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Abstract

Ranking human genes based on their tolerance to
functional genetic variation can greatly facilitate patient
genome interpretation. It is well established, however,
that different parts of proteins can have different
functions, suggesting that it will ultimately be more
informative to focus attention on functionally distinct
portions of genes. Here we evaluate the intolerance of
genic sub-regions using two biological sub-region
classifications. We show that the intolerance scores of
these sub-regions significantly correlate with reported
pathogenic mutations. This observation extends the utility
of intolerance scores to indicating where pathogenic
mutations are mostly likely to fall within genes.
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Background
We previously introduced the Residual Variation
Intolerance Score (RVIS) [1], a framework that ranks
protein-coding genes based on their intolerance to
functional variation, by comparing the overall number
of observed variants in a gene to the observed common
functional variants. The basic idea behind this approach is
the same as that behind approaches using phylogenetic
conservation that rank genes by the degree to which they
are evolutionarily conserved, except using standing human
genetic variation to identify genes in which functional
variation is strongly selected against and thus likely to
be deleterious. This approach proved successful in
prioritizing genes most likely to result in Mendelian
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disease [1]. Using the gene as the unit of analysis however
fails to represent the reality that pathogenic mutations can
often cluster in particular parts of genes.
While there are many approaches that assess various

characteristics of variants [2–4] which can in turn be used
to try and determine whether or not a variant is likely to
be pathogenic, current approaches to the problem of lo-
calizing pathogenic variants within sub-regions of a gene
rely heavily on conservation to define important boundar-
ies. The thought behind this is that more conserved re-
gions within a gene are more likely to contain pathogenic
variants. Another option to define genic sub regions is to
utilize the functional information about the corresponding
protein from databases of manually annotated proteins,
such as Swiss-Prot [5]. In fact, some variant level predic-
tors, such as MutationTaster [2], take these data into ac-
count when they are available. However, while ideally an
approach that focused on parts of proteins would use divi-
sions that correspond to functionally distinct parts of pro-
teins, this information is not yet comprehensively available.
Here, we take a first step at an approach to divide the

gene into sub-regions and rank the resulting sub-regions
by their intolerance to functional variation. We use two
divisions as surrogates for functionally distinct parts of
the protein. The first is a division into protein domains,
defined by sequence homology to known conserved
domains. The second is a division into exons, reflecting
that a gene can encode different isoforms of the protein
using different exonic configurations.
For the protein domain division, we annotate each gene’s

protein domains based on the Conserved Domain Database
(CDD) [6], a collection of conserved domain sequences.
The coding region of each gene was aligned to the CDD.
The final domain coordinates for each gene were defined as
the regions within the gene that aligned to the CDD and
the unaligned regions between each CDD alignment.
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Following this, we sought to create a ranking of the
resulting sub-regions that would reflect their intolerance
to functional variation. One common approach to this is
to rank stretches of sequence by their phylogenetic
conservation [7]. However, relying on conservation alone
can fail to capture human specific constraint. Thus, we
used the RVIS approach introduced in [1] to rank these
regions solely based on human polymorphism data. We
therefore generated the RVIS as described in [1], but
now applied to the sequence stretches encoding the pro-
tein domains as the unit of analysis. As in [1], the scores
were generated based on the NHLBI Exome Sequencing
Project (ESP) exome variant calls [8]. This resulted in a
genome-wide ranking of all domain encoding regions.
To reflect its focus on sub-regions of genes, we term this
overall approach sub-region Residual Variation Intoler-
ance Scores (subRVIS). The subRVIS scores derived
from this particular division into protein domains are
designated domain subRVIS. We then repeated this for
the exonic division, generating a set of exonic scores
termed exon subRVIS. Following the original RVIS
formulation, a lower subRVIS score indicates a more
intolerant region.
As this approach is solely based on variation in the

human population, we also constructed comparable
conservation-based scores for both gene sub-divisions.
We based our conservation approach on GERP++ [7], a
method that assigns each genomic position a score
denoting its estimated evolutionary constraint. In this
approach, for each sub-region we calculate the average
GERP++ score across its bases. We term this approach
subGERP. We applied subGERP to the domain regions,
and term the resulting scores domain subGERP. We
repeated this for the exonic coordinates, and term the
resulting scores exon subGERP. A higher subGERP score
indicates an overall more conserved region.
To assess these scores, we developed a model for test-

ing the utility of these scores in predicting the presence
of previously reported pathogenic variants within these
sub-regions. We show that domain subRVIS, domain
subGERP, exon subRVIS, and exon subGERP are all
significantly correlated with the presence or absence of
pathogenic mutations within their corresponding regions.

Further, we show that by dividing the gene into sub-
regions we add useful information beyond the undivided
genic RVIS score.

