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Denote the 2×2 upper triangular matrix rings overZ and Zp by UTM2(Z) and UTM2(Zp),
respectively. We prove that if a ring R is a p.p.-ring, then R is reduced if and only if R does
not contain any subrings isomorphic to UTM2(Z) or UTM2(Zp). Other conditions for
a p.p.-ring to be reduced are also given. Our results strengthen and extend the results of
Fraser and Nicholson on r.p.p.-rings.
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1. Introduction

Throughout the paper, all rings are associative rings with identity 1. The set of all idem-
potents of a ring R is denoted by E(R). Also, for a subset X ⊆ R, we denote the right [resp.,
left] annihilator of X by r(X) [resp., �(X)].

We call a ring R a left p.p.-ring [3], in brevity, an l.p.p.-ring, if every principal left ideal
of R, regarded as a left R-module, is projective. Dually, we may define the right p.p.-rings
(r.p.p.-rings). We call a ring R a p.p.-ring if R is both an l.p.p.- and r.p.p.-ring. It can be
easily observed that the class of p.p.-rings contains the classes of regular (von Neumann)
rings, hereditary rings, Baer rings, and semihereditary rings as its proper subclasses. In the
literature, p.p.-rings have been extensively studied by many authors and many interesting
results have been obtained (see [1–7]). It is noteworthy that the definition of p.p.-rings
can also be extended to semigroups.

We now call a ring R reduced if it contains no nonzero nilpotent elements. Obviously,
the left annihilator �(X) of X in a reduced ring R is always a two-sided ideal of R. More-
over, if R is a reduced ring, then e f = 0 if and only if f e = 0 for any nonzero idempotents
e, f ∈ R. Reduced rings with the maximum condition on annihilator were first studied
by Cornish and Stewart [2]. By using the concept of annihilator and reduced ring, Fraser
and Nicholson [3] showed that a ring R is a reduced p.p.-ring if and only if R is a (left,
right) p.p.-ring in which every idempotent is central.

In this paper, we will prove that a p.p.-ring R is reduced if and only if R contains no
subrings which are isomorphic to the matrix rings UTM2(Z) or UTM2(Zp). Thus, our
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results strengthen and extend the results obtained by Fraser and Nicholson in [3]. Also,
some of our results can be applied to r.p.p.-monoids with zero.

2. Definitions and basic results

The following crucial lemma of p.p.-rings was given by Fraser and Nicholson in [3].

Lemma 2.1 [3]. Let R be a ring and a∈ R. Then R is an l.p.p.-ring if and only if �(a)= Re
for some idempotent e ∈ E(R).

By using Lemma 2.1, we can give some properties of a p.p.-ring which is reduced.

Theorem 2.2. Let R be a p.p.-ring and E(R) the set of all idempotents of R. Then the fol-
lowing statements are equivalent:

(i) R is reduced;
(ii) e f = f e for all e, f ∈ E(R);

(iii) E(R) is a subsemigroup of the semigroup (R,·);
(iv) e f = 0 if and only if f e = 0 for all e, f ∈ E(R);
(v) eR= Re for all e ∈ E(R).

Proof. (i)⇒(ii)⇒(iii) are trivial.
(iii)⇒(iv). Let e, f ∈ E(R). Suppose that e f = 0. Then by (iii), we have f e ∈ E(R) and

so f e = ( f e)2 = f (e f )e = 0. Similarly, we can show that if f e = 0, then e f = 0. This
proves (iv).

