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We study the existence of solutions for time fractional Schrödinger-Kirchhoff type equation involving left and right Liouville-Weyl
fractional derivatives via variational methods.

1. Introduction

In recent years, there has been a great interest in studying
problems involving fractional Schrödinger equations [1–
5], Kirchhoff type equations [6–8], fractional Navier-Stokes
equations [9, 10], and fractional ordinary differential equa-
tions and Hamiltonian systems [11–17], and so forth. For
further details and applications, we refer the reader to [18, 19]
and the references cited therein.

On the other hand, the integer-order Schrödinger-
Kirchhoff type equations have also been investigated by
many authors; for example, see [20–23]. In fact, Schrödinger-
Kirchhoff type equations play an important role in modelling
several physical and biological systems. However, to the best
of our knowledge, the existence of solutions to the time
fractional Schrödinger-Kirchhoff type equations has yet to be
addressed.

The objective of the present paper is to study time
fractional Schrödinger-Kirchhoff type equation of the form

(𝑎 + 𝑏∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡)𝜃−1 𝑡𝐷𝛼

∞ ( −∞𝐷𝛼
𝑡 𝑢 (𝑡))

+ 𝜇𝑉 (𝑡) 𝑢 = 𝑓 (𝑡, 𝑢) , 𝑡 ∈ R, 𝑢 ∈ 𝐻𝛼 (R) ,
(1)

where 𝛼 ∈ (1/2, 1], −∞𝐷𝛼
𝑡 and 𝑡𝐷𝛼

∞, respectively, denote left
and right Liouville-Weyl fractional derivatives of order 𝛼 on

R, 𝑎, 𝑏 > 0 are constants, 𝜇 > 0 is parameter, 𝜃 > 1, 𝑓 ∈𝐶(R ×R,R), and 𝑉 : R → R+ is a potential function.
The rest of the paper is organized as follows. Section 2

contains preliminary concepts of fractional calculus and
fractional Sobolev space, while some important lemmas,
which are needed in the proof of main results, are obtained
in Section 3. We present our main results in Section 4.

2. Preliminaries

In this section, we recall important definitions and concepts
of fractional calculus and then prove certain results about
fractional Sobolev space 𝐻𝛼(R) related to our study of the
problem at hand.

Definition 1 (see [24]). The left and right Liouville-Weyl
fractional integrals of order 𝛼 ∈ (0, 1) on R are defined by

−∞𝐼𝛼𝑥 𝜙 (𝑥) = 1Γ (𝛼) ∫
𝑥

−∞
(𝑥 − 𝜉)𝛼−1 𝜙 (𝜉) 𝑑𝜉,

𝑥𝐼𝛼∞ 𝜙 (𝑥) = 1Γ (𝛼) ∫
∞

𝑥
(𝜉 − 𝑥)𝛼−1 𝜙 (𝜉) 𝑑𝜉,

(2)

respectively, where 𝑥 ∈ R.
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The left and right Liouville-Weyl fractional derivatives of
order 𝛼 ∈ (0, 1) on R are defined by

−∞𝐷𝛼
𝑥 𝜙 (𝑥) = 𝑑𝑑𝑥 −∞𝐼1−𝛼𝑥 𝜙 (𝑥) ,

𝑥𝐷𝛼
∞ 𝜙 (𝑥) = − 𝑑𝑑𝑥 𝑥𝐼1−𝛼∞ 𝜙 (𝑥) ,

(3)

respectively, where 𝑥 ∈ R.
The definitions (3) may be written in an alternative form

as follows:

−∞𝐷𝛼
𝑥 𝜙 (𝑥) = 𝛼Γ (1 − 𝛼) ∫

∞

0

𝜙 (𝑥) − 𝜙 (𝑥 − 𝜉)𝜉𝛼+1 𝑑𝜉,

𝑥𝐷𝛼
∞ 𝜙 (𝑥) = 𝛼Γ (1 − 𝛼) ∫

∞

0

𝜙 (𝑥) − 𝜙 (𝑥 + 𝜉)𝜉𝛼+1 𝑑𝜉.
(4)

Also, we define the Fourier transformF(𝑢)(𝜉) of 𝑢(𝑥) as
F (𝑢) (𝜉) = ∫∞

−∞
𝑒−𝑖𝑥⋅𝜉𝑢 (𝑥) 𝑑𝑥. (5)

For any 𝛼 > 0, we define the seminorm and norm,
respectively, as [16]

|𝑢|𝐼𝛼−∞ =  −∞𝐷𝛼
𝑥 𝑢𝐿2 ,

‖𝑢‖𝐼𝛼−∞ = (‖𝑢‖2𝐿2 + |𝑢|2𝐼𝛼−∞)1/2 ,
(6)

and let the space 𝐼𝛼−∞(R) denote the completion of 𝐶∞0 (R)
with respect to the norm ‖ ⋅ ‖𝐼𝛼−∞ .

Next, for 0 < 𝛼 < 1, we give the relationship between
classical fractional Sobolev space 𝐻𝛼(R) and 𝐼𝛼−∞(R), where𝐻𝛼(R) is defined by

𝐻𝛼 (R) = 𝐶∞0 (R)‖⋅‖𝛼 , (7)

with the norm

‖𝑢‖𝛼 = (‖𝑢‖2𝐿2 + |𝑢|2𝛼)1/2 , (8)

and seminorm

|𝑢|𝛼 = 𝜉𝛼F (𝑢)𝐿2 . (9)

Observe that the spaces 𝐻𝛼(R) and 𝐼𝛼−∞(R) are equal and
have equivalent norms (see [16]).

