning process is improved in compari-
son to independently learning agents and a single agent,
respectively, as it is currently realized in our approach.
When dealing with a market environment, however, we
won’t get out of including a similar mechanism. An OTF
provider will most likely receive similar requests at the
same time, leading to parallel learning processes that have
to be appropriately synchronized. Furthermore, different
OTF provider may want to cooperate and share their
individually learned knowledge.
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The work of Yu et al. [37] places special emphasis on the
advantages of Q-Learning (model-free RL) when compos-
ing services in a distributed and dynamic environment.
Their work confirms our design decision to select TD
learning for our market scenario.
Another promising approach towards adaptivity is the

dynamic reconfiguration of composed services during
runtime, as, e.g., proposed in [38-40]. In our current
OTF Computing context, we are separating composition
and execution phase, since both processes are embedded
in a market environment with strictly regulated interac-
tion processes between users, OTF providers, and service
providers. However, in our opinion, dynamic reconfigura-
tion is essential in order to realize our vision of OTF Com-
puting. Experience from consecutive execution processes
with pre-defined alternatives or alternatives identified by
invoking a composition process from within the execu-
tion process has to be aggregated in our recommendation
system, e.g., by assembling Q-values from independent
Markov models.

7 Conclusion and outlook
In this paper, we presented a service composition
approach that integrates planning and learning for coping
with functional discrepancy; a challenge that inevitably
emerge when dealing with markets of composed services
for users. An AI-based composition process represents a
symbolic approach that sequentially generates a service-
based software solution based on formal specifications.
To narrow the gap between the functionality desired

by a user and the actual functionality of the composed
solution, a learning recommendation system supports the
composition algorithm in decision-making problems that
cannot be solved on the symbolic level alone. The rec-
ommendation system adapts its recommendation strategy
over time based on user ratings from previous compo-
sition processes. The entire recommendation process is
modelled as MDP. Techniques from RL are then applied
to adjust the decision-making processes.
Throughout the entire paper, image processing served

as application domain. A running example was used to
motivate the problem and illustrate major processes. The
running example was also used for conducting exper-
iments and investigate different composition strategies.
Preliminary results demonstrate the benefit of combining
symbolic approaches and machine learning.
Before being of practical usage, however, several loose

ends have to be tied up and open challenges have to be
solved; conceptually and technically. For example, until
now, in order to concentrate on the main integration of
planning and learning, we always assumed a static con-
text; that is, we assumed that identical user requests
with identical concrete execution data and identical
user preferences are received in a sequential manner.

In reality, our approach has to be able to deal with
different scenarios (combinations of imprecise request
specifications, different execution data, and varying user
preferences) – simultaneously. For instance, identical
formal user requests might come along with different
execution data or different user preferences. In general,
independent as well as interrelated learning processes
(andMarkov models) have to be coordinated to encounter
this so called concept drift.
Furthermore, a mechanism for minimizing the state

space explosion problem on the recommendation mod-
ule’s side has to be developed. Consider the composition
state space of our running example. Each possible com-
bination produces a new distinct state within the recom-
mendation module, leading to an infinite amount of states
in the worst case. A state abstraction approach for rep-
resenting a set of concrete states by means of a single
abstract state is one possible solution to overcome this
issue. We are currently working on this issue and will
present a possible solution in the near future.
Future work also comprises more extensive experiments

(with a significantly bigger and dynamic service pool)
in order to investigate the scalability of our approach in
combination with a state abstraction mechanism. In this
context, we want to enable our composition approach to
not only compose sequences of services, but more com-
plex data and control flows. The recommendation system
has to be able to represent more complex composition
structures in order to consider them in its Markov model.
One possible solution is to substitute regular grammars
by graph grammars. Last but not least, non-functional
properties such as costs, performance values, reputation,
and reliability have to be considered during the compo-
sition process in order to drive our vision of On-The-Fly
Computing forward.
Regarding our future work, we are confident to say, that

the image processing application domain provides all nec-
essary ingredients for testing and evaluating developed
concepts in realistic scenarios.
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