Results and Discussion
Region definitions and score generation
We defined each gene’s protein-coding region based on
the consensus coding sequence project (CCDS) [9]. We
divided these regions into domains based on the CDD
[6] (Methods). The CDD is a collection of conserved
domain sequences, represented as position-specific score
matrices (PSSMs). Each gene’s coding sequence was
aligned to CDD, using RPS-BLAST. In total, we
annotated 8,988 different types of domains in 16,611
genes, covering 41.5 % of coding regions. The final
domain coordinates for each gene were defined by
both the regions of the coding sequence that aligned to
the CDD and the unaligned regions between CDD align-
ments. These coordinates are available in Additional file 1.
Using these coordinates, there are 89,522 regions in total,
an average of five regions per gene. We calculated intoler-
ance scores for these regions using the approach described
in [1] and designated these scores domain subRVIS. As
the division into exons is biologically relevant, in particu-
lar with respect to the splicing machinery, we also gener-
ated subRVIS scores whereby each exon constitutes a
region, and termed these exon subRVIS (Additional file 2).

Score assessment frameworks
Following the generation of the scores, we developed
two frameworks to test how well regional intolerance
scores can predict the distribution of known pathogenic
variants in disease-associated genes (Methods). We use
information for reported pathogenic variants from two
large databases: ClinVar [10] (accessed June 2015) and
the human gene mutation database (HGMD) [11]
(release 2015.1). It is likely that in some cases only a
portion of the gene was sequenced to detect pathogenic
variants reported in these databases. This is unlikely to
affect the results of our test because even in such scenar-
ios, at the time of sequencing it was unknown which
regions had more intolerant subRVIS scores, and thus
the sequencing efforts would not be preferentially biased

Table 1 AIC comparisons of different sets of predictors

Predictor subset 1 (AIC) Predictor subset 2 (AIC) Minimal AIC P

Base (20390.414) subRVIS (20373.159) subRVIS 0.0002

Base (20390.414) subGERP (20370.726) subGERP 5.3 × 10–5

subGERP (20370.726) subRVIS (20373.159) subGERP 0.296

subGERP (20370.726) subRVIS + subGERP (20359.652) subRVIS + subGERP 0.004

subRVIS (20373.159) subRVIS + subGERP (20359.652) subRVIS + subGERP 0.001

This table contains the AIC comparisons between different sets of predictors. All models contain the mutation rate as a covariate (Methods). Entries labeled ‘base’
indicate models using only the mutation rate and no other predictors. P is the probability that the model with the larger AIC minimizes the information loss from
the model with the lower AIC
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towards sequencing of subRVIS intolerant regions. We
also limited the reported pathogenic variants to missense
variants that were not adjacent to a canonical splice site
(within one codon) and not predicted to cause loss of
function (LoF) (Methods), as LoF variants, with some
exceptions, generally damage the function of the
entire protein indiscriminative of where within the
protein they occur.
Our first framework is a gene-by-gene assessment of

whether regional intolerance scores can predict the
distribution of known pathogenic variants within each
gene (Methods). Given that some genes have very few
reported pathogenic variants or very few sub-regions,
and that this test is applied separately to each gene, this
test has limited power to detect significance. We limited
our dataset to genes with at least two regions and at
least one reported pathogenic variant (2,888 genes in do-
main subRVIS, 2,910 genes in exon subRVIS; Additional
file 3 and Additional file 4).
Our second framework tests whether regional intoler-

ance scores can predict the presence of known pathogenic
variants on a genome-wide scale. This test is limited to
the subset of genes for which we have reported pathogenic
variants (3,046 genes; Additional file 5). Though this
assessment is limited by our test data and does not cover
all genes, this assessment can be used as an indicator to
how well we expect regional intolerance scores to predict
the overall distribution of pathogenic variants, and not
just those that have been reported in our test data.

Gene-specific testing
For the gene-specific testing, we focused our analyses on
genes with at least two regions and at least one reported
pathogenic variant. In domain subRVIS, we were able to
assess 2,888 genes (Additional file 3). For 182 of the
2,888 genes (6.3 %), we found a significant relationship
between domain subRVIS and the distribution of
pathogenic variants (α = 0.05, false discovery rate
(FDR); Additional file 3).
We ran the same assessment across the exon sub-

RVIS scores. Here, we were able to assess 2,910 genes
(Additional file 4). For 102 of the 2,910 genes (3.5 %),
we found a significant relationship between exon subRVIS
and the distribution of pathogenic variants (α = 0.05, FDR;
Additional file 4).
For these 182 genes where domain subRVIS predicts

where mutations are found, there are many different
patterns represented. In some cases, genes are somewhat
evenly divided in more and less tolerant regions. One
example in this category is the ATP1A3 gene (Fig. 1).
Overall, ATP1A3 is a highly intolerant gene [1], which
has been previously implicated with alternating hemiple-
gia of childhood and rapid-onset dystonia–parkinsonism
[12, 13]. It falls in the 3rd percentile of the overall genic

intolerance scores. ATP1A3 has roughly two intolerance
levels. The two most intolerant regions have intolerance
scores of just below –1. These regions occupy 43 % of
ATP1A3’s coding region. The remaining regions are
more tolerant, with scores ranging from –0.573 to 0.144,
with an average score of –0.145. Interestingly, these
more tolerant regions carry far less previously identified
pathogenic mutations (Fig. 1).
Some genes however show a far more extreme pattern.

