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Abstract
In this paper, we study the infinite iterated function systems (IFSs) of contractive
similitudes with overlaps. We extend the notions of the weak separation condition
and the generalized finite type condition for finite IFSs to the infinite case. We show
that for an infinite IFS of contractive similitudes the generalized finite type condition
implies the weak separation condition.
MSC: Primary 46N99; secondary 28A80

Keywords: infinite iterated function systems; open set condition; weak separation
condition; generalized finite type condition

1 Introduction
The separation properties are useful for studying the IFSs. At first, let’s recall the sep-
aration property of finite IFSs. Suppose X is a nonempty compact subset of Rd . Let Si
(i = , , . . . ,m) be a contractive self-map on X ⊂ Rd . We call {Si}mi= a finite similar IFS of
contractive similitudes on Rd if there exists C ∈ (, ) such that

∣∣Si(x) – Si(y)
∣∣ = C|x – y| for every  ≤ i≤ m.

There exists a nonempty subset K of X such that

K =
m⋃

i=

Si(K).

K is called the invariant set or attractor of the system (see, e.g. [–]).
We say that {Si}mi= satisfies the open set condition (OSC) if there exists a nonempty

bounded open set U ⊆ Rd such that

Si(U)⊆U and Si(U)∩ Sj(U) = ∅ for i �= j.

Such a U is called a basic open set for {Si}mi=. If, moreover, U ∩K �= ∅, the {Si}mi= is said to
satisfy the strong open set condition (SOSC). It is a classical result (see [, , ]) that if a
similar IFS satisfies the OSC, then it satisfies the SOSC. Fan et al. (see [–]) extended the
result to finite conformal IFSs.
IFSs that do not satisfy the OSC are said to have overlaps. In this case, it is in gen-

eral much harder to get acquainted with the structure of the corresponding invariant

© 2014 Liu and Zhu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208798775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2014/1/118
mailto:jyuzxl@163.com
http://creativecommons.org/licenses/by/2.0


Liu and Zhu Journal of Inequalities and Applications 2014, 2014:118 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/118

set K . The weak separation condition (WSC) and the generalized finite type condition
are weaker than the OSC but still strong enough to obtain good results (see [–] etc.).
However, the circumstances for infinite IFSs are distinct []. Szardk and Wedrychow-

ica [] showed that for infinite IFSs, the OSC does not imply the SOSC. Moran [] also
showed that self-similar set generated by a countable system of similitudes may not be
s-set even if the open set condition is satisfies. So it is necessary to look for some sepa-
ration conditions for infinite IFSs that are weaker than the OSC. Moran defined a weak
separation property for infinite IFSs []. Suppose {Si}∞i= is an infinite conformal IFS on
an open set U. Moran [] defined the infinite IFS {Si}∞i= satisfies the finite open set con-
dition if for any integer n, there is a nonempty open set Un ⊂ U such that Si(Un) ⊂ Un

for any  ≤ i ≤ n and Si(Un) ∩ Sj(Un) = ∅ for any i, j ≤ n, i �= j. The finite strong open set
condition holds if furthermore Un ∩ J �= ∅. It is easy to see that if the IFS {Si}∞i= satisfies
the OSC then it satisfies the finite strong open set condition. Moran uses this separation
property to study the Hausdorff dimension of invariant set with respect to the infinite IFS
[].
Our goal in this paper is to study the infinite iterated function systems (IFSs) of contrac-

tive similitudes with overlaps. We define the WSC and the generalized finite type condi-
tion for the infinite IFSs. Next, we study the relationship of the two separation conditions.
We show that the generalized type condition implies the WSC. Our main result is Theo-
rem ..

Theorem . Let {Si}∞i= be an infinite iterated function system of contractive similitude
on Rd . If {Si}∞i= is of generalized finite type condition, then it satisfies the weak separation
condition.

This paper is organized as follows. In Section , we define the weak separation condition
for infinite IFSs and give some examples. In Section , we introduce the generalized finite
type condition for infinite IFSs and provide examples of IFSs satisfying this condition.
Finally, in Section , we prove that the generalized finite type condition implies the weak
separation condition (i.e. Theorem .).

2 The weak separation condition
Let� = {, , . . . ,n, . . .},�n = {I = (i, i, . . . , in) : in ∈ �} and�∗ =

⋃
n≥ �n. Let {Si}∞i= be an

IFS of contractions defined on a compact subset X ⊂ Rd with X �= ∅. Let ρi be the con-
tractive ratio of Si, and ρI = ρiρi · · ·ρin , for I = (i, i, . . . , in). We define ρmax =maxi≥ ρi.