Therefore, we define

𝐻𝛼 (R) = {𝑢 ∈ 𝐿2 (R) | 𝜉𝛼F (𝑢) ∈ 𝐿2 (R)} . (10)

Let

𝑋𝛼 = {𝑢 ∈ 𝐻𝛼 (R) | ∫
R

( −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 + |𝑢 (𝑡)|2) 𝑑𝑡

< ∞} .
(11)

The space 𝑋𝛼 is a reflexive and separable Hilbert space with
the inner product

⟨𝑢, V⟩𝑋𝛼
= ∫

R

( −∞𝐷𝛼
𝑡 𝑢 (𝑡) ⋅ −∞𝐷𝛼

𝑡 V (𝑡) + 𝑢 (𝑡) V (𝑡)) 𝑑𝑡 (12)

and the corresponding norm

‖𝑢‖2𝑋𝛼 = ⟨𝑢, 𝑢⟩𝑋𝛼 . (13)

Define the space

𝑋𝛼
𝜇 = {𝑢 ∈ 𝑋𝛼 : ∫

R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡 < +∞} , (14)

with the norm

‖𝑢‖𝑋𝛼𝜇 = (∫
R

𝑎𝜃−1 ( −∞𝐷𝛼
𝑡 𝑢 (𝑡)2) 𝑑𝑡

+ ∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2 .
(15)

Lemma 2. (𝑋𝛼
𝜇, ‖ ⋅ ‖𝑋𝛼𝜇 ) is a uniformly convex Banach space.

Proof. 𝑋𝛼
𝜇 is obviously Banach space. Now, we can prove that(𝑋𝛼

𝜇, ‖ ⋅ ‖𝑋𝛼𝜇 ) is uniformly convex. To this end, let 0 < 𝜀 < 2
and 𝑢, V ∈ 𝑋𝛼

𝜇 with ‖𝑢‖𝑋𝛼
𝜆
= ‖V‖𝑋𝛼𝜇 = 1 and ‖𝑢 − V‖𝑋𝛼𝜇 ≥ 𝜀.

Using the following inequality:

𝑎 + 𝑏2


2 + 

𝑎 − 𝑏2

2 ≤ 12 (|𝑎|2 + |𝑏|2) , ∀𝑎, 𝑏 ∈ R, (16)

we get
𝑢 + V2


2

𝑋𝛼𝜇

+ 𝑢 − V2

2

𝑋𝛼𝜇

= ∫
R

𝑎𝜃−1 ( −∞𝐷𝛼
𝑡 (𝑢 + V2 ) (𝑡)

2)𝑑𝑡
+ ∫

R

𝜇𝑉 (𝑡) 𝑢 + V2

2 𝑑𝑡

+ ∫
R

𝑎𝜃−1 ( −∞𝐷𝛼
𝑡 (𝑢 − V2 ) (𝑡)

2)𝑑𝑡
+ ∫

R

𝜇𝑉 (𝑡) 𝑢 − V2

2 𝑑𝑡

≤ 12 (∫
R

𝑎𝜃−1 ( −∞𝐷𝛼
𝑡 𝑢 (𝑡)2) 𝑑𝑡

+ ∫
R

𝑎𝜃−1 ( −∞𝐷𝛼
𝑡 V (𝑡)2) 𝑑𝑡 + ∫

R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡
+ ∫

R

𝜇𝑉 (𝑡) |V|2 𝑑𝑡) = 12 (‖𝑢‖2𝑋𝛼𝜇 + ‖V‖2𝑋𝛼𝜇) = 1,

(17)

which implies that ‖(𝑢 + V)/2‖2𝑋𝛼𝜇 ≤ 1 − 𝜀/2. Hence, taking
𝛿 = 𝛿(𝜀) such that 1−𝜀/2 = 1−𝛿, we have ‖(𝑢+V)/2‖2𝑋𝛼𝜇 ≤ 1−𝛿.
Therefore, (𝑋𝛼

𝜇 , ‖ ⋅ ‖𝑋𝛼𝜇 ) is uniformly convex.
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In the sequel, we need the following assumptions.

(V1) 𝑉(𝑡) ∈ 𝐶(R,R), 𝑉0 fl inf 𝑡∈R𝑉(𝑡) > 0;
(V2) there exists 𝑟 > 0 such that, for any𝑀 > 0,
meas ({𝑡 ∈ (𝑦 − 𝑟, 𝑦 + 𝑟) : 𝑉 (𝑡) ≤ 𝑀}) → 0

as 𝑦 → ∞; (18)

(V3) there exists 𝑙0 > 0 such that ∫
|𝑡|≥𝑙0

𝑉(𝑡)−1𝑑𝑡 < ∞;

(F1) 𝑓 ∈ 𝐶(R × R,R) and there exist constants 𝑐0, 𝑐1,. . . , 𝑐𝑙 > 0 and 𝑞𝑗 ∈ (2, 2𝜃) such that

𝑓 (𝑡, 𝑢) ≤ 𝑐0 |𝑢| + 𝑙∑
𝑗=1

𝑐𝑗 |𝑢|𝑞𝑗−1 , ∀ (𝑡, 𝑢) ∈ R ×R; (19)

(F2) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|) as |𝑢| → 0 uniformly in 𝑡 ∈ R𝑁;
(F3) there exist 𝜆 ∈ (2𝜃,∞) such that

𝜆𝐹 (𝑡, 𝑢) ≤ 𝑓 (𝑡, 𝑢) 𝑢, ∀𝑡 ∈ R, 𝑢 ∈ R; (20)

(F4) 𝐹(𝑡, 𝑢)/|𝑢|2𝜃 → +∞ as |𝑢| → +∞ uniformly in 𝑡 ∈ R;
(F5) 𝑓(𝑡, −𝑢) = −𝑓(𝑡, 𝑢) for all (𝑡, 𝑢) ∈ R ×R;
(F6) 𝑓 ∈ 𝐶(R ×R,R) and there exists 1 < 𝑝 < 2 such that

𝑓 (𝑡, 𝑢) ≤ |𝑢|𝑝−1 , ∀ (𝑡, 𝑢) ∈ R ×R; (21)