Overall, theMAPT gene (Fig. 2) is highly tolerant (98th per-
centile) despite carrying mutations that cause frontotem-
poral dementia [11, 14]. In fact, a small proportion (26 %)
is very intolerant relative to the majority of the gene.
Strikingly, nearly all the reported pathogenic MAPT

variants fall within two small intolerant sub-regions of
MAPT. The third region is tolerant to variation, and
therefore driving the overall genic intolerance score up
despite the clear presence of a portion of the gene that
causes disease when mutated. Though a fraction of the
reported pathogenic variants is from publications that
only sequenced exons falling in the two intolerant sub-
regions [11], even when those variants are discounted
the gene-specific test P value for MAPT remains un-
changed and enrichment of reported pathogenic variants
falling in the two intolerant regions remains clear (Fig. 2,
FDR P value: 0.002).

Genome-wide testing
Encouraged by the fact that subRVIS can, for at least some
genes, clearly predict where within disease-associated
genes pathogenic mutations are found, we sought to
assess the genome-wide prediction of the regional intoler-
ance scores. To this end, we implemented a logistic
regression model to test how well regional intolerance
scores can predict the presence of reported pathogenic
variants within each sub-region genome-wide. For each
set of intolerance scores tested, we also generated and
tested 1,000 negative test sets. The comparison of the true
P value to the negative set P values is termed the resam-
pling P value (Methods). We restricted the test to the
subset of genes that carry reported pathogenic variants
(3,046 genes, Additional file 5). Chromosomes Y and MT
were not assessed.
Overall, we found domain subRVIS to be predictive of

the presence of pathogenic variants within domain
encoding regions (P value: 1 × 10–5, resampling P value:
0.001, score effect size: –0.08, 3,046 genes).
We further wanted to verify that we were not recap-

turing the overall genic RVIS scores and confirm that
dividing the gene into domain sub-regions is indeed
adding information. We created a score vector in which
each domain sub-region is assigned its gene’s overall
genic RVIS score in place of its localized domain sub-
RVIS score. We assessed this genic score vector across
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the subset of genes for which we have both subRVIS and
RVIS scores (Additional file 5), and found that while genic
RVIS is not predictive in this framework, subRVIS re-
mains predictive for the subset of genes for which we have
both subRVIS and genic RVIS scores (genic RVIS P value:
0.137, resampling P value: 0.142, score effect size: 0.03,
2,874 genes; domain subRVIS P value: 0.0002, resampling
P value: 0.01, score effect size: –0. 07, 2,874 genes).

To assess the relationship between domain subRVIS and
phylogenetic conservation, we similarly constructed a con-
servation score for each domain (domain subGERP). The
Pearson’s correlation coefficient between domain subGERP
and domain subRVIS is –0.204 (P value: <2.2 × 10–16; 95 %
confidence interval: (–0.21, –0.197)). We found that do-
main subGERP is also predictive in our testing framework
(P value: 3.5 × 10–6, resampling P value: 0.001, score effect

Fig. 2 Distribution of reported pathogenic variants in MAPT. This figure shows the distribution of reported variants in MAPT. Each CDD conserved
domain type is annotated in a different color. The Y axis represents the domain subRVIS scores. Each reported variant is marked with a blue circle

Fig. 1 Distribution of reported pathogenic variants in ATP1A3. This figure shows the distribution of reported variants in ATP1A3. Each CDD conserved
domain type is annotated in a different color. The Y axis represents the domain subRVIS scores. Each reported variant is marked with a blue circle
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size: 0.09, 3,046 genes). Furthermore, in a joint model with
both domain subRVIS and domain subGERP, we found
that both domain subRVIS and domain subGERP remain
predictive (domain subRVIS P value: 0.0003, score effect
size: –0.07; domain subGERP P value: 8.7 × 10–5, score
effect size: 0.07; 3,046 genes), indicating that both scores
add significant independent information about the
localization of pathogenic variation.
To formally test the contribution of these different

scores, we calculated and compared the Akaike informa-
tion criterion (AIC) of the above model, using different
predictor combinations of the two significant scores
(subRVIS and subGERP). Based on these comparisons
neither subRVIS nor subGERP appear to be a signifi-
cantly stronger predictor (Table 1). We further found
that including both subRVIS and subGERP minimizes
information loss beyond subGERP alone (P value: 0.004)
and beyond subRVIS alone (P value: 0.001).
The results above show that analyzing the intolerance

of regions of genes corresponding to protein domains
can provide significant information of where disease
causing mutations are likely to be found. However, this
does not itself indicate that the use of the protein
domains adds information. In fact, it could be the case
that any sub-divisions of genes of similar size to protein
domains would allow such prediction. More generally, of
course, it could be that other ways of sub-dividing genes
could be even more informative.
To explore these questions, we first tried to determine

