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In reality, some computers have specific security classification. For the sake of safety and cost, the security level of computers will
be upgraded with increasing of threats in networks. Here we assume that there exists a threshold value which determines when
countermeasures should be taken to level up the security of a fraction of computers with low security level. And in some specific
realistic environments the propagation network can be regarded as fully interconnected. Inspired by these facts, this paper presents
a novel computer virus dynamics model considering the impact brought by security classification in full interconnection network.
By using the theory of dynamic stability, the existence of equilibria and stability conditions is analysed and proved. And the above
optimal threshold value is given analytically. Then, some numerical experiments are made to justify the model. Besides, some
discussions and antivirus measures are given.

1. Introduction

With the rapid development of the Internet, the spread
of computer virus has brought a lot of potential safety
problems, which not only caused huge waste to the network
resources but also harmed the interests of individuals and
the masses. The traditional way of antivirus is constantly
updating the virus library of antivirus software. But it is
a passive mechanism to prevent viruses. In this context,
the macroscopical study of computer virus propagation is
regarded as a very important approach to antivirus and has
received more and more attention from scholars.

In 1991, Kephart and White firstly used the model of
biological infectious virus to study the spread of computer
viruses [1]. Since then, a lot of dynamical models of computer
virus have been presented. These models can be simply
divided into two broad categories: homogeneous models and
heterogeneous models according to according to whether the
network is fully connected or not.

In recent years, more and more scholars have begun to
study heterogeneous models. Kjaergaard and his partners

followed the time evolution of information propagation
through communication networks by using the susceptible-
infected (SI) model with empirical data on contact sequences
[2]. Castellano and Pastor-Satorras studied the threshold of
epidemic models in quenched networks with degree distri-
bution given by a power-law for the susceptible-infected-
susceptible (SIS) model [3]. Zhu et al. investigated a new
epidemic SIS model with nonlinear infectivity, as well as
birth and death of nodes and edges [4]. Taking into account
the power-law degree distribution of the Internet, Yang et
al. proposed a novel epidemic model of computer viruses
and presented the spreading threshold for the model [5].
L.-X. Yang and X. Yang proposed an epidemic model of
computer viruses over a reduced scale-free network [6].
Yang and his partners proposed a node-based susceptible-
latent-breaking-susceptible (SLBS) model which addresses
the impact of the structure of the viral propagation network
on the viral prevalence [7]. To understand the impact of
available information in the control of malicious network
epidemics, Mishra and three others proposed a 1-𝑛-𝑛-1 type
differential epidemicmodel, where the differentiability allows
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a symptom based classification [8]. All these models assume
that the spread of viruses can only be through the topological
neighbors.

In fact, a lot of viruses can propagate without dependence
on the topology, such as Code Red (2001), Slammer (2003),
Blaster (2003), Witty (2004), and Conficker (2009). By
probing the entire IPv4 space or localized IP addresses, these
viruses can infect an arbitrary vulnerable computer. In this
condition, the propagation network can be regarded as fully
connected. Besides, there are still some fully interconnected
networks, such as virtual cluster in cloud [9–12]. So the
study of homogeneous models is also an important branch
of computer virus dynamical models. A portion of infected
external computers could enter the Internet and removable
storage media could carry viruses, based on the two facts.
Gan et al. established a series of dynamical models [13–16].
Amador and Artalejo investigated the dynamics of computer
virus spreading by considering a stochastic SIRS model
where immune computers send warning signals to reduce
the propagation of the virus among the rest of computers
in the network [17]. Liu and Zhong presented and analyzed
an SDIRS model describing the propagation of web malware
based on the assumption of homogeneity [18]. Yuan and three
others presented a nonlinear force of infection function for e-
SEIR model to study the crowding and psychological effects
in network virus prevalence [19].

In order to protect the security and stability of informa-
tion systems, the concept of information security classified
protection is proposed and has been a basic strategy of
construction of national information. But to our knowledge,
nearly all previous models describing the spread of computer
viruses ignore the impacts of security classifications. In order
to study how these factors affect the spread of computer
viruses on the Internet, this paper proposes a novel computer
virus propagation model. A thorough analysis of this model
shows that some equilibria existed and are globally asymptot-
ically stable in a specific situation. Besides, some simulation
experiments are performed to examine the conclusion got
from this model. In the end, some effective strategies for
controlling virus spreading are recommended.

The subsequent materials are organized in this fashion:
The idea of modeling is introduced in Section 2. The new
model is established in Section 3. The analysis of four
equilibria is addressed in Section 4. The local and global
stabilities of these equilibria are investigated in Sections 5 and
6, respectively. Simulation experiments and some discussions
are presented in Section 7. Finally, this work is outlined in
Section 8.