(F7) there exist 𝜎1 > 0, 0 < 𝜎2 < 1/8𝐷2
2 (𝐷2 is defined in

Remark 6), 1 ≤ 𝛾 < 2, and small constants 0 < 𝑟0 < 𝑟1
such that

𝜎1 |𝑢|𝛾 < 𝐹 (𝑡, 𝑢) ≤ 𝜎2 |𝑢|2 ,
𝑟0 ≤ |𝑢| ≤ 𝑟1, a.e. 𝑡 ∈ R. (22)

Lemma 3. Assume that (V1) holds. Then the embeddings𝑋𝛼
𝜇 → 𝑋𝛼 → 𝐿2(R) are continuous. In particular, there exists

a constant 𝐶2 > 0 such that
‖𝑢‖𝐿2(R) ≤ 𝐶2 ‖𝑢‖𝑋𝛼𝜇 ∀𝑢 ∈ 𝑋𝛼

𝜇. (23)

Moreover, if (V1) and (V2) hold, then the embedding 𝑋𝛼
𝜇 →

𝐿2(R) is compact.

Proof. Clearly, the chain of embeddings𝑋𝛼
𝜇 → 𝑋𝛼 → 𝐿2(R)

is continuous and consequently one can obtain (23). Also in
view of (V1), (V2), and following the method of proof similar
to that of Lemma 2.2 in [15], the embedding 𝑋𝛼

𝜇 → 𝐿2(R) is
compact.

Lemma 4. Let 𝛼 > 1/2. Then𝐻𝛼(R) ⊂ 𝐶(R) and there exists
a constant 𝐶 = 𝐶𝛼 such that

sup
𝑥∈R

|𝑢 (𝑥)| ≤ 𝐶 ‖𝑢‖𝑋𝛼𝜇 . (24)

Proof. The proof is similar to that of Theorem 2.1 in [16], so
we omit it.

Also by Lemma 4, there is a constant 𝐶𝛼 > 0 such that

‖𝑢‖∞ ≤ 𝐶𝛼 ‖𝑢‖𝑋𝛼𝜇 . (25)

Remark 5. If 𝑢 ∈ 𝐻𝛼(R) with 1/2 < 𝛼 < 1, then it follows by
Lemma 4 that 𝑢 ∈ 𝐿𝑞(R) for all 𝑞 ∈ [2,∞) as

∫
R
|𝑢 (𝑥)|𝑞 𝑑𝑥 ≤ ‖𝑢‖𝑞−2∞ ‖𝑢‖2𝐿2(R) . (26)

Remark 6. From Remark 5 and Lemma 3, it is easy to verify
that the imbedding of 𝑋𝛼

𝜇 in 𝐿𝑞(R) is also compact for 𝑞 ∈(2,∞). Hence, for all 2 ≤ 𝑞 < ∞, the imbedding of 𝑋𝛼
𝜇

in 𝐿𝑞(R) is continuous and compact, which together with
Lemma 4 implies that there exists𝐷𝑞 > 0 such that

‖𝑢‖𝐿𝑞(R) ≤ 𝐷𝑞 ‖𝑢‖𝑋𝛼𝜇 . (27)

Lemma 7. Assume that (V1) and (V3) hold. Then the embed-
ding𝑋𝛼

𝜇 → 𝐿𝑝(R) is continuous and compact for𝑝 ∈ [1, +∞).
Proof. By (V3) and Hölder’s inequality, we have

∫
|𝑡|≥𝑙0

|𝑢 (𝑡)| 𝑑𝑡

≤ (∫
|𝑡|≥𝑙0

𝑉 (𝑡) |𝑢 (𝑡)|2 𝑑𝑡)1/2 (∫
|𝑡|≥𝑙0

𝑉 (𝑡)−1/2 𝑑𝑡)1/2

≤ 𝑐1 ‖𝑢‖𝑋𝛼𝜇 ,
(28)

for some positive constant 𝑐1. So Lemma 4 implies that

‖𝑢‖1 = ∫𝑙0
−𝑙0

|𝑢 (𝑡)| 𝑑𝑡 + ∫
|𝑡|≥𝑙0

|𝑢 (𝑡)| 𝑑𝑡
≤ 2𝑙0 ‖𝑢‖∞ + 𝑐1 ‖𝑢‖𝑋𝛼𝜇 ≤ 𝑐2 ‖𝑢‖𝑋𝛼𝜇 ,

(29)

for some positive constant 𝑐2. Hence, by Remark 6, we can get
continuous embeddings𝑋𝛼

𝜇 into 𝐿𝑝(R) for𝑝 ∈ [1, +∞). Now,
we will show that the embedding is compact for 𝑝 ∈ [1, +∞).
Let {𝑢𝑛} ⊂ 𝑋𝛼

𝜇 such that 𝑢𝑛 ⇀ 0 and𝑀 > 0 such that ‖𝑢‖𝑋𝛼𝜇 ≤𝑀. In view of (V3), given 𝜀 > 0, for 𝑙 > 0 large enough, one
can obtain

∫
|𝑡|≥𝑙0

𝑉 (𝑡)−1/2 𝑑𝑡 < ( 𝜀2𝑀)2 . (30)

Then,

∫
|𝑡|≥𝑙

|𝑢 (𝑡)| 𝑑𝑡
≤ (∫

|𝑡|≥𝑙
𝑉 (𝑡) |𝑢 (𝑡)|2 𝑑𝑡)1/2 (∫

|𝑡|≥𝑙
𝑉 (𝑡)−1/2 𝑑𝑡)1/2

≤ 𝜀2𝑀 ‖𝑢‖𝑋𝛼𝜇 ≤ 𝜀2 .
(31)
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On the other hand, by Sobolev’s theorem (see, e.g., [25])
which implies that 𝑢𝑛 → 0 uniformly on [−𝑙, 𝑙], there is 𝑛0
such that ∫𝑙