whether dividing the genes into biological domains adds
information beyond dividing genes into similarly sized
sub-regions without biological information. We per-
muted the CDD domains within each gene randomly,
and generated domain subRVIS scores for each of these
random permutations (Methods). We then assessed the
prediction of these scores using the same model we used
for the original scores. We repeated this 100 times, and
created a distribution of the effect sizes of subRVIS
scores across the random permutations. While we
expect that many, or possibly all, of these divisions will
be significantly predictive, we sought to test whether we
have significantly more information in the biological div-
ision. The domain division score effect size has a larger
absolute value than 99 out of the 100 permuted division
score effect sizes. Thus, incorporating biological
information does seem to contribute useful information
beyond simply considering randomly assigned parts of
the gene, when the units correspond in size to protein
domains (permutation P value: 0.02; Additional File 6:
Figure S1).
Next, we sought to explore whether the exonic division

might do better than the division into regions of genes
corresponding to protein domains. With the exonic
division, Pearson’s correlation coefficient between exonic

subRVIS and exonic subGERP is -0.126 (p-value: <2.2 ×
10-16; 95 % confidence interval: [-0.130, -0.121]). We
found that using intolerance scores at the level of the exon
is also predictive of the presence of pathogenic variants
within exons (p-value: 0.0001, resampling p-value: 0.001,
score effect size: -0.04, 3046 genes). Further, we found that
exon subGERP is also predictive in this framework (p-
value: 7.8 × 10-16, resampling p-value: 0.001, score effect
size: 0.09, 3046 genes).
Similar to our analysis of domain encoding regions,

this does not itself indicate that the use of the biological
parts is actually adding information – it could be that
simply considering parts of genes would allow compar-
able performance. Thus, just as we did with domains, we
generated 100 sets of coordinates in which we permuted
the exons within each gene randomly and generated ex-
onic subRVIS scores for these shuffled exons (Methods).
We then assessed the prediction of these scores. The
exon division score effect size has a smaller absolute
value than all but one of the permuted division score ef-
fect sizes. Thus, it appears that incorporating the exonic
information may not contribute useful information
beyond other divisions in which the units correspond in
size to exons (Additional File 6: Figure S2).

Examining the relationship with variant level scores
Although the subRVIS approach does not constitute a
variant level predictor, we wanted to verify that the infor-
mation we were gaining from subRVIS was independent
from the information already available from commonly
used variant level predictors. Thus, we sought to explore
the relationships between domain subRVIS and three
variant level predictors: MutationTaster [2], PolyPhen-2
[4], and CADD [3]. We based our assessment on a set of
250,000 simulated variants (Additional file 7) within the
domain subRVIS coordinates. The full results of this
assessment can be found in Additional file 8.
We found that neither PolyPhen-2 nor CADD strongly

correlated with domain subRVIS, with Pearson’s correl-
ation coefficients of –0.0548 and –0.0811, respectively. The
negative correlation is expected, as lower subRVIS scores
indicate more intolerant regions and higher PolyPhen-2 or
CADD scores indicate more damaging variants.
We converted MutationTaster’s predictions into

scores on a scale of 0 to 1, with 0 corresponding to
predicted pathogenic and 1 corresponding to predicted
non-pathogenic (Methods). The Pearson’s correlation co-
efficient with the MutationTaster scores is 0.159. Thus,
domain subRVIS and MutationTaster are correlated to a
higher degree than domain subRVIS and either of the
other two scores (PolyPhen-2 and CADD). This is not
unexpected, as MutationTaster does consider protein
domain information when it is available.
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Given this overlap, we sought to explore the relationship
between the MutationTaster predictions and domain sub-
regions where pathogenic variants have been previously
reported. We divided the MutationTaster variant scores
based on whether the corresponding simulated variant
falls in a domain sub-region that has previously reported
at least one pathogenic variant (n = 20,382 simulated
variants) or not (n = 228,116 simulated variants). We
compared these two distributions of scores and found that
they differ (P value: 2.48 × 10–256, Wilcoxon rank sum
test), with lower (more likely pathogenic) variant level
MutationTaster scores corresponding to variants identified
in disease-associated regions.

Application to patient data
We have previously shown that neuropsychiatric case
populations show an enrichment of de novo mutations
that have a damaging (≥0.95) PolyPhen-2 score [4] and
occur in an intolerant (≤25th percentile) genic RVIS
gene when compared to de novo mutations found among
controls [1]. The idea behind this multi-tiered approach
that includes both variant level and regional level priori-
tizations is that the interpretation of a variant’s effect is
more informative when it is known if the variant falls in
a region that is depleted of functional variation. Thus, if
a variant is likely damaging to the protein and also
affects an intolerant gene, it is more likely to be patho-
genic and therefore we expect an enrichment of these in
cases. We designated mutations fitting these criteria as
‘hot zone’ mutations.
We applied this approach using the subRVIS scores

in place of the genic RVIS scores on two case data-
sets: de novo mutations in autism [15] and in epilep-
tic encephalopathies [16]. For controls, we used the
controls provided in [15] as controls for both sets of
cases (Methods).
We found that within the epilepsy cohort, 77 out of

366 (21 %) of the de novo mutations were subRVIS hot
zone mutations, while only 212 out of 1345 (16 %) of
the de novo mutations in controls were (Fisher’s exact
test P value: 0.018). Using the same test with the genic
RVIS scores gave a stronger signal (Fisher’s exact test
P value: 0.001). In the autism cohort, we found a
strong signal for genic RVIS (Fisher’s exact test P value:
0.0001) and an insignificant subRVIS score signal (Fisher’s
exact test P value: 0.275).
Despite the fact that, for now, genic RVIS is still more

predictive, we are encouraged by the fact that we can
still detect hot zone de novo mutation enrichment with a
focus on sub-regions. This is especially impressive given
the smaller size of the subRVIS regions. As the number
of available control reference cohorts grows, the reso-
lution of the subRVIS score is anticipated to improve.