2. Idea of Modeling

In a security classification network, blindly increasing the
security level of computer will result in bothwaste of resource
and increase of cost. Therefore, reinforcing the security level
of computer must be targeted. About security classification
of computer, the influential criteria are “Trusted Computer
System Evaluation Criteria (TcsEC)” issued by United States
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Figure 1: Flow diagram of upgrading.

Department of Defense [20]. By using these criteria, comput-
ers in the network can be divided into four divisions. From
high to low, they are Levels A, B, C, and D, respectively.

Low Security Level: Divisions D and C. In this level, it is
reserved for those systems that have been evaluated but that
fail to meet the requirements for a higher evaluation class.
Classes in this level provide for discretionary (need-to-know)
protection and it can only provide a review of protection.

High Security Level: Divisions B and A. The security-relevant
sections of a systemarementioned throughout this document
as the TrustedComputing Base (TCB) [21]. Computers in this
level must carry the sensitivity labels with most data struc-
tures in the system and the system developer should provide
the security policy model based on TCB. By using formal
security verification methods, this level requires that each
operation in the system must have a formal documentation
and can only be made by the administrator.

Obviously, computers with low security level are more
likely to be infected by virus. This is the first breakthrough
point for modeling.

In the networkwith security classification, administrators
usually do not take any measures to upgrade the computers
with low security level if there are only few threats for the sake
of cost. With the increase of the infected computers number
in the network, the administrators will upgrade the security
level of computers ultimately. Here we assume that there
exists a threshold value. If the number of infected computers
is above the threshold value, some countermeasures will be
taken to level up the security of a fraction of computers with
low security level. Further, assume that the probability of
taking upgrading measures for one uninfected computer is
proportional to the number of infected computers. The flow
diagram in Figure 1 can briefly express these operations. How
the threshold value and the fraction of upgraded computers
affect the propagation of computer virus is the concern in this
paper.
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3. Model Formulation

According to the situation of computer virus infection and
the level of computer security, all computers in the network
are divided into three compartments.

(a) 𝑆𝑙-compartment: the set of uninfected or susceptible
computers in low security level

(b) 𝑆ℎ-compartment: the set of uninfected or susceptible
computers in high security level

(c) 𝐼-compartment: the set of infected computers

For the modeling purpose, a series of parameters are intro-
duced and some assumptions are made.

(1) One can assume that the average probabilities per
unit time of 𝑆𝑙 and 𝑆ℎ computers connecting to the
network are 𝑏𝑙 and 𝑏ℎ, respectively.

(2) Every computer in the system is got out for some
reasons with the average probability per unit time 𝜇,
where 𝜇 is positive constant.

(3) Due to possible contact with infected computers in
the network, every 𝑆𝑙 and 𝑆ℎ computer is infected
with the average probabilities 𝛽𝑙 and 𝛽ℎ per unit time,
respectively, where𝛽𝑙 and𝛽ℎ are positive constant and𝛽𝑙 > 𝛽ℎ.

(4) Assume that one 𝐼 computer becomes an 𝑆𝑙 computer
(or an 𝑆ℎ computer) with the average probability per
unit time 𝛾𝑙 (or 𝛾ℎ), where 𝛾𝑙, 𝛾ℎ are positive constants.

(5) As mentioned in Section 2, the upgrading probability
of an 𝑆𝑙 computer is denoted by a piecewise function𝑓(𝐼). The expression of 𝑓(𝐼) is as follows:

𝑓 (𝐼) = {{{
0, if 0 ⩽ 𝐼 < 𝐼max,
𝛼𝐼, if 𝐼 ⩾ 𝐼max. (1)

𝐼max denotes the threshold value and 𝛼 denotes the a
fraction of upgrading computers.

Let 𝑆𝑙(𝑡), 𝑆ℎ(𝑡), and 𝐼(𝑡) denote, at time 𝑡, the average numbers
of 𝑆𝑙-, 𝑆ℎ-, and 𝐼-compartment computers, respectively. Let𝑁(𝑡) denote the total number of all computers in the system
at time 𝑡. Unless otherwise stated in the following content,
they will be abbreviated as𝑁, 𝑆𝑙, 𝑆ℎ, and 𝐼, respectively.Then,𝑆𝑙 + 𝑆ℎ + 𝐼 = 𝑁. The collection of the above parameters and
assumptions can be schematically depicted in Figure 2, from
which the dynamical model is formulated as the following
differential system:

̇𝑆𝑙 = 𝑏𝑙 + 𝛾𝑙𝐼 − 𝑓 (𝐼) 𝑆𝑙 − 𝛽𝑙𝑆𝑙𝐼 − 𝜇𝑆𝑙,
̇𝑆ℎ = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) 𝑆𝑙 − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ,
̇𝐼 = 𝛽𝑙𝑆𝑙𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼.

(2)
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Figure 2: Transition diagram of the new model.