−𝑙
|𝑢(𝑡)|𝑑𝑡 < 𝜀/2 for all 𝑛 ≥ 𝑛0. Thus 𝑢𝑛 → 0 in

𝐿1(R). So, for 1 < 𝑝 < ∞, we have

∫
R
|𝑢 (𝑥)|𝑝 𝑑𝑥 ≤ ‖𝑢‖𝑝−1∞ ∫

R
|𝑢 (𝑡)| 𝑑𝑡 ≤ 𝑐3 ‖𝑢‖1 → 0, (32)

and consequently, 𝑢𝑛 → 0 in 𝐿𝑝(R) for 𝑝 ∈ [1, +∞).
Definition 8. Let𝑋 be a Banach space, 𝐼 ∈ 𝐶1(𝑋,R). One says
that 𝐼 satisfies the Palais-Smale (PS) condition if any sequence(𝑢𝑛) ∈ 𝑋 for which 𝐼(𝑢𝑛) is bounded and 𝐼(𝑢𝑛) → 0 as 𝑛 →∞ possesses a convergent subsequence.

In order to establish the main results, we need the
following knownTheorems.

Theorem 9 (see [26, Theorem 2.2]). Let 𝑋 be a real Banach
space and 𝐼 ∈ 𝐶1(𝑋,R) satisfies (𝑃𝑆) condition. Suppose 𝐼(0) =0 and

(i) there are constants 𝜌, 𝛼 > 0 such that 𝐼|𝜕𝐵𝜌(0) ≥ 0;
(ii) there is an 𝑒 ∈ 𝑋 \ 𝐵𝜌(0) such that 𝐼(𝑒) ≤ 0.

Then 𝐼 possesses a critical value 𝑐 ≥ 𝛼. Moreover 𝑐 can be
characterized as

𝑐 = inf
𝛾∈Γ

max
𝑠∈[0,1]

𝐼 (𝛾 (𝑠)) , (33)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝑋) : 𝛾 (0) = 0, 𝛾 (1) = 𝑒} . (34)

Theorem 10 (see [26, Theorem 9.12]). Let 𝑋 be an infinite
dimensional Banach space and let 𝐼 ∈ 𝐶1(𝑋,R) be even,
satisfying (PS) condition, and 𝐼(0) = 0. If𝑋 = 𝑌 ⊕ 𝑍, where 𝑌
is finite dimensional and 𝐼 satisfies the following conditions:

(I1) there exist constants 𝜌, 𝛼 > 0 such that 𝐼|𝜕𝐵𝜌∩𝑍 ≥ 𝛼;
(I2) for any finite dimensional subspace 𝑋 ⊂ 𝑋, there is𝑅 = 𝑅(𝑋) > 0 such that 𝐼(𝑢) ≤ 0 on 𝑋 \ 𝐵𝑅,

then 𝐼 possesses an unbounded sequence of critical values.

3. Some Lemmas

Recall that 𝑢 ∈ 𝑋𝛼
𝜇 is said to be a weak solution of problem (1)

if

(𝑎 + 𝑏∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡)𝜃−1

⋅ ∫
R
−∞𝐷𝛼

𝑡 𝑢 (𝑡) ⋅ −∞𝐷𝛼
𝑡 𝜑 (𝑡) 𝑑𝑡

+ ∫
R

𝜇𝑉 (𝑡) 𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡 = ∫
R

𝑓 (𝑡, 𝑢 (𝑡)) 𝜑 (𝑡) 𝑑𝑡,
∀𝜑 ∈ 𝑋𝛼

𝜇,

(35)

and the energy functional 𝐼𝜇,𝜃 : 𝑋𝛼
𝜇 → R is given by the

formula

𝐼𝜇,𝜃 (𝑢) = 12𝑏𝜃 (𝑎 + 𝑏∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡)𝜃

+ 12 ∫
R

𝜇𝑉 (𝑥) |𝑢 (𝑡)|2 𝑑𝑡
− ∫

R

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,
(36)

where 𝐹(𝑥, 𝑢) = ∫𝑢
0
𝑓(𝑡, 𝑠)𝑑𝑠.

In view of assumptions (V1) and (F1), the functional 𝐼𝜇,𝜃
is of class 𝐶1(𝑋𝛼

𝜇,R) and by similar method in Theorem 4.1
in [27] and the definition of Gâteaux derivative, one can get

⟨𝐼𝜇,𝜃 (𝑢) , 𝜑⟩ = (𝑎 + 𝑏∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡)𝜃−1

⋅ ∫
R
−∞𝐷𝛼

𝑡 𝑢 (𝑡) ⋅ −∞𝐷𝛼
𝑡 𝜑 (𝑡) 𝑑𝑡

+ ∫
R

𝜇 (𝑡) 𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡
− ∫

R

𝑓 (𝑡, 𝑢 (𝑡)) 𝜑 (𝑡) 𝑑𝑡,
∀𝑢, 𝜑 ∈ 𝑋𝛼

𝜇.

(37)

Lemma 11. Assume that (V) and (F1)–(F3) hold. Then 𝐼𝜇,𝜃
satisfies the (PS) condition.