Conclusions
Despite its introduction only 2 years ago, it is already
clear that consideration of genic intolerance provides a
valuable new dimension in the interpretation of patient
genomes. Intolerance scores have been used repeatedly
to interpret observations of mutations in patients with
unresolved or undiagnosed diseases [17–22] and have
been used to interpret de novo mutations across a broad
range of diseases [23–26].
Despite this promise, the gene as the unit of analysis is

coarse. Here we have shown that sub-dividing genes into
regions corresponding to protein domains or regions of
the size of exons can provide significant information
about where in disease causing genes pathogenic muta-
tions are most likely to be found. There are a number of
ways we expect this added resolution to be useful in
interpreting genomes. An obvious example is to focus
attention on mutations that occur in genes that are not
intolerant overall, but that occur in a particularly intoler-
ant region of the gene. The reverse pattern is also
important. One of the most challenging aspects of the
interpretation of personal genomes today is the high
percentage of false positive mutations in disease
databases, and the fact that these mutations clearly have
higher population allele frequencies than the true posi-
tives. It is very likely that these false positive mutations
are preferentially drawn from the more tolerant regions
of genes that cause disease, giving us a possible new
pointer to candidate false positive mutations.
To be alert to such possibilities, we have created an on-

line tool for plotting variants across domain sub-regions
within a gene (www.subrvis.org). This tool can help
researchers explore which domains within a gene their
variants of interest fall in and what the corresponding sub-
RVIS scores are. We further constructed a score to reflect
the degree to which genes vary in intolerance among their
regions. The expectation is that in some genes the intoler-
ance to variation will be uniform across its sub-regions,
while in others the intolerance to variation will vary
greatly across its sub-regions. Thus, this score was con-
structed by calculating, per gene, the standard deviation of
its domain subRVIS scores. Only genes with at least three
domain sub-regions were assessed. Though these scores
can be useful in predicting whether we expect pathogenic
mutations to cluster in specific sub-regions within a given
gene, currently there is not a relationship between these
scores and whether known pathogenic mutations actually
do so. These scores are available in Additional file 9.
One important point to emphasize is that the minimum

unit size that can be effective in an RVIS framework
depends critically on the number of individuals that have
been sequenced in the reference cohort, since the ability
to distinguish different genomic regions depends on
observing variation in those regions. While our research
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shows the utility of the basic subRVIS approach, the
power of this approach will steadily increase as the
number of sequenced individuals increases.
The research presented here demonstrates the import-

ance of accounting for protein domains in human
disease studies. In particular, quantifying a gene’s
domains’ intolerance to variation has utility in identify-
ing causal variants. We anticipate that our methodology
will continue to improve as we gain access to more
sequencing data. There are other ways, outside of con-
served domains, to divide a protein into domains, such
as tertiary structure. Future approaches can incorporate
these and other annotations to divide proteins into
biologically relevant sub-regions.

Methods
The software used in this publication is available on
GitHub (https://github.com/igm-team/subrvis), released
under the MIT license.

Defining the domains
We define each gene’s protein-coding sequence based on
its Consensus Coding Sequence (CCDS release 15,
accessed November 2013) entry [5]. In order to avoid
multiple gene definitions, genes with multiple CCDS
transcripts are assigned the gene’s canonical transcript,
as this is the longest and most encompassing transcript.
Next, each gene’s CCDS entry is translated into protein
sequence and aligned to CDD (version 3.11) [6] using
RPS-BLAST (version 2.2.28+). No multi-domains in
CDD were used, to avoid grouping multiple single do-
mains into one sub-region in our domain definitions.
Only alignments with maximal E-value of 1e-2 were
considered. When two domains overlapped in the RPS-
BLAST results, the domain with the better alignment
score was kept.

Calculating subRVIS Scores
subRVIS scores were calculated for the domains,
exons, 100 permuted domains, and 100 permuted
exons. The scores were calculated using the NHLBI
Exome Sequencing Project (ESP) [8], as described in
[1]. Each position in each sub-region is first checked
for adequate coverage. Only positions with ≥10× aver-
age coverage in the ESP were considered. ESP variant
calls were further filtered to only retain variants with
a ‘PASS’ filter status. Following this, using the ESP
variant calls that qualify based on both these criteria,
the tally of all variants per each sub-region is
regressed against the count of common (>0.1 %
minor allele frequency) non-synonymous variants in
the sub-region, as per [1]. The studentized residual of
each sub-region is its score. Thus, the subRVIS score
quantifies the departure of the observed number of

common non-synonymous variants from the expect-
ation given the total number of variants in each
genomic region. One of the outcomes of using the
residuals from this regression as the score is that they
are, by definition, orthogonal to the tally of all
variants in their corresponding sub-region and thus
orthogonal to the overall distribution of variants in
that genomic region. A total of 89,335 domain sub-
RVIS scores (Additional file 10) and 185,355 exon
subRVIS scores (Additional file 11) were generated. Y
and MT chromosome genes were not assessed.