Considering that 𝑆𝑙 + 𝑆ℎ + 𝐼 = 𝑁, system (2) can be reduced
to the following system:

𝑁̇ = 𝑏𝑙 + 𝑏ℎ − 𝜇𝑁,
̇𝑆ℎ = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) (𝑁 − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ,
̇𝐼 = 𝛽𝑙 (𝑁 − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼.

(3)

Solving the first equations of system (3), it is easy to obtain
lim𝑡→∞𝑁 = 𝑁∗ = (𝑏𝑙 + 𝑏ℎ)/𝜇. Therefore, system (3) can be
reduced to the following limiting system [22, 23]:

̇𝑆ℎ = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) (𝑁∗ − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ,
̇𝐼 = 𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼. (4)

The feasible region for system (4) is

Ω = {(𝑆ℎ, 𝐼) | 𝑆ℎ ⩾ 0, 𝐼 ⩾ 0, 0 ⩽ 𝑆ℎ + 𝐼 ⩽ 𝑁∗} , (5)

which is positively invariant.

4. Equilibria

In this section, all equilibria of system (4) are calculated. To
obtain all potential equilibria, system (4) can be written as

𝑏ℎ + 𝛾ℎ𝐼 − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ = 0,
𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼 = 0,

if 0 ⩽ 𝐼 < 𝐼max,
(6)

𝑏ℎ + 𝛾ℎ𝐼 + 𝛼𝐼 (𝑁∗ − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼 − 𝜇𝑆ℎ = 0,
𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼 − 𝜇𝐼 = 0,

if 𝐼 ⩾ 𝐼max.
(7)

From (6) the fact that there always exists a virus-free equilib-
rium can be got:

𝐸∗0 = (𝑆∗ℎ0 = 𝑏ℎ𝜇 , 𝐼∗0 = 0) , (8)

and the basic reproduction number is

𝑅0 = 𝛽𝑙𝑏𝑙 + 𝛽ℎ𝑏ℎ𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) . (9)
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Let

𝐶 = 𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) − 𝛽𝑙𝑏𝑙 − 𝛽ℎ𝑏ℎ
= 𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) (1 − 𝑅0) , (10)

𝐴1 = 𝛽𝑙𝛽ℎ,
𝐵1 = 𝛽𝑙𝛽ℎ𝑁∗ − 𝛽𝑙𝛾ℎ − 𝛽𝑙𝜇 − 𝛽ℎ𝛾𝑙 − 𝛽ℎ𝜇,
Δ 1 = 𝐵21 − 4𝐴1𝐶,

(11)

𝐴2 = 𝛽𝑙𝛽ℎ + 𝛼𝛽ℎ,
𝐵2 = (𝛽𝑙𝛽ℎ + 𝛼𝛽ℎ)𝑁∗ − 𝛽𝑙𝛾ℎ − 𝛽𝑙𝜇 − 𝛽ℎ𝛾𝑙 − 𝛽ℎ𝜇

− 𝛼 (𝛾𝑙 + 𝛾ℎ + 𝜇) ,
Δ 2 = 𝐵22 − 4𝐴2𝐶.

(12)

The quadratic equation of 𝐼 can be got from system (6) and
(7) as follows:

𝐴1𝐼2 − 𝐵1𝐼 + 𝐶 = 0 if 0 ⩽ 𝐼 < 𝐼max, (13)

𝐴2𝐼2 − 𝐵2𝐼 + 𝐶 = 0, if 𝐼 ⩾ 𝐼max. (14)

Considering that 𝐼∗1 = (𝐵1+√Δ 1)/2𝐴1, 𝐼∗2 = (𝐵1−√Δ 1)/2𝐴1
are the roots of (13) and 𝐼∗3 = (𝐵2 + √Δ 2)/2𝐴2, 𝐼∗4 = (𝐵2 −√Δ 2)/2𝐴2 are the roots of (14) (𝐼∗1 ̸= 𝐼∗3 ), the solution of (6)
and (7) can be got as follows:

𝐼∗1 = 𝐵1 + √Δ 12𝐴1 ,

𝑆∗ℎ1 = 𝑏ℎ + 𝛾ℎ𝐼
∗
1𝜇 + 𝛽ℎ𝐼∗1 ,

𝐼∗2 = 𝐵1 − √Δ 12𝐴1 ,

𝑆∗ℎ2 = 𝑏ℎ + 𝛾ℎ𝐼
∗
2𝜇 + 𝛽ℎ𝐼∗2 ,

𝐼∗3 = 𝐵2 + √Δ 22𝐴2 ,

𝑆∗ℎ3 = 𝑏ℎ + 𝛾ℎ𝐼
∗
3 + 𝛼𝐼∗3 (𝑁 − 𝐼∗3 )𝜇 + 𝛽ℎ𝐼∗3 ,

𝐼∗4 = 𝐵2 − √Δ 22𝐴2 ,

𝑆∗ℎ4 = 𝑏ℎ + 𝛾ℎ𝐼
∗
4 + 𝛼𝐼∗4 (𝑁 − 𝐼∗4 )𝜇 + 𝛽ℎ𝐼∗4 .