Proof. Let {𝑢𝑛}𝑛∈N ⊂ 𝑋𝛼
𝜇 be a sequence such that {𝐼𝜇,𝜃(𝑢𝑛)}𝑛∈N

is bounded and 𝐼𝜇,𝜃(𝑢𝑛) → 0 as 𝑛 → ∞. Then there exits
𝐷 > 0 such that |⟨𝐼𝜇,𝜃(𝑢𝑛), 𝑢𝑛⟩| ≤ 𝐷‖𝑢‖𝑋𝛼𝜇 and |𝐼𝜇,𝜃(𝑢𝑛)| ≤ 𝐷.
So, by (F3), (23), and the fact that 𝜆 > 2𝜃 > 1, we get

𝜆𝐷 + 𝐷 ‖𝑢‖𝑋𝛼𝜇 ≥ 𝜆𝐼𝜇,𝜃 (𝑢𝑛) − ⟨𝐼𝜇,𝜃 (𝑢𝑛) , 𝑢𝑛⟩
= 𝜆2𝑏𝜃 (𝑎 + 𝑏∫

R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡)𝜃 + 𝜆2

⋅ ∫
R

𝜇𝑉 (𝑡) 𝑢𝑛 (𝑡)2 𝑑𝑡 − 𝜆∫
R

𝐹 (𝑡, 𝑢𝑛 (𝑡)) 𝑑𝑡
− (𝑎 + 𝑏∫

R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡)𝜃−1

⋅ ∫
R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡 − ∫

R

𝜇𝑉 (𝑡) 𝑢𝑛 (𝑡)2 𝑑𝑡
+ ∫

R

𝑓 (𝑡, 𝑢𝑛 (𝑡)) 𝑢𝑛 (𝑡) 𝑑𝑡
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= 𝑎𝜆2𝑏𝜃 (𝑎 + 𝑏∫
R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡)𝜃−1

+ 𝜆 − 2𝜃2𝜃 (𝑎 + 𝑏∫
R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡)𝜃−1

⋅ ∫
R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡 + 𝜆 − 22

⋅ ∫
R

𝜇𝑉 (𝑡) 𝑢𝑛 (𝑡)2 𝑑𝑡
+ ∫

R

(𝑓 (𝑡, 𝑢𝑛 (𝑡)) 𝑢𝑛 (𝑡) − 𝜆𝐹 (𝑡, 𝑢𝑛 (𝑡))) 𝑑𝑡
≥ 𝜆 − 2𝜃2𝜃 𝑎𝜃−1 ∫

R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡 + 𝜆 − 22

⋅ ∫
R

𝜇𝑉 (𝑡) 𝑢𝑛 (𝑡)2 𝑑𝑡 ≥ 𝜆 − 2𝜃2𝜃 ‖𝑢‖2𝑋𝛼𝜇 .
(38)

Hence, {𝑢𝑛}𝑛∈N is bounded in𝑋𝛼
𝜇.

So, passing onto subsequence if necessary, thanks to
Lemma 3, we have

𝑢𝑛 ⇀ 𝑢, weakly in 𝑋𝛼
𝜇 ,

𝑢𝑛 → 𝑢, strongly a.e. in R,
𝑢𝑛 → 𝑢,

strongly a.e. in 𝐿𝑠 (R𝑁) , 2 ≤ 𝑠 < +∞,
(39)

∫
R

 −∞𝐷𝛼
𝑡 𝑢𝑛 (𝑡)2 𝑑𝑡 → 𝜌1 ≥ 0,

∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡 → 𝜌2 ≥ 0.
(40)

We will prove that

∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡 = 𝜌1,

∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑥 = 𝜌2.
(41)

Let 𝜑 ∈ 𝑋𝛼
𝜇 be fixed and denote by 𝐵𝜑 the linear functional

on𝑋𝛼
𝜇 defined by

𝐵𝜑 (V) fl ∫
R
−∞𝐷𝛼

𝑡 𝜑 (𝑡) ⋅ −∞𝐷𝛼
𝑡 V (𝑡) 𝑑𝑡, (42)

and set

Δ 𝛼 (𝑢) fl ∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡, (43)

for all V ∈ 𝑋𝛼
𝜇. In view of the Hölder inequality and definition

of 𝐵𝜑, we have
⟨𝐼𝜇,𝜃 (𝑢𝑛) − 𝐼𝜇,𝜃 (𝑢) , 𝑢𝑛 − 𝑢⟩ = (𝑎 + 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1

⋅ 𝐵𝑢𝑛 (𝑢𝑛 − 𝑢) − (𝑎 + 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1 𝐵𝑢 (𝑢𝑛 − 𝑢)
+ ∫

R

𝜇𝑉 (𝑡) (𝑢𝑛 − 𝑢) (𝑢𝑛 − 𝑢) 𝑑𝑡
− ∫

R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡 ≥ (𝑎
+ 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1 Δ 𝛼 (𝑢𝑛) − (𝑎 + 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1
⋅ (Δ 𝛼 (𝑢𝑛))(𝜃−1)/2 (Δ 𝛼 (𝑢𝑛))1/2 + (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1
⋅ Δ 𝛼 (𝑢) − (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2
⋅ (Δ 𝛼 (𝑢𝑛))1/2 + ∫

R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡
− (∫

R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2 (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2

+ ∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡 − (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2

⋅ (∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2

− ∫
R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡 = (𝑎
+ 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1 (Δ 𝛼 (𝑢𝑛))(𝜃−1)/2 [(Δ 𝛼 (𝑢𝑛))1/2
− (Δ 𝛼 (𝑢))1/2] + (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2
⋅ [(Δ 𝛼 (𝑢))1/2 − (Δ 𝛼 (𝑢𝑛))1/2]
+ (∫

R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2 [(∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2

− (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2] + (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2

⋅ [(∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2

− (∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2]
− ∫

R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡
= [(Δ 𝛼 (𝑢𝑛))1/2 − (Δ 𝛼 (𝑢))1/2]
⋅ [(𝑎 + 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1 (Δ 𝛼 (𝑢𝑛))(𝜃−1)/2
− (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2]
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+ [(∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2

− (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2]2

− ∫
R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡.
(44)

Since 𝑢𝑛 ⇀ 𝑢 in 𝑋𝛼
𝜇 and 𝐼𝜇,𝜃(𝑢𝑛) → 0 as 𝑛 → ∞ in (𝑋𝛼

𝜇)∗,
therefore ⟨𝐼𝜇,𝜃(𝑢𝑛) − 𝐼𝜇,𝜃(𝑢), 𝑢𝑛 − 𝑢⟩ → 0 as 𝑛 → ∞. Now,
using (F1) and Hölder inequality, we obtain