Score prediction test dataset
To test the utility of subRVIS scores in predicting which
regions are more likely to carry pathogenic variants, we
required a database of known pathogenic variants. We
combined data from ClinVar (accessed June 2015) [10]
and HGMD (release 2015.1) [11], filtering for ClinVar
entries labeled ‘Pathogenic’ and HGMD entries tagged as
‘DM’ (disease causing mutation).
We then ran Variant Effect Predictor (version 73) [27]

and filtered for canonical variants that were labeled as
‘missense_variant’ and were not labeled as any of the
following: ‘incomplete_terminal_codon_variant’, ‘splice_-
region_variant’, ‘stop_gained’, and ‘stop_lost’.

Calculating mutation rates
As we are testing against raw counts of pathogenic
mutations, we required a covariate to account for the
difference in counts that are due to sequence mutability
and unrelated to intolerance. For this, we calculated the
mutation rates for each sub-region (Additional file 10
and Additional file 11) based on its sequence compos-
ition [23]. This calculation is not based on any other
data used in this manuscript.

Regional score gene-specific prediction test model
To test whether the subRVIS scores are predictive at
the single gene level, we designed and implemented a
permutation test that predicts the distribution of
reported pathogenic variants within a single gene
using a set of scores. Genes with less than two
regions or less than one reported pathogenic variant
were not assessed.
Let ng be the number of regions in gene g. Let Yg

be a vector of length ng containing the counts of re-
ported pathogenic variants across sub-regions in gene
g. Let Zg be a vector of length ng containing the mu-
tation rates across sub-regions in gene g , based on
sequence composition [23]. Let Xg be a vector of
length ng containing the intolerance scores across
sub-regions in gene g.
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For each gene, we then calculated the expected distribu-
tion of pathogenic variants within the gene based on the
sub-region mutation rates and the total number of re-
ported pathogenic variants within the gene:

Egi ¼
 Xng

i

Y gi

!
� ZgiXng

i
Zgi

 !
:

Thus, Eg is a vector of the expected number of
reported pathogenic variants in each sub-region based
on the gene’s mutation rates and total number of
reported pathogenic variants.
For each sub-region we subtracted the expected number

of pathogenic variants Eg

� �
from the observed number of

pathogenic variants Yg

� �
. This vector denotes the depart-

ure of each sub-region’s tally of reported pathogenic vari-
ants from its expected tally. This vector is designated Dg.
We calculated a score per gene, designated Cg, denoting

both the departure of the reported pathogenic variants
distribution from the expectation and the relationship
with the intolerance score:

Cg ¼ covðDg;XgÞ:

We expect that a lower intolerance score will correspond
with higher pathogenic variant counts than expected, and
therefore we expect the covariance to be negative. To test
this, we performed a permutation test, where each
permutation has a different distribution of the reported
pathogenic variants.
For each permutation, we drew the distribution of the

reported pathogenic variants from a multinomial distri-
bution, where the number of trials is the total tally of re-
ported pathogenic variants for the gene and the
probability for each sub-region is the fraction of the

gene’s mutation rate that it occupies ZgiXng

i
Zgi

 !
. Follow-

ing this, we calculated the departure from expectation
and the covariance as described above.
We repeated this np = 20,000 times. To test how the

intolerance score prediction for the true distribution of
pathogenic variants compares to the prediction for the
permuted distributions, we counted how many times out
of the np = 20,000 permutations the permuted covari-
ance is smaller than or equal to the true covariance. This
count is designated G. The permutation P value is calcu-
lated by the following equation: (G + 1)/(np + 1).

Regional score genome-wide prediction test model
To test whether the regional scores are predictive at
the level of the genome, we designed and imple-
mented a model that predicts the presence or absence

of reported pathogenic variants at each sub-region
using a set of scores.
As the presence or absence of reported pathogenic

variants in a sub-region will depend greatly on that sub-
region’s mutability, what we are trying to determine in
this model is whether our scores can predict the presence
of pathogenic variation in a sub-region after accounting
for the region’s mutability. We divide any score predictors
(subRVIS, subGERP, genic RVIS) within this model by
their standard deviation in order to allow for the interpret-
ation of the effect sizes in terms of standard deviations.
Previously, we were considering a single gene indexed

by g. Here, we are considering genome-wide analysis,
therefore we dropped the g from notation. Specifically,
let n be the number of sub-regions across all the genes
in the genome. Let Y be a vector of length n with com-
ponents (Yi , i = 1,…, n) corresponding to each sub-
region taking on either a 1 or a 0, respectively, denoting
presence or absence of at least one non-LoF pathogenic
variant within the sub-region. Let Z be a vector of length
n containing the sub-regions’ mutation rates, based on
sequence composition [23]. Let X be a vector of length n
containing the sub-regions’ intolerance scores, scaled
across all sub-regions by dividing each intolerance score
by the standard deviation of all the sub-regions’ intoler-
ance scores.
To evaluate the relationship between the score and the