Definition . We say that an IFS {Si}∞i= satisfies the weak separation condition (WSC)
if there exist x ∈ X and γ ∈ N such that, for any I ∈ �∗, the ball of radius b contains at
most γ points of {S(SI(x)) : S ∈Ab} for any  < b≤ . Here we let

Ab = {SI : I ∈ τb} and τb =
{
I = (i, i, . . . , in) : ρI ≤ b≤ ρii···in–

}
.

Remark  For any starting point y ∈ X, it is easy to see that {Si}∞i= will satisfy the WSC if
there exists n >  such that, for any J, J ∈ τb, either

SJ (y) = SJ (y) or
∣∣SJ (y) – SJ (y)

∣∣ ≥ nb.

http://www.journalofinequalitiesandapplications.com/content/2014/1/118
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For any a >  and any bounded subsets D⊆ X and U ⊆ Rd , we let

Aa,U ,D =
{
S ∈Aa|U| : S(D)∩U �= ∅}

, γa,D = sup
U

#Aa,U ,D.

Here |U| denotes the diameter of U . We have two lemmas with respect to the definition
of the weak separation condition which are needed to prove our main result.

Lemma . Let {Si}∞i= be an infinite IFS of contractive similitudes on Rd , for any a >  and
any nonempty subset D ⊆ X, γa,D <∞. Then {Si}∞i= satisfies the WSC.

Proof Let x ∈ X. Let D ⊆ X be a nonempty subset and let Ab be defined as above. Then
for any I ∈ �∗ and any ball Bb of radius b,

#
{
S
(
SI(x)

) ∈ Bb : S ∈Ab
} ≤ #

{
S ∈Ab : S

(
SI(x)

) ∈ Bb
}

≤ {
S ∈A 

 |Bb| : S(D)∩ Bb �= ∅}

≤ γ 
 ,D

< ∞,

which yields the statement. �

Lemma . Let {Si}∞i= be an infinite IFS of contractive similitudes on a compact subset
X ⊆ Rd . If there exist a constant γ ∈ N and a subset D ⊆ X with D◦ �= ∅, such that, for any
 < b <  and x ∈ X,

#
{
S ∈Ab : x ∈ S(D)

} ≤ γ .

Then {Si}∞i= satisfies the WSC.

Proof We denote by Bb(x) the closed ball with radius b and center x. Let L denote the
Lebesgue measure on Rd . Let S ∈Ab such that S(D)∩Bb(x) �= ∅, and y ∈D such that S(y) ∈
Bb(x). Then for any z ∈D,

∣∣S(z) – x
∣∣ ≤ ∣∣S(z) – S(y)

∣∣ +
∣∣S(y) – x

∣∣

≤ c|z – y| + b

≤ b
(
 + c|D|).

So

S(D)⊆ Bb(+c|D|)(x).

Let x ∈D, I ∈ �∗,  < b < , we have

#
{
S
(
SI(x)

) ∈ B : S ∈Ab
} ≤ #

{
S ∈Ab : S

(
SI(x)

) ∈ B
}

≤ #
{
S ∈Ab : S(D)∩ Bb(x) �= ∅}

.
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Suppose ρ :=min{ρi :  ≤ i ≤ n}. By assumption,

(bρ)dL(D)#
{
S ∈Ab : S(D)∩ Bb(x) �= ∅}

≤
∑{

L
(
S(D)

)
: S ∈Ab : S(D)∩ Bb(x) �= ∅}

≤ γL
(
Bb(+c)(x)

)
.

That means

#
{
S ∈Ab : S(D)∩ Bb(x) �= ∅} ≤ γ

( + c|D|)d
ρdL(D)

:=N .

This completes the proof of the lemma. �

Lemma . Suppose {Si}∞i= is an infinite IFS on a compact subset X ⊆ Rd , and it satisfies
the OSC. Then it satisfies the WSC.

Proof Suppose U is an open set guaranteed by the open set condition. For any  < b ≤ ,
we write Ab = {SI : I ∈ τb} and

τb =
{
I = (i, i, . . . , in) : ρI ≤ b ≤ ρii···in–

}
.

For any I, I ∈ Ab with I �= I, the open set condition implies that SI (U) ∩ SI (U) = ∅.
Since

ρ · b|U| ≤ ∣∣SIi (U)
∣∣ ≤ b|U| (i = , ).