∫
R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡
≤ ∫

R

𝑐0 (
𝑢𝑛 + |𝑢|) + 𝑙∑

𝑗=1

𝑐𝑗 (𝑢𝑛𝑞𝑗−1 + |𝑢|𝑞𝑗−1)


⋅ 𝑢𝑛 − 𝑢 𝑑𝑥 ≤ 𝑐0 (𝑢𝑛𝐿2(R) + ‖𝑢‖𝐿2(R)) 𝑢𝑛
− 𝑢𝐿2(R) +

𝑙∑
𝑗=1

𝑐𝑗 (𝑢𝑛𝑞𝑗−1𝐿
𝑞𝑗 (R)

+ 𝑢𝑛𝑞𝑗−1𝐿
𝑞𝑗 (R)

)
⋅ 𝑢𝑛 − 𝑢𝐿𝑞𝑗 (R) ,

(45)

which, in view of (39), yields

lim
𝑛→∞

∫
R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡 = 0. (46)

Since 𝑢𝑛 → 𝑢 a.e. in R, it follows by Fatou’s lemma that

Δ 𝛼 (𝑢) ≤ lim inf
𝑛→∞

Δ 𝛼 (𝑢𝑛) = 𝜌1,
∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡 ≤ lim inf
𝑛→∞

∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡 = 𝜌2. (47)

Noting that Π(𝑠) = (𝑎 + 𝑏𝑠)𝜃−1𝑠(𝜃−1)/2 is a nondecreasing
function for 𝑠 ≥ 0, we get

[(𝜌1)1/2 − (Δ 𝛼 (𝑢))1/2] [(𝑎 + 𝑏𝜌1)𝜃−1 (𝜌1)(𝜃−1)/2
− (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2] ,

[(𝜌2)1/2 − (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2]2 ≥ 0.
(48)

Now, in view of ⟨𝐼𝜇,𝜃(𝑢𝑛) − 𝐼𝜇,𝜃(𝑢), 𝑢𝑛 − 𝑢⟩ → 0 as 𝑛 → ∞,
(46), and (47), one has

0 ≥ lim inf
𝑛→∞

{[(Δ 𝛼 (𝑢𝑛))1/2 − (Δ 𝛼 (𝑢))1/2]
⋅ [(𝑎 + 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1 (Δ 𝛼 (𝑢𝑛))(𝜃−1)/2
− (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2]
+ [(∫

R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2

− (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2]2

− ∫
R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡}
≥ lim
𝑛→∞

{[(Δ 𝛼 (𝑢𝑛))1/2 − (Δ 𝛼 (𝑢))1/2]
⋅ [(𝑎 + 𝑏Δ 𝛼 (𝑢𝑛))𝜃−1 (Δ 𝛼 (𝑢𝑛))(𝜃−1)/2
− (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2]}
+ lim
𝑛→∞

[(∫
R

𝜇𝑉 (𝑡) 𝑢𝑛2 𝑑𝑡)1/2

− (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2]2

− lim
𝑛→∞

{∫
R

(𝑓 (𝑡, 𝑢𝑛) − 𝑓 (𝑡, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑡}
≥ [(𝜌1)1/2 − (Δ 𝛼 (𝑢))1/2] [(𝑎 + 𝑏𝜌1)𝜃−1 (𝜌1)(𝜃−1)/2

− (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃−1 (Δ 𝛼 (𝑢))(𝜃−1)/2] + [(𝜌2)1/2

− (∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)1/2]2 .

(49)

Then, from (48)-(49), we get

Δ 𝛼 (𝑢) = ∫
R

 −∞𝐷𝛼
𝑡 𝑢 (𝑡)2 𝑑𝑡 = 𝜌1,

∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡 = 𝜌2.
(50)

Hence, we obtain ‖𝑢𝑛‖𝑋𝛼𝜇 → ‖𝑢‖𝑋𝛼𝜇 . As 𝑋𝛼
𝜇 is a reflexive

Banach space (see Lemma 2), it is isomorphic to a locally
uniformly convex space. So the weak convergence and norm
convergence imply strong convergence. This completes the
proof.
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Let {𝑒𝑗} be a total orthonormal basis of 𝐿2(R) and define𝑋𝑗 = R𝑒𝑗, 𝑗 ∈ N,

𝑌𝑘 = ⊕𝑘𝑗=1𝑋𝑗,
𝑍𝑘 = ⊕∞𝑗=𝑘+1𝑋𝑗,

𝑘 ∈ N.
(51)

Lemma 12. Assume that (V1) holds. Then, for 2 < 𝑝 < +∞,

𝛽𝑘 fl sup
𝑢∈𝑍𝑘 ,‖𝑢‖𝑋𝛼𝜇=1

‖𝑢‖𝐿𝑝(R) → 0, 𝑘 → ∞. (52)

Proof. The proof is similar to that of Lemma 3.8 in [28]. So it
is omitted.

In view of Lemma 12, we can choose an integer 𝑘 ≥ 1 such
that

∫
R
|𝑢|2 𝑑𝑡

≤ 12𝑐0 (∫
R

𝑎 ( −∞𝐷𝛼
𝑡 𝑢 (t)2) 𝑑𝑡 + ∫

R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡)
∀𝑢 ∈ 𝑍𝑚 ∩ 𝑋𝛼

𝜇,
(53)

where 𝑐1 is a constant given in condition (F1). Let

R (𝑡) = {{{
1, |𝑡| > 𝑟,
0, |𝑡| ≤ 𝑟, (54)

and set 𝑌 = {(1 − R)𝑢 : 𝑢 ∈ 𝑋𝛼
𝜇, (1 − R)𝑢 ∈ 𝑌𝑘} and 𝑍 ={(1 −R)𝑢 : 𝑢 ∈ 𝑋𝛼

𝜇, (1 −R)𝑢 ∈ 𝑍𝑘} + {RV : V ∈ 𝑋𝛼
𝜇}. Hence𝑌 and 𝑍 are subspaces of𝑋𝛼

𝜇, and𝑋𝛼
𝜇 = 𝑌 ⊕ 𝑍.