presence of pathogenic variants we fit the following
logistic regression model:

logit
�
PrðY i ¼ 1Þ

�
¼ αþ β1 � logðZiÞ þ β2Xi;

where i=1,...,n.
Note that β2 captures the strength of the relationship

between X, the intolerance scores, and Y, while adjusting
for regional mutability. We refer to β2 as the ‘score effect
size’ and report it in the text as a metric for how well a
given model performs.
Next, we wanted to assess how the model performs on

negative test sets. For each intolerance score genome-wide
test we generated 1,000 resampled response vectors. To
create the resampled response vectors, we resampled the
0 s and 1 s within the true response vector (Y) so that
sub-regions with a larger mutation rate (Z) were more
likely to be assigned a 1. Specifically, we resampled Y
without replacement with sampling probabilities given
by ZXn

i
Zi

. The idea is that under neutrality the more

mutable a region is the more likely it is to carry mu-
tations. By using this resampling method, we preserve
the number of regions containing pathogenic variants
and therefore the number of zeros and ones in our
response vector remains the same.

Gussow et al. Genome Biology  (2016) 17:9 Page 8 of 11



Using the same genome-wide assessment that we used
for the observed data, we tested the intolerance scores’
prediction against each of the 1,000 resampled response
vectors. This resulted in a vector of negative test set
P values. To test how the observed set of reported patho-
genic variants compares to that obtained by resampling,
we enumerated, across all (R = 1,000) resampled datasets
the number of times (C) the P value from the resampled
data analysis is larger than the P value obtained from the
observed data analysis. We define our resampling P value
as: (R – C + 1)/(R + 1).

AIC comparisons
To compare AICs between two models, we first identify
the model with the lower AIC, representing the model
estimated to have less information loss. We designated
this AICmin and we designated the other AIC as AICmax.
To calculate the relative probability that AICmax is the
model that minimizes information loss (designated here
as p), we calculate:

p ¼ exp
AICmin−AICmax

2

� �
:

The resulting value indicates that the probability that
AICmax minimizes the information loss from AICmin is p.
A high p indicates that AICmax may have less information
loss than AICmin, while a low p indicates that it is unlikely
that AICmax minimizes information loss in comparison to
AICmin.

Region permutation test
To test our model on randomly permuted regions, we
performed the following:

1. For each gene we took into account the sizes of each
of its sub-regions.

2. We permuted the sizes of each gene’s sub-regions,
resulting in a set of the same sub-regions in a
random order.

3. We then re-divided each gene based on the permuted
set of sub-regions. Thus, after the permutation each
gene maintains the same number and size distribution
of sub-regions as in the biological division.

4. For this permuted set of sub-regions, we generated
sub-region intolerance scores, calculated the
sub-region mutation rates and counted the number
of pathogenic variants in each sub-region.

5. Following this, we tested prediction across the
permuted set of sub-regions using the same genome-
wide assessment that we used for the biological division.

6. We recorded the effect size of the intolerance
scores in this assessment.

7. We repeated steps (1) through (6) 100 times.

8. This resulted in a vector of effect sizes that
constitutes our null distribution of effect sizes for
the permutation test.

To test how the biological division compares to the
permuted divisions, we counted how many times out of
the np = 100 permutations the absolute value of the
permuted division score effect size is smaller than the
absolute value of the biological division score effect size.
This count is designated X. The permutation P value is
calculated by the following equation: (np −X + 1) /(np + 1).

GERP scores
To quantify phylogenetic conservation across sub-
regions, we generated a novel vector for each sub-region
division that simply reflects the average GERP++ [7]
score (where available) for those coordinates (Additional
file 10 and Additional file 11).

MutationTaster scores
We ran MutationTaster’s QueryEngine (http://www.muta-
tiontaster.org/StartQueryEngine.html, accessed September
2015) [2] with default options, outside of the option to
filter against the 1000 Genomes project. By default, this
option is selected. As we wanted analysis results for all
variants, we deselected this option.
MutationTaster uses a Bayes classifier to determine

whether a variant is a polymorphism or disease causing.
The classifier has four output options:

1. disease_causing: probably deleterious.
2. disease_causing_automatic: known to be deleterious

based on existing databases.
3. polymorphism: probably harmless.
4. polymorphism_automatic: known to be harmless

based on existing databases.

Along with the prediction, for each variant MutationTaster
outputs an estimated probability for the prediction. More
information on MutationTaster can be found at http://
www.mutationtaster.org/info/documentation.html or at [2].
To convert these results into a score between 0 and 1,

we devised the following criteria:

1. If the prediction is polymorphism, use the probability as
the score. This will always be above 0.5. Thus, predicted
polymorphisms receive scores in the range of 0.5 to 1.

2. If the prediction is disease_causing, the score is the
probability subtracted from 1. As the probability will
always be above 0.5, the predicted disease causing
variants receive scores in the range of 0 to 0.5.