So |SI () – SI ()| ≥ ρb. Then the remark implies that {Si}∞i= satisfies the WSC. �

Example . S(x) = 
x, S(x) =


x+


 , Si(x) =


 (


i– +


i– x) +


 (i≥ ). This IFS satisfies

the WSC. It is easy to see that this infinite IFS does not satisfy the OSC. We know that
S ∩ Si = ∅ (i≥ ), S ∩ Si = ∅ (i≥ ), Sj ∩ Sj′ = ∅ (j, j′ ≥ , and j �= j′). By Lemma . and the
example in [] {Si}∞i= satisfies the WSC.

3 The generalized finite type condition
In this section we promote the generalized finite type condition to infinite IFSs. The gen-
eralized finite type condition for infinite IFSs is slightly modified from that for finite IFSs
[]. The definition consists of two parts. The first part concerns the sequence of nested
index sets. The second part entails the concept of neighborhood types.
Let {Si}∞i= be an infinite IFS of contractive similitudes on a compact subset X ⊆

Rd , � = {, , . . . ,n, . . .}, �n = {I = (i, i, . . . , in) : in ∈ �} and �∗ =
⋃

n≥ �n. For any I =
(i, i, . . . , im) ∈ �m, J = (j, j, . . . , jn) ∈ �n, we let IJ = (i, i, . . . , im, j, j, . . . , jn). For I, J ∈ �∗,
if I is an initial segment of J or I = J , we write I � J . We denote by I � J if I � J does not
hold. Consider a sequence of index sets {Mk}∞k=, where for all k ≥ ,Mk is a finite subset
of �∗. Let

mk =mk(Mk) :=min
{|I| : I ∈Mk

}

http://www.journalofinequalitiesandapplications.com/content/2014/1/118
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and

mk =mk(Mk) :=max
{|I| : I ∈Mk

}
.

Definition . We say that {Mk}∞k= is a sequence of nested index sets if it satisfies the
following conditions:

(i) Both {mk} and {mk} are nondecreasing, and limk→∞ mk = limk→∞ mk = ∞.
(ii) For each k ≥ ,Mk is an antichain in �∗.
(iii) For each J ∈ �∗ with |J| >mk , there exists I ∈Mk such that I � J .
(iv) For each J ∈ �∗ with |J| <mk , there exists I ∈Mk such that J � I .
(v) There exists a positive integer n, independent of k, such that, for all I ∈Mk with

I � J , we have |J| – |I| ≤ n.

By lettingMk = �k for all k ≥ , we obtain an example of sequence of nested index sets.
To define neighborhood types, we fix a sequence of nested index sets {Mk}∞k=. For each

integer k ≥ , let Vk be the set of kth level vertices (with respect to {Mk}) defined as

V :=
{
(I, )

}
and Vk :=

{
(SI ,k) : I ∈Mk

}
for all k ≥ .

We call (I, ) the root vertex and denote it by vroot. LetV =
⋃

k≥ Vk be the set of all vertices.
For v = (SI ,k) ∈ Vk , we use the convenient notation Sv := SI .
Fix any nonempty bounded open set � ⊆ X which is invariant under {Si}∞i=. Two kth

level v,v′ ∈ Vk (allowing v = v′) are said to be neighbors (with respect to � and {Mk}) if
Sv(�)∩ Sv′ (�) �= ∅. The set of vertices

N (v) :=
{
v′ : v′ ∈ Vk is a neighbor of v

}

is called the neighborhood of v (with respect to � and {Mk}). Note that v ∈ N (v) by
definition.
Next, we define an equivalence relation on v.

Definition . Under the above assumptions, two vertices v ∈ Vk and v′ ∈ V ′
k are equiv-

alent, denoted by v ∼ v′ if, for τ := Sv′S–v : Rd → Rd , the following conditions hold:
(i) {Su′ : u′ ∈N (v′)} = {τSu : u ∈N (v)}.
(ii) For u ∈N (v) and u′ ∈N (v′) such that Su′ = τSu, and for any positive integer l ≥ ,

an index I ∈ �∗ satisfies (SuSI ,k + l) ∈ Vk+l if and only if it satisfies
(Su′SI ,k′ + l) ∈ Vk′+l .