Lemma 13. Suppose that (V1), (V2), and (F1) are satisfied.
Then there exist constants , 𝛽 > 0 such that 𝐼𝜇,𝜃|𝜕𝐵∩𝑍 ≥ 𝛼.
Proof. In view of (V2), (53), and definition of the space 𝑍, we
have

‖𝑢‖2𝐿2(R) = ∫
|𝑡|<𝑟

|𝑢 (𝑡)|2 𝑑𝑡 + ∫
|𝑡|≥𝑟

|𝑢 (𝑡)|2 𝑑𝑡
≤ 12𝑐0 ‖𝑢‖2𝑋𝛼𝜇

+ 1𝜇𝜔 ∫
{𝑡∈R,𝑉(𝑡)>𝜔}

𝜇𝑉 (𝑡) |𝑢 (𝑡)|2 𝑑𝑡
≤ 12𝑐0 ‖𝑢‖2𝑋𝛼𝜇 + 1𝜇𝜔 ‖𝑢‖2𝑋𝛼𝜇 ∀𝑢 ∈ 𝑍.

(55)

Therefore, from (23), (55), and (F1) and for large enough value
of 𝜇, we get

𝐼𝜇,𝜃 (𝑢) = 12𝑏𝜃 (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃 + 12 ∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡
− ∫

R

𝐹 (𝑡, 𝑢) 𝑑𝑡
≥ 𝑎𝜃−12 Δ 𝛼 (𝑢) + 12 ∫

R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡
− ∫

R

𝐹 (𝑡, 𝑢) 𝑑𝑡
≥ 12 ‖𝑢‖2𝑋𝛼𝜇 − 𝑐02 ‖𝑢‖2𝐿2(R) −

𝑙∑
𝑗=1

𝑐𝑗𝑞𝑗 ‖𝑢‖
𝑞𝑗

𝐿
𝑞𝑗 (R)

≥ 14 ‖𝑢‖2𝑋𝛼𝜇 − 𝑐0𝜇𝜔2 ‖𝑢‖2𝑋𝛼𝜇 −
𝑙∑
𝑗=1

𝑐𝑗𝐷𝑞𝑗
𝑞𝑗𝑞𝑗 ‖𝑢‖𝑞𝑗𝑋𝛼𝜇

≥ 18 ‖𝑢‖2𝑋𝛼𝜇 −
𝑙∑
𝑗=1

𝑐𝑗𝐷𝑞𝑗
𝑞𝑗𝑞𝑗 ‖𝑢‖𝑞𝑗𝑋𝛼𝜇 .

(56)

Since 2 < 𝑞𝑗 (𝑗 = 1, . . . , 𝑙), there exist constants , 𝛽 > 0 such
that 𝐼𝜇,𝜃|𝜕𝐵∩𝑍 ≥ 𝛽.
Lemma 14. Assume that (F1) and (F4) are satisfied. Then,
for any finite dimensional subspace 𝑋𝛼

𝜇 ⊂ 𝑋𝛼
𝜇, there is 𝑅 =

𝑅(𝑋𝛼
𝜇) > 0 such that 𝐼𝜇,𝜃(𝑢) ≤ 0 on 𝑋𝛼

𝜇 \ 𝐵𝑅.
Proof. Since all the norms in the finite dimensional space are
equivalent, there exists a constant Υ such that

‖𝑢‖𝐿2𝜃(R) ≥ Υ ‖𝑢‖𝑋𝛼𝜇 , ∀𝑢 ∈ 𝑋𝛼
𝜇. (57)

From (F1) and (F4), for any 𝐿 > 𝑏𝜃−1/2𝜃Υ2𝜃𝑎𝜃(𝜃−1), there
exists a constant 𝐶𝐿 > 0 such that

𝐹 (𝑡, 𝑢) ≥ 𝐿 |𝑢|2𝜃 − 𝐶𝐿 |𝑢|2 , ∀ (𝑡, 𝑢) ∈ R ×R. (58)

Thus

𝐼𝜇,𝜃 (𝑢) = 12𝑏𝜃 (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃 + 12 ∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡
− ∫

R

𝐹 (𝑡, 𝑢) 𝑑𝑡
≤ 12𝑏𝜃 (𝑎 + 𝑏𝑎𝜃−1 ‖𝑢‖2𝑋𝛼𝜇)

𝜃 + 12 ‖𝑢‖2𝑋𝛼𝜇
+ 𝐶𝐿 ‖𝑢‖2𝐿2(R) − 𝐿 ‖𝑢‖2𝜃𝐿2𝜃(R)

≤ 12𝑏𝜃 (𝑎 + 𝑏𝑎𝜃−1 ‖𝑢‖2𝑋𝛼𝜇)
𝜃

+ (12 + 𝐶𝐿𝐷2
2) ‖𝑢‖2𝑋𝛼𝜇 − 𝐿Υ2𝜃 ‖𝑢‖2𝜃𝑋𝛼𝜇

(59)

for all 𝑢 ∈ 𝑋𝛼
𝜇. Consequently, there is a large 𝑅 > 0 such that

𝐼𝜇,𝜃(𝑢) ≤ 0 on𝑋𝛼
𝜇 \𝐵𝑅.Therefore, the proof is completed.



8 Discrete Dynamics in Nature and Society

4. Existence of Weak Solutions

In this section, we present our main results.