3. If the prediction is either polymorphism_automatic or
disease_causing_automatic, this indicates that the
variant’s prediction is based on a database entry, not
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the Bayes classifier. If the Bayes classifier disagrees
with the automatic prediction, the probability will be
less than 0.5. In these instances, we reassigned the
variant’s prediction to match the Bayes classifier’s and
reassigned the probability to 1 minus the originally
reported probability. Following this, we treated the
variant as described above.

Applying the hot zone approach
For both the autism [15] and epileptic encephalopathies
[16] de novo mutations data we limited to single-
nucleotide variants, falling in regions for which we have
both subRVIS and genic RVIS scores. We calculated
each variant’s PolyPhen-2 score using PolyPhen-2
HumVar [4]. Synonymous variants were assigned 0
while canonical splice, stop gain, and stop loss variants
were assigned 1. Mutations present as variants in the
NHLBI ESP exome variant calls [8] were excluded.
All the mutations in the epileptic encephalopathies

data from the Epi4K study [16] are Sanger validated.
For the autism data from [15], we required that the muta-

tions not be called in both siblings. We additionally re-
quired that either: (1) at least one of the institutes analyzing
the data (Cold Spring Harbor Laboratory, Yale School of
Medicine, University of Washington) had validated the
mutation; or (2) at least one of the institutes labeled the
mutation as a ‘strong’ variant call while no other institute
labeled the mutation as ‘not called’ or ‘weak’.

Estimate of the disease risk per protein domain
Given the potential interest in whether some CDD pro-
tein domain types are more likely to carry reported
pathogenic mutations than others, we have created a
table including the tally of reported pathogenic muta-
tions and the cumulative mutation rate for each CDD
protein domain type across genes (Additional file 12).
This table also includes the tally divided by the cumula-
tive mutation rate. This is meant to serve as an approxi-
mate estimate denoting the number of reported
pathogenic mutations after controlling for mutation rate.
For comparative purposes, a higher value indicates more
reported mutations given the sequence context.
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No ethical approval was required.

Availability of data and materials
The data and materials used in this manuscript are either
previously published or are available in this publication as
Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. The
software used in this publication is available on GitHub
(https://github.com/igm-team/subrvis), released under the
MIT license.

Additional files

Additional file 1: A text file in BED format containing domain
subRVIS sub-region boundaries. Each sub-region name contains three
fields separated by a colon - the gene name; the domain type, which is
either the CDD PSSM-Id of the aligned domain or a ‘-’ denoting that no
CDD domain was aligned to this region; the domain type again followed
by an underscore, followed by the occurrence number of this domain
type. (TXT 10178 kb)

Additional file 2: A text file in BED format containing exon subRVIS
sub-region boundaries. Each sub-region name contains three fields
separated by a colon. Although for the exon sub regions only two fields are
required, we used three fields to maintain consistency with the domain sub
region boundaries file. Therefore the second and third fields are equal to
each other. The format is: the gene name; the letter ‘E’ followed by the exon
number; the letter ‘E’ followed by the exon number again. (TXT 6710 kb)

Additional file 3: A text file of the FDR adjusted P values per-gene
for the domain subRVIS gene-specific tests across the subset of genes
for which we have at least two regions and at least one reported
pathogenic variant. (TXT 35 kb)

Additional file 4: A text file of the FDR adjusted P values per-gene
for the exon subRVIS gene-specific tests across the subset of genes
for which we have at least two regions and at least one reported
pathogenic variant. (TXT 35 kb)

Additional file 5: A text file containing the subset of genes for
which we have reported pathogenic variants (3,046 genes). The
columns denote whether or not we have subRVIS, RVIS, or subGERP
scores for the gene in question. (TXT 53 kb)

Additional file 6: A PDF containing Figure S1 and Figure S2, which
show the distribution of score effect sizes from random permutations.
(PDF 195 kb)

Additional file 7: A text file containing the set of 250,000 random
variants generated for the variant level predictors comparisons with
the corresponding variant prediction scores and disease-associated
status (1 indicates that the domain region the variant falls in has at
least one previously reported pathogenic variant, 0 indicates that it
has no previously reported pathogenic variants). (TXT 12240 kb)

Additional file 8: A PDF containing the full results of the
comparison to variant level predictors. (PDF 88 kb)

Additional file 9: A text file with the standard deviation of the
domain subRVIS scores, per gene, across genes with at least three
regions. (TXT 671 kb)

Additional file 10: A text file of domain: subRVIS scores, subGERP
scores, genic RVIS scores, pathogenic counts, mutation rates, and
coverage percentages. (TXT 7982 kb)

Additional file 11: A text file of exonic: subRVIS scores, subGERP
scores, genic RVIS scores, pathogenic counts, mutation rates, and
coverage percentages. (TXT 15950 kb)

Additional file 12: A text file with an estimate of the disease risk
per protein domain. The format of this table is: PSSM ID; domain name;
tally of reported pathogenic mutations in this domain type across genes;
cumulative mutation rate in this domain type across genes; the tally
divided by the cumulative mutation rate. (TXT 405 kb)
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