It is easy to see that ∼ is an equivalence relation. We denote the equivalence class con-
taining v by [v] and call it the neighborhood type of v (with respect to � and {Mk}). We
define two important infinite directed graphs G and GR. The graph G has vertex set V and
directed edges defined as follows. Let v ∈ Vk and u ∈ Vk+. Suppose there exist I ∈ Mk ,
J ∈Mk+, and L ∈ � such that

v = (SI ,k), u = (SJ ,k + ), J = IL.

http://www.journalofinequalitiesandapplications.com/content/2014/1/118
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Then we connect a directed edge L from v to u and denote this by v L→ u. We call v a
parent of u in G and u an offspring of v in G . We write G = (V ,E), where E is the set of all
directed edges defined above.
The reduced graph GR is obtained from G by first removing all but the smallest (in the

lexicographical order) directed edge going to a vertex. More precisely, let vk
Lk→ u, k =

, , . . . ,n, . . . , be all the directed edges going to the vertex u ∈ Vk+, where vk ∈ Vk are
distinct and thusLk are distinct also. SupposeL < L < · · · < Ln < · · · in the lexicographical
order. Then we keep only L in the reduced graph and remove all the edges Lk (k ≥ ).
Next, we denote the resulting graph by G ′

R. It is possible that a vertex in V does not have
any offspring GR (see the example in []). We remove all vertices that do not have any
offspring in G ′

R, together with all vertices and edges leading only to them. The resulting
graph is the reduced graph, denoted by GR = (VR,ER), where VR is the set of vertices and
ER is the set of all edges.
It follows from the invariance of� under {Si}∞i= that only vertices in�(v) can be parents

of any offspring of v in G . In fact, if u = (SvSl,k + ) ∈ Vk+ is an offspring of v in G and if
w ∈ Vk\N (v), then for any index I ∈ �∗,

SwSI(�)∩ Su(�)⊆ Sw(�)∩ Sv(�) = ∅.

Hence w cannot be a parent of u.

Proposition . Let v,v′ ∈ Vk and u, u′ be their offspring. If v and v′ are not neighbors,
then neither are u and u′.

Proof Let Su = SvSw and Su′ = Sv′Sw′ for somew,w′ ∈ �∗. Since Sw(�)⊆ � and Sw′ (�) ⊆ �,
we have

Su(�)∩ Su′ (�) ⊆ Sv(�)∩ Sv′ (�) = ∅.

This leads to the conclusion. �

Proposition . Let� be a bounded invariant open set for the IFS {Si}∞i= and let GR be the
corresponding reduced graph. Then there exists a unique path in GR from the root vertex
vroot to any given vertex.

Proof The existence of a path is obvious. Next, we prove the uniqueness. Suppose v ∈ V ,
if there are two different paths in GR from vroot to v, then the vertex at which the two paths
cross will have two parents in GR, it is a contradiction. �

Proposition . Suppose v ∈ Vk and v′ ∈ V ′
k be two vertices with offspring ui and u′

j

(i, j ≥ ) in GR. Suppose [v] = [v′] and let

N (v) = {v,v,v, . . .}, N
(
v′) =

{
v′,v′

,v
′
, . . .

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/118
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Suppose that in the graph G we have edges k, k such that

vi
k→ u, vj

k→ u,

v′
i
k→ u′

, v′
j
k→ u′

.

Then u = u if and only if u′
 = u′

 and u, u are neighbors if and only if u′
, u′

 are.

Proof Observe that

Su′

= Sv′

i
Sk = τSviSk = τSu . ()

Similarly we have Su′

= τSu . Hence Su = Su if and only if Su′


= Su′


, and so u = u if and

only if u′
 = u′

.
Furthermore,

Su (�)∩ Su (�) = ∅ if and only if τSu (�)∩ τSu (�) = ∅.

This proves the second part of the proposition. �

Proposition . Suppose v ∈ Vk and v′ ∈ V ′
k be two vertices with offspring ui and u′

j
(i, j ≥ ) in GR. Suppose that [v] = [v′], and let

N (v) = {v,v,v, . . .}, N
(
v′) =

{
v′,v′

,v
′
, . . .

}
.

Then

{
[ui]|i≥ 

}
=

{[
u′
j
]|j ≥ 

}
. ()

Proof The proposition says roughly that two vertices of the same neighborhood type have
equivalent offspring. Let W and W ′ be the set of offspring of the vertices in N (v) and
N (v′). We define a map χ :W → W ′ as follows: Suppose that u is an offspring of vi in G
by an edge k. We let χ (u) be the offspring of v′

i by an edge k. Propositions . and . show
that χ is a one-to-one correspondence. Furthermore, by () we have

Sχ (u) = τSu.

By Proposition . only vertices in N (v) can be parents of any offspring of v in G . Again
by Propositions . and ., u is an offspring of v in GR if and only if χ (u) is an offspring
of v′ in GR. This yields (). �

Definition . Let {Si}∞i= be an self-map IFS on a subset X ⊂ Rd . We say that {Si}∞i= is
of generalized finite type if there exist a sequence of nested index sets {Mk}∞k= and a
nonempty invariant open set � ⊆ X such that, with respect to � and {Mk}∞k=, V/ ∼=
{[v]|v ∈ V} is a finite set. In this case, we say that � is a generalized finite type set.