Theorem 15. Assume that (V1), (V2), (F1), (F3), (F4), and (F5)
hold. Then problem (1) has infinitely many nontrivial weak
solutions whenever 𝜇 > 0 is sufficiently large.

Proof. We know that 𝐼𝜇,𝜃(0) = 0, and it is even by (F5). Let𝑋 = 𝑋𝛼
𝜇 and 𝑌 and 𝑍 be as defined in Section 2. By Lemmas

11, 13, and 14, it follows that 𝐼𝜇,𝜃 satisfies all the condition of
the Theorem 10. Therefore, problem (1) has infinitely many
nontrivial weak solutions whenever 𝜇 > 0 is sufficiently large.

Theorem16. Assume that (V1), (V2), (F1), (F2), (F3), and (F4)
hold.Then problem (1) has at least one nontrivial weak solution
when 𝜇 > 0.
Proof. We complete the proof in three steps.

Step 1. Clearly 𝐼𝜇,𝜃(0) = 0 and 𝐼𝜇,𝜃 ∈ 𝐶1(𝑋𝛼
𝜇,R) satisfies the

(PS) condition by Lemma 11.

Step 2. It will be shown that there exist constants , 𝛽 > 0 such
that 𝐼𝜇,𝜃 satisfies condition (i) ofTheorem 9. For any 𝜀 > 0, by
(F1) and (F2), there exists a constant 𝑐𝜀 > 0 such that

|𝐹 (𝑡, 𝑢)| ≤ 𝜖2 |𝑢|2 + 𝑙∑
𝑗=1

𝑐𝜀𝑗𝑞𝑗 |𝑢|
𝑞𝑗 . (60)

Thus, by (23) and (60), for small 𝜌 > 0, we get
𝐼𝜇,𝜃 (𝑢) = 12𝑏𝜃 (𝑎 + 𝑏Δ 𝛼 (𝑢))𝜃 + 12 ∫

R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡
− ∫

R

𝐹 (𝑡, 𝑢) 𝑑𝑡
≥ 𝑎𝜃−12 Δ 𝛼 (𝑢) + 12 ∫

R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡
− ∫

R

𝐹 (𝑡, 𝑢) 𝑑𝑡
≥ 12 (‖𝑢‖2𝑋𝛼𝜇 − 𝜀𝐷2

2 ‖𝑢‖2𝑋𝛼𝜇) − 𝑙∑
𝑗=1

𝑐𝜀𝑗𝑞𝑗𝐷
𝑞𝑗
𝑞𝑗 ‖𝑢‖𝑞𝑗𝑋𝛼𝜇

≥ 18 (1 − 𝜀𝐷2
2) 2,

(61)

for all 𝑢 ∈ 𝐵, where 𝐵 = {𝑢 ∈ 𝑋𝛼
𝜇 : ‖𝑢‖𝑋𝛼𝜇 < }. So it suffices

to choose 𝜀 = 1/2𝐷2
2 so that

𝐼𝜇,𝜃𝜕𝐵 ≥ 1162 fl 𝛽 > 0. (62)

Step 3. It remains to prove that there exists an 𝑒 ∈ 𝑋𝛼
𝜇 such

that ‖𝑢‖𝑋𝛼𝜇 >  and 𝐼𝜇,𝜃(𝑒) ≤ 0, where 𝜌 is defined in Step 2.
Let us consider

𝐼𝜇,𝜃 (𝜎𝑢) = 12𝑏𝜃 (𝑎 + 𝑏𝜎2Δ 𝛼 (𝑢))𝜃

+ 𝜎22 ∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡 − ∫
R

𝐹 (𝑡, 𝜎𝑢) 𝑑𝑡,
(63)

for all 𝜎 ∈ R. Take 0 ̸= 𝑢 ∈ 𝑋𝛼
𝜇. By (F1) and (F4), for any

𝜅 > 𝑏𝜃−1(Δ 𝛼(𝑢))𝜃/2𝜃 ∫
R
|𝑢|2𝜃𝑑𝑡, there is a constant 𝐶𝜅 > 0

such that

𝐹 (𝑡, 𝑢) ≥ 𝜅 |𝑢|2𝜃 − 𝐶𝜅 |𝑢|2 . (64)

So we have

𝐼𝜇,𝜃 (𝜎𝑢) ≤ 12𝑏𝜃 (𝑎 + 𝑏𝜎2Δ 𝛼 (𝑢))𝜃

+ 𝜎22 ∫
R

𝜇𝑉 (𝑡) |𝑢|2 𝑑𝑡 + 𝐶𝜅𝜎2 ∫
R
|𝑢|2 𝑑𝑡

− 𝜅𝜎2𝜃 ∫
R
|𝑢|2𝜃 𝑑𝑡 → −∞,

(65)

as 𝜎 → +∞. Thus, there is a point 𝑒 ∈ 𝑋𝛼
𝜇 \ 𝐵 such that𝐼𝜇,𝜃(𝑒) ≤ 0. By Theorem 9, 𝐼𝜇,𝜃 possesses a critical value 𝑐 ≥𝛼 > 0 given by

𝑐 = inf
𝛾∈Γ

max
𝑠∈[0,1]

𝐼𝜇,𝜃 (𝛾 (𝑠)) , (66)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝑋) : 𝛾 (0) = 0, 𝛾 (1) = 𝑒} . (67)

Hence there is 𝑢 ∈ 𝑋𝛼
𝜇 such that 𝐼𝜇,𝜃(𝑢) = 𝑐 and 𝐼𝜇,𝜃(𝑢) = 0;

that is, problem (1) has a nontrivial weak solution in𝑋𝛼
𝜇.

Theorem 17. Assume that (V1), (V3), (F5), (F6), and (F7)
hold. Then problem (1) has infinitely many nontrivial weak
solutions for 𝜇 > 0.
Proof. One can obtain the proof by employing the method of
proof for Theorem 15 and using Lemma 7.
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