(15)

(13) and (14) can be deduced as follows:

𝐴1 (𝐼∗21 − 𝐼∗23 ) − 𝐵1 (𝐼∗1 − 𝐼∗3 ) − 𝛼𝛽ℎ𝐼∗23
+ (𝐵2 − 𝐵1) 𝐼∗3 = 0,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝐼∗3 [𝛼𝛽ℎ𝐼∗3 − (𝐵2 − 𝐵1)] ,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝐼∗3 [𝛼𝛽ℎ𝐼∗3 − 𝛼𝛽ℎ𝑁∗ + 𝛼 (𝛾𝑙 + 𝛾ℎ + 𝜇)] ,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝛼𝐼∗3 [𝛽ℎ𝐼∗3 − 𝛽ℎ𝑁∗ + 𝛽𝑙 (𝑁∗ − 𝐼∗3 − 𝑆∗ℎ3)] ,

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1]
= 𝛼𝐼∗3 (𝛽𝑙 − 𝛽ℎ) (𝑁∗ − 𝐼∗3 − 𝑆∗ℎ3) ,

(16)

because of 𝛽𝑙 > 𝛽ℎ and 𝐼∗3 +𝑆∗ℎ3 ⩽ 𝑁∗, 𝛼𝐼∗3 (𝛽𝑙−𝛽ℎ)(𝑁∗−𝐼∗3 −𝑆∗ℎ3) ⩾ 0. Then

(𝐼∗1 − 𝐼∗3 ) [𝐴1 (𝐼∗1 + 𝐼∗3 ) − 𝐵1] ⩾ 0. (17)

Assuming 𝐼∗1 < 𝐼∗3 , then 𝐴1(𝐼∗1 + 𝐼∗3 ) − 𝐵1 > 2𝐴1𝐼∗1 − 𝐵1 =√Δ 1 > 0 and (𝐼∗1 −𝐼∗3 )[𝐴1(𝐼∗1 +𝐼∗3 )−𝐵1] < 0, which contradicts
with (17). So 𝐼∗1 > 𝐼∗3 . In the same way, one can get

𝐼∗2 < 𝐼∗4 < 𝐼∗3 < 𝐼∗1 . (18)

Theorem 1. There are only two viral equilibria 𝐸∗1 = (𝑆∗ℎ1,𝐼∗1 ) (or 𝐸∗3 = (𝑆∗ℎ3, 𝐼∗3 )) and 𝐸∗2 = (𝑆∗ℎ2, 𝐼∗2 ) (or 𝐸∗4 = (𝑆∗ℎ4, 𝐼∗4 ))
in this model if

(1) 𝑅0 < 1;
(2) 𝐵1 > 0, Δ 1 > 0 (or 𝐵2 > 0, Δ 2 > 0);
(3) 𝐼∗1 > 𝐼max (or 𝐼∗2 > 𝐼max).

Proof. System (13) has two real roots if Δ 1 > 0. From (10) one
can get that 𝐶 > 0 if 𝑅0 < 1; then 𝐶/𝐴1 > 0. So the fact
that 𝐼∗1 > 0, 𝐼∗2 > 0 if 𝐵1 > 0 can be got (in the same way,
the fact that 𝐼∗1 > 0, 𝐼∗2 > 0 can be got if 𝐵2 > 0, Δ 2 > 0)
and there are only two viral equilibria 𝐸∗1 , 𝐸∗2 (or 𝐸∗3 , 𝐸∗4 ) if𝐼∗1 > 𝐼max (or 𝐼∗2 > 𝐼max) from (18).

Theorem 2. System (4) has only three viral equilibria 𝐸∗2 =(𝑆∗ℎ2, 𝐼∗2 ), 𝐸∗3 = (𝑆∗ℎ3, 𝐼∗3 ), and 𝐸∗4 = (𝑆∗ℎ4, 𝐼∗4 ) if
(1) 𝑅0 < 1;
(2) 𝐵1 > 0, Δ 1 > 0;
(3) 𝐵2 > 0, Δ 2 > 0;
(4) 𝐼∗2 < 𝐼max ⩽ 𝐼∗4 .

Proof. Like the proof of Theorem 1, it does not need to be
stated.
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Theorem 3. System (4) has only one viral equilibrium 𝐸∗1 =(𝑆∗ℎ1, 𝐼∗1 ) (or 𝐸∗3 = (𝑆∗ℎ3, 𝐼∗3 )) if
(1) 𝑅0 > 1;
(2) 𝐼∗1 < 𝐼max (or 𝐼∗3 ⩾ 𝐼max).