(iv)⇒(v). Let x ∈ r(e). Then ex = 0 and so e ∈ �(x). Since R is a p.p.-ring, by Lemma
2.1, we have �(x)= R f , for some f ∈ E(R). Now, by Pierce decomposition, we have R=
R(1− f )⊕R f and hence �(1− f ) = R f . Consequently e ∈ �(1− f ) = �(x) and thereby
e(1− f ) = 0 since ex = 0. Because (1− f ) ∈ E(R), by (iv), we have (1− f )e = 0. It is
now easy to check that e+ xe ∈ E(R). Since (e+ xe)(1− f )= 0, we have, by (iv), 0= (1−
f )(e+ xe)= (1− f )xe. However, by �(x)= R f and 1∈ R, we have f x = 0 so that f xe = 0.
This leads to xe = (1− f )xe+ f xe = 0, and thereby x ∈ �(e). Thus r(e)⊆ �(e). Dually, we
can show that �(e) ⊆ r(e). Therefore r(e) = �(e). Thus, for all e ∈ R, r(1− e) = �(1− e),
that is, eR= Re. This proves (v).

(v)⇒(i). Since (v) easily yields that the idempotents of R are central, so (v)⇒(i) by
[3]. �

The following example illustrates that there exists a p.p.-ring which is not reduced.

Example 2.3. Let UTM2(R) be the subring of the matrix ring M2(R) consisting of all
2× 2 upper triangular matrices over the field R. We claim that UTM2(R) is a p.p.-ring.
In order to establish our claim, let

A=
(
a c
0 b

)
, B =

(
x z
0 y

)
(2.1)

be elements of UTM2(R). Then we see immediately that AB = (0 0
0 0

)
if and only if ax = 0,

by = 0 and az+ cy = 0. The following cases now arise.
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(i) x �= 0 and y �= 0. In this case, we have AB = (0 0
0 0

)
if and only if a = b = c = 0.

Hence, we have

�(B)=
{(

0 0
0 0

)}
=UTM2(R)

(
0 0
0 0

)
. (2.2)

(ii) x �= 0 and y = 0. In this case, we have AB = (0 0
0 0

)
if and only if a= 0. This leads to

�(B)=
{(

0 c
0 b

)
: b,c ∈R

}
=UTM2(R)

(
0 0
0 1

)
. (2.3)

(iii) x = 0 and y �= 0. In this case, we haveAB = (0 0
0 0

)
if and only if b = 0 and c = azy−1.

This leads to

�(B)=
{(

a azy−1

0 0

)
: a∈ R

}
=UTM2(R)

(
1 zy−1

0 0

)
. (2.4)

Summing up the above cases, we can easily see that �(B) of UTM2(R) is generated by
an idempotent. Clearly, UTM2(R) is not reduced.

3. Main theorem

In proving the main theorem of this paper, we first denote by o(r) the (additive) order of
r ∈ R , that is, the smallest positive integer n such that nr = 0. If r is of infinite order, then
we simply write o(r)=∞.

We now prove a useful lemma for p.p.-rings.

Lemma 3.1. Let R be a p.p.-ring with 1 such that e f = 0 but f e �= 0 for some e, f ∈ E(R).
Then, o(e)= o( f )= o( f e), and if o(e) <∞, then there exist u,v ∈ E(R) and a prime p such
that o(u)= o(v)= o(vu)= p with uv = 0 but vu �= 0.

Proof. Since R is a p.p.-ring, by Theorem 2.2, R is clearly not reduced. Also, since 1 ∈
R, by Lemma 2.1, there exists some g,h ∈ E(R) such that �( f e) = R(1− g) and r( f e) =
(1−h)R. These lead to �( f e)= �(g) and r( f e)= r(h). Since 1− f ∈ �( f e), we have (1−
f )g = 0 and so g = f g. Since g = f g, we see that g f ∈ E(R) and �(g) = �(g f ). Thus,
(1− g f ) f e = 0 since (1− g f )g = 0 and �(g)= �( f e), that is, f e− g f e = 0. Thereby, we
have g f e = f e. Similarly, we can prove that there exists h ∈ E(R) such that h = he, eh ∈
E(R), r(eh)= r( f e), and f e = f eh. Hence, f e = g f eh= (g f )(eh). On the other hand, we
have (eh)(g f )= e(he)( f g) f = 0. Because �( f e)= �(g f ) and r( f e)= r(eh), we can easily
see that o(g f )= o(eh)= o( f e).