In the rest of this section, we establish classes of infinite IFSs of generalized finite type
condition.

http://www.journalofinequalitiesandapplications.com/content/2014/1/118
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Proposition . If {Si}∞i= is of OSC, then it is of the generalized finite type condition.

Proof Let � be the open set of OSC. Suppose Mk = �k . For each v ∈ V = {(Si, ) : i≥ },
the OSC implies that N (v) = {v}. Let τ = IS–v , i.e. τSv = I , we have v ∼ (I, ) = vroot. By
Proposition ., V/ ∼= {[vroot]}. So {Si}∞i= satisfies the generalized finite type condition.

�

Example . S(x) = 
x, S(x) =


x+


 , S(x) =


x+


 , Si(x) = –ix––i+ + 

 (i = , , . . .),
this IFS satisfies the generalized finite type condition.

Proof Let � = (, ). For each k ≥  let Mk = �k . Upon iterating the IFS once, the root
vertex generates the following vertices:

v = (S, ), v = (S, ), . . . , vn = (Sn, ), . . . .

Obviously, N (vk) = {vk} (k ≥ ). So vk ∼ vroot (k ≥ ) with τ = IS–vk . Upon one more it-
eration, there is no new neighborhood type generated (see the example . in []). So
V/ ∼= {[vroot], [v], [v]} and the result follows. �

4 Proof of themain theorem

Proof of Theorem . Assume that {Si}∞i= is a finite type similar IFS on X and let {Mk}∞k=
and � be defined as above. We will show that there exists γ ∈N such that, for all  < b ≤ 
and x ∈ X,

#
{
S ∈Ab : x ∈ S(�)

} ≤ γ .

Let� = {S ∈Ab : x ∈ S(�)}. List all elements of� as SI ,SI , . . . . For Ij there exists a unique
I ′j ∈Mkj such that I ′j � Ij. The choice of the particular Ij does not affect the following proof.
We assume that I ′j is chosen such that kj is maximum, i.e., if I ′′j � Ij and I ′′j ∈Ml for some l,
then l ≤ kj and I ′′j � I ′j . We assume without loss of generality that

k =min{kj : SIj ∈ �} = k and I ′ ∈Mk .

For each j, here SIj ∈ � , let I ′′j be the initial segment of Ij such that I ′′j ∈Mk . In particular,
I ′′ = I ′. Since x ∈ S(�) for all S ∈ � , it follows that

v = (SI′′ ,k), . . . , vm = (SI′′m ,k), . . . ,

are neighbors of v = (SI′′ ,k). The finite type condition implies that the number of vertices
in each neighborhood is uniformly bounded by some constantM independent of x, b, and
the choice of Ij. That is,

#{v,v, . . . ,vm, . . .} ≤ M,

i.e.

#
{
SI′′j : SIj ∈ � , I ′′j � Ij

} ≤ M.

http://www.journalofinequalitiesandapplications.com/content/2014/1/118
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Since each SIj belongs to Ab, we have

ρb|�| < ∣∣SIj (�)
∣∣ ≤ b|�|, SIj ∈ � .

Also, by the definition of {Mk}∞k=, there exists a constant n, independent of x and b, such
that |Ij| – |I ′j | ≤ n for all Ij, here SIj ∈ � . Hence,

ρb|�| < ∣∣SI′j (�)
∣∣ ≤ bρ–n|�|, SIj ∈ � , I ′j � Ij.

It yields

ρ ≤ |SI′ (�)|
|SIj (�)| ≤ ρ–(n+). ()

It also implies that there exists a constant c > , independent of x and b, such that

c– ≤
|SI′′j (�)|
|SI′ (�)| ≤ c, SIj ∈ � . ()

Combining () and () yields

c– ≤
|SI′′j (�)|
|SIj (�)| ≤ c, SIj ∈ � . ()

Here c := ρ–(n+)c.
We write Ij = (I ′′j ,L′′

j ), for any j ≥ . For each SIj ∈ � , () implies that

ρI′′j ≤ ρIj c = ρI′′j ρL′′
j
c.

Hence

ρ
|L′′
j |

max ≥ ρI′′j ≥ c– .

If we let l := [– log(c)/ logρmax] + , then |L′′
j | ≤ l. The finite type condition implies that

#
{
SIj : I

′′ � Ij
} ≤ Ml.

Thus, #{S ∈Ab : x ∈ S(�)} ≤ γ follows by taking γ = Ml+. Lemma . implies that the
{Si}∞i= satisfies the WSC. �
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