Proof. One can get 𝐶 < 0 if 𝑅0 > 1 and Δ 1 > 0, Δ 2 >0, 𝐶/𝐴1 < 0, 𝐶/𝐴2 < 0. So 𝐼∗1 > 0, 𝐼∗2 < 0 and 𝐼∗3 >0, 𝐼∗4 < 0. Then the fact that only 𝐸∗1 (or 𝐸∗3 ) existed if𝐼∗1 < 𝐼max (or 𝐼∗3 ⩾ 𝐼max) from (18) can be got.

5. The Local Stability Analysis

To examine the local stability of the equilibria of system (4),
its Jacobian matrices should be got as follows:

𝐽1 = ( −𝛽ℎ𝐼 − 𝜇 𝛾ℎ − 𝛽ℎ𝑆ℎ
−𝛽𝑙𝐼 + 𝛽ℎ𝐼 𝛽𝑙𝑁∗ − 𝛽𝑙𝑆ℎ − 2𝛽𝑙𝐼 + 𝛽ℎ𝑆ℎ − 𝛾𝑙 − 𝛾ℎ − 𝜇) ,

if 0 ⩽ 𝐼 < 𝐼max,
𝐽2
= (−𝛽ℎ𝐼 − 𝜇 − 𝛼𝐼 𝛾ℎ − 𝛽ℎ𝑆ℎ + 𝛼 (𝑁∗ − 𝑆ℎ − 2𝐼)

−𝛽𝑙𝐼 + 𝛽ℎ𝐼 𝛽𝑙𝑁∗ − 𝛽𝑙𝑆ℎ − 2𝛽𝑙𝐼 + 𝛽ℎ𝑆ℎ − 𝛾𝑙 − 𝛾ℎ − 𝜇) ,
if 𝐼 ⩾ 𝐼max.

(19)

Theorem 4. 𝐸∗0 is locally asymptotically stable if 𝑅0 < 1.
Proof. The associated characteristic equation of𝐸∗0 can be got
from 𝐽1 as follows:

(𝜆 + 𝜇) (𝜆 + 𝛾𝑙 + 𝛾ℎ + 𝜇 − 𝛽𝑙 𝑏𝑙𝜇 − 𝛽ℎ 𝑏ℎ𝜇 ) . (20)

Then

𝜆1 = −𝜇 < 0,
𝜆2 = −𝛾𝑙 − 𝛾ℎ − 𝜇 + 𝛽𝑙 𝑏𝑙𝜇 + 𝛽ℎ 𝑏ℎ𝜇
= (𝛾𝑙 + 𝛾ℎ + 𝜇) (𝑅0 − 1) .

(21)

Based on the Lyapunov theorem [24], only if 𝑅0 < 1 are all
eigenvalues of (17) negative. At this situation, 𝐸∗0 is locally
asymptotically stable.

Theorem 5. 𝐸∗1 (or 𝐸∗3 ) is locally asymptotically stable if
system (4) follows Theorem 1 or 2 or 3.

Proof. The associated characteristic equations of 𝐸∗1 can be
got from 𝐽1 as follows:

𝜆2 + 𝑘1𝜆 + 𝑘2 = 0, (22)

where

𝑘1 = 𝛽𝑙𝐼∗1 + 𝛽ℎ𝐼∗1 + 𝜇 > 0,
𝑘2 = 𝐼∗1 [𝛽𝑙 (𝛽ℎ𝐼∗1 + 𝜇) − (𝛽𝑙 − 𝛽ℎ) (𝛽ℎ𝑆∗ℎ1 − 𝛾ℎ)]
= 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇 − 𝛽𝑙𝛽ℎ𝑆∗ℎ1 + 𝛽𝑙𝛾ℎ + 𝛽22𝑆∗ℎ1
− 𝛽ℎ𝛾ℎ − 𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝛽ℎ𝑁∗ − 𝛽𝑙𝛽ℎ𝑁∗]
= 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ − 𝛽ℎ𝛾ℎ
+ 𝛽ℎ (𝛽𝑙𝑁∗ − 𝛽𝑙𝑆∗ℎ1 − 𝛽𝑙𝐼∗1 + 𝛽ℎ𝑆∗ℎ1) − 𝛽𝑙𝛽ℎ𝑁∗]
= 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ − 𝛽ℎ𝛾ℎ
+ 𝛽ℎ (𝛾𝑙 + 𝛾ℎ + 𝜇) − 𝛽𝑙𝛽ℎ𝑁∗] = 𝐼∗1 [2𝛽𝑙𝛽ℎ𝐼∗1 + 𝛽𝑙𝜇
+ 𝛽𝑙𝛾ℎ + 𝛽ℎ𝛾𝑙 + 𝛽ℎ𝜇 − 𝛽𝑙𝛽ℎ𝑁∗]
= 𝐼∗1 (2𝐴1𝐵1 + √Δ 12𝐴1 − 𝐵1) = 𝐼∗1√Δ 1 > 0.