Now two cases arise.
(i) o(g f )=∞. In this case, there is nothing to prove.

(ii) o(g f ) <∞. Without loss of generality, let o(g f )= pk, where p is a prime num-
ber. Then, we can easily check that o(k f e) = p. By using similar arguments as
above, we also have u,v ∈ E(R) such that o(u) = o(v) = o(k f e) with uv = 0 but
vu �= 0. Hence, u and v are the required idempotents in R. The proof is com-
pleted. �
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We now formulate the following main theorem.

Theorem 3.2. Let R be a p.p.-ring. Then R is reduced if and only if R has no subrings which
are isomorphic either to UTM2(Z) or to UTM2(Zp), where p is a prime.

Proof. The necessity part of the theorem follows from Theorem 2.2 since UTM2(Z) and
UTM2(Zp) both contain some noncommutating idempotents.

To prove the sufficiency part of the theorem, we suppose that R is not reduced. Then
we can let i, j ∈ E(R) such that i j = 0, ji �= 0, and o(i) = o( j) = o( ji); and o(i) = o( j) =
o( ji)= p if o(i) <∞, where p is a prime. Consider the subring of R generated by i and j.
Clearly, {0, i, j, ji} forms a subsemigroup of R under ring multiplication and so S= {ai+
b ji+ ci : a,b,c ∈ Z} forms a subring of R, under the ring multiplication and addition.

Now, we define a mapping θ : UTM2(Z)→ S by

(
a b
0 c

)
	−→ a j + (b− c) ji+ ci. (3.1)

Then, we can easily verify that θ is a surjective homomorphism of UTM2(Z) onto S.
We now consider the kernel of θ. Suppose that A = (a b

0 c ) ∈ kerθ. Then we have a j +
(b− c) ji + ci = 0. Multiplying i on the left gives ci = 0, and multiplying j on the right
gives a j = 0. Hence, we have (b− c) ji= 0.

The following cases arise.
(i) o(i) = o( j) = o( ji) =∞. Then a = 0, c = 0, and (b− c) = 0. Thus a = b = c = 0

and thereby A= 0. Hence kerθ = {0} and θ is an isomorphism.
(ii) o(i)= o( j)= o( ji)= p. In this case, we have p | a, p | c, and p | (b− c). Hence p |

a, p | c, and p | b. Consequently kerθ = {(a b
0 c ) : p | a, p | b, and p | c}. Observing

that UTM2(Z)/kerθ ∼=UTM2(Zp), we have S∼=UTM2(Zp). This contradicts our
assumption and therefore our proof is completed. �

As an application of our main theorem, we give a new criterion for a p.p.-ring to be
reduced.

Theorem 3.3. Let R be a p.p.-ring having no subrings isomorphic to UTM2(Zp) for prime
p. If o(e) <∞ for all e ∈ E(R), then R is reduced.

In fact, Theorem 3.3 follows from the following lemma.

Lemma 3.4. Let R be a p.p.-ring having no subring isomorphic to UTM2(Zp). Suppose that
at least one of the idempotents e, f ∈ E(R) has a prime order p. Then e f = 0 if and only if
f e = 0.

Proof. Suppose that e f = 0 but f e �= 0. Also, suppose that e or f has a prime order p.
Then, f e must have an order p. Now, by using the arguments in the proof of Lemma 3.1,
we can construct some idempotents g,h∈ R and that o(g)= o(h)= o(hg)= p such that
hg = f e but gh = 0. By using the arguments in the proof of Theorem 3.2, we can show
similarly that the subring S = 〈g,h〉 of the ring R (the subring of R generated by f and
g) is isomorphic to UTM2(Zp). However, this is clearly a contradiction. Thus, we have
f e = 0. This proves Lemma 3.4. �
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