(23)

The associated characteristic equations of 𝐸∗3 can be got from𝐽2 as follows:
𝜆2 + 𝑘3𝜆 + 𝑘4 = 0, (24)

where

𝑘3 = 𝛼𝐼∗3 + 𝛽𝑙𝐼∗3 + 𝛽ℎ𝐼∗3 + 𝜇 > 0,
𝑘4 = 𝐼∗3 [𝛽𝑙 (𝛼𝐼∗3 + 𝛽ℎ𝐼∗3 + 𝜇)
− (𝛽𝑙 − 𝛽ℎ) (𝛼𝑆∗ℎ3 + 2𝛼𝐼∗3 − 𝛼𝑁∗ + 𝛽ℎ𝑆∗ℎ3 − 𝛾ℎ)]
= 𝐼∗3 [2 (𝛽𝑙𝛽ℎ + 𝛽ℎ𝛼) 𝐼∗3
+ 𝛼 (𝛽𝑙𝑁∗ − 𝛽𝑙𝐼∗3 − 𝛽𝑙𝑆∗ℎ3 + 𝛽ℎ𝑆∗ℎ3)
+ 𝛽ℎ (𝛽𝑙𝑁∗ − 𝛽𝑙𝐼∗3 − 𝛽𝑙𝑆∗ℎ3 + 𝛽ℎ𝑆∗ℎ3) + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ
− 𝛽ℎ𝛾ℎ − 𝑁∗ (𝛽𝑙𝛽ℎ + 𝛽ℎ𝛼)] = 𝐼∗3 [2𝐴2𝐼∗3
+ 𝛼 (𝛾𝑙 + 𝛾ℎ + 𝜇) + 𝛽ℎ (𝛾𝑙 + 𝛾ℎ + 𝜇) + 𝛽𝑙𝜇 + 𝛽𝑙𝛾ℎ
− 𝛽ℎ𝛾ℎ − 𝑁∗ (𝛽𝑙𝛽ℎ + 𝛽ℎ𝛼)] = 𝐼∗3 [2𝐴2𝐼∗3 − 𝐵2]
= 𝐼∗3 [2𝐴2𝐵2 + √Δ 22𝐴2 − 𝐵2] = 𝐼∗3√Δ 2 > 0.

(25)

𝑘1 > 0, 𝑘2 > 0 (or 𝑘3 > 0, 𝑘4 > 0); the Hurwitz crite-
rion follows [24], so 𝐸∗1 (or 𝐸∗3 ) is locally asymptotically
stable.

6. The Global Stability Analysis

This sectionwill discuss the global stability of the equilibrium
of system (4). To get global stability, let us investigate the
following lemmas.

Lemma 6. For system (4), there is no periodic solution in the
interior of Ω.
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Figure 3: Trajectory figure and time plots of Example 1.

Proof. Let

𝐺 (𝑆ℎ, 𝐼) = 𝑏ℎ + 𝛾ℎ𝐼 + 𝑓 (𝐼) (𝑁∗ − 𝑆ℎ − 𝐼) − 𝛽ℎ𝑆ℎ𝐼− 𝜇𝑆ℎ,
𝐻 (𝑆ℎ, 𝐼) = 𝛽𝑙 (𝑁∗ − 𝑆ℎ − 𝐼) 𝐼 + 𝛽ℎ𝑆ℎ𝐼 − 𝛾𝑙𝐼 − 𝛾ℎ𝐼− 𝜇𝐼,
𝐵 (𝑆ℎ, 𝐼) = 1𝐼 ,

(26)

and then

𝜕 (𝐺𝐵)𝜕𝑆ℎ + 𝜕 (𝐻𝐵)𝜕𝐼 = −𝛽ℎ − 𝜇𝐼 − 𝛽𝑙 < 0,
if 0 ⩽ 𝐼 < 𝐼max,

𝜕 (𝐺𝐵)𝜕𝑆ℎ + 𝜕 (𝐻𝐵)𝜕𝐼 = −𝛽ℎ − 𝜇𝐼 − 𝛽𝑙 − 𝛼 < 0,
if 𝐼 ⩾ 𝐼max.

(27)

Thus, the claimed result follows from the Bendixson-Dulac
criterion [24].

Lemma 7. For system (4), there is no periodic solution that
passes through a point on 𝜕Ω, the boundary of Ω.
Proof. Consider an arbitrary point (𝑆ℎ, 𝐼), on the boundary ofΩ. From (5), 𝜕Ω consists of the following three possibilities:

(a) 𝑆ℎ = 0. Then ̇𝑆ℎ|(𝑆ℎ ,𝐼) = 𝑏ℎ + 𝛾ℎ𝐼 > 0, if 0 ⩽ 𝐼 < 𝐼max,
and ̇𝑆ℎ|(𝑆ℎ ,𝐼) = 𝑏ℎ + 𝛾ℎ𝐼 + 𝛼𝐼(𝑁∗ − 𝐼) > 0, if 𝐼max ⩽ 𝐼 ⩽𝑁∗.

Table 1: Related instructions.

N Not existing
E Only existing
EL Existing and locally asymptotically stable
EG Existing and globally asymptotically stable

(b) 𝐼 = 0, 0 ⩽ 𝑆ℎ ⩽ 𝑁∗. Then ̇𝐼|(𝑆ℎ,𝐼) = 0.
(c) 𝑆ℎ + 𝐼 = 𝑁∗. Then (𝑑(𝑆ℎ + 𝐼)/𝑑𝑡)|(𝑆ℎ ,𝐼) = −𝑏𝑙 − 𝛾𝑙𝐼 < 0.

In view of the orbit smoothness, combining the above
discussions can get the claimed result.

In view of Lemmas 6 and 7 and Theorems 3–5, the main
result of this section can be got as follows.

7. Numerical Examples and Discussions

In this section, some numerical examples are used to verify
the results obtained in the previous section.

Example 1. Suppose 𝛽𝑙 = 0.24, 𝛽ℎ = 0.08, 𝛾𝑙 = 0.146, 𝛾ℎ =0.003, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.005,
and 𝐼max = 0.38. In this situation, 𝑅0 < 1, 𝐼∗1 < 𝐼max. Some
trajectories of initial points are displayed in Figure 3(a) and
the time plots about two of them are shown in Figures 3(b)
and 3(c). In Figure 3(a), the blue dashed line dividesΩ intoΩ1
(above the blue dashed line) and Ω2 (under the blue dashed
line).The initial points inΩ1 are finally stable at 𝐸∗1 and inΩ2
are finally stable at 𝐸∗0 , which complies with the third rows of
Table 2. And the abbreviation notations of Table 2 are shown
in Table 1.
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Figure 4: Trajectory figure and time plots of Example 2.

Table 2: Main result of Section 6.

Conditions 𝐸∗0 𝐸∗1 𝐸∗2 𝐸∗3 𝐸∗4𝑅0 < 1 EG N N N N

𝑅0 < 1 𝐵1 > 1, 𝐵2 > 1, Δ 1 > 0, Δ 2 > 0
𝐼∗1 < 𝐼max EL EL E N N𝐼∗3 ⩾ 𝐼max > 𝐼∗2 EL N E EL E𝐼∗2 > 𝐼max EL N N EL E

𝑅0 > 1 𝐼∗1 < 𝐼max E EG E N N𝐼∗3 ⩾ 𝐼max E N N EG E

Example 2. Suppose 𝛽𝑙 = 0.24, 𝛽ℎ = 0.08, 𝛾𝑙 = 0.146, 𝛾ℎ =0.003, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.005,
and 𝐼max = 0.21. In this situation, 𝑅0 < 1, 𝐼∗3 > 𝐼max. Some
trajectories of initial points are displayed in Figure 4(a) and
the time plots about two of them are shown in Figures 4(b)
and 4(c). In Figure 4(a), the blue dashed line dividesΩ intoΩ1
(above the blue dashed line) and Ω2 (under the blue dashed
line). The initial points in Ω1 are finally stable at 𝐸∗3 and inΩ2 are finally stable at 𝐸∗0 , which complies with lines 4-5 of
Table 2.

Example 3. Suppose 𝛽𝑙 = 0.24, 𝛽ℎ = 0.08, 𝛾𝑙 = 0.146, 𝛾ℎ =0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.005, and𝐼max = 0.21. In this situation, 𝑅0 < 1 and there is only 𝐸∗0 in
the system. Some trajectories of initial points are displayed in
Figure 5(a) and the time plots about two of them are shown
in Figures 5(b) and 5(c).The initial points in are finally stable
at 𝐸∗0 , which complies with line 2 of Table 2.

Example 4. Suppose 𝛽𝑙 = 0.3, 𝛽ℎ = 0.09, 𝛾𝑙 = 0.056, 𝛾ℎ =0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.06,

and 𝐼max = 0.38. In this situation, 𝑅0 > 1, 𝐼∗1 < 𝐼max. Some
trajectories of initial points are displayed in Figure 6(a) and
the time plots about two of them are shown in Figures 6(b)
and 6(c). The initial points in are finally stable at 𝐸∗1 , which
complies with line 6 of Table 2.

Example 5. Suppose 𝛽𝑙 = 0.3, 𝛽ℎ = 0.09, 𝛾𝑙 = 0.056, 𝛾ℎ =0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003, 𝛼 = 0.06,
and 𝐼max = 0.2. In this situation, 𝑅0 > 1, 𝐼∗3 > 𝐼max. Some
trajectories of initial points are displayed in Figure 7(a) and
the time plots about two of them are shown in Figures 7(b)
and 7(c). The initial points in are finally stable at 𝐸∗3 , which
complies with the last row of Table 2.

By introducing random factors and model adaptive
behavior, a series of simulations run are used to approximate
closer to actual worm propagation due to the unavailability
of real-world data. Hosts (used IP addresses) here appear
as abstractions in the simulations. Instead of modeling
various operating systems and services, each host is simply
considered to be one of the following: susceptible nodes with
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Figure 5: Trajectory figure and time plots of Example 3.
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Figure 6: Trajectory figure and time plots of Example 4.

high security level, susceptible nodes with low security level,
and infected nodes. Here a complete network with initial
10000 nodes is applied for numerical evaluation. And we
focus on how the mechanisms of security classification and
intervention affect the propagation of network viruses. So we
simulate three scenarios for the spread of viruses: (1) non-SC

non-INTVIN scenario, (2) with SC non-INTVIN scenario,
and (3) with SC and INTVIN scenario (see Figure 8), where
SC and INTVIN are short for security classification and
intervention, respectively. And the parameters 𝐼max and 𝛼
determine when to intervene and the strength of interven-
tions, respectively. For evaluation purpose, the values of the
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Figure 7: Trajectory figure and time plots of Example 5.
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Figure 8: Time evolution of the infected nodes in different scenar-
ios.

model parameters are set as follows:𝛽𝑙 = 0.3, 𝛽ℎ = 0.09, 𝛾𝑙 =0.056, 𝛾ℎ = 0.043, 𝑏𝑙 = 0.0012, 𝑏ℎ = 0.0018, 𝜇 = 0.003,
and other parameters are shown in Figure 8. In general,
simulation results show that the intervention mechanism
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Figure 9: Influence of 𝐼max and 𝛼 on 𝐼final. 𝐼max and 𝐼final are the
proportions of infected nodes in all nodes. Moreover, 𝐼final is the
average of 100 values for 𝑡 > 10000. Here all other parameters are
the same as Figure 8.

proposed in this paper can be applied to curbing the spread of
virus effectively. Moreover, a large number of simulations are
conducted to study how the combination of 𝐼max and 𝛼 affects
the propagation scale (see Figure 9). Obviously, the earlier
(the lower 𝐼max) and stronger (the higher 𝛼) the intervention
is introduced, the fewer the nodes finally get infected. We
divide the parameter subspace {(𝛼, 𝐼max): 𝛼 > 0, 𝐼max > 0}
into two parts, numbered as A and B (as shown in Figure 9).
Simulation results lead the following conclusion.
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(1) If (𝛼, 𝐼max) ∈ 𝐴, the value of 𝐼final (defined in Figure 9)
only depends on the value of 𝛼. So in Figure 8 the
number of infected nodes in scenarios with 𝐼max =500 is the same as the onewith 𝐼max = 1000, where𝛼 =0.2, and it is higher than the one with 𝐼max = 500 and𝛼 = 0.6. More precisely, the value of 𝐼final decreases as𝛼 increasing.

(2) If (𝛼, 𝐼max) ∈ 𝐵, the value of 𝐼final only depends on the
value of 𝐼max (4). So in Figure 8 the number of infected
nodes in scenarios with 𝛼 = 0.2 is the same as the
one with 𝛼 = 0.6, where 𝐼max = 2000, and it is higher
than the one with 𝐼max = 1000 and 𝛼 = 0.6. Note
that 𝐼final does not always decrease with the increase
of 𝐼max, because the intervention is never involved for
large 𝐼max (see the dark black part for 𝐼max > 0.3 in
Figure 9).

Remark 6. The simulations here do not take into account
latency issues, hop-count, bandwidth limitations, and trans-
fer times or connectivity issues. Since the scale of simulated
network is quite small compared with the real Internet, all
parameters are assumed on that scale. But the scale factor can
also make the real-world more complex.

Table 2 suggests that, to eradicate viruses from the
Internet, one should take necessary actions to control the
systemparameters so that𝑅∗0 is well below 1 andnot let system
meet the lines 3–5 of Table 2. After simple calculations, the
following can be got:

𝜕𝑅0𝜕𝛽𝑙 =
𝑏𝑙𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝛽ℎ =
𝑏ℎ𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝑏1 =
𝛽1𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝑏ℎ =
𝛽ℎ𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇) > 0,

𝜕𝑅0𝜕𝜇 = − 𝛾𝑙 + 𝛾ℎ + 2𝜇𝜇2 (𝛾𝑙 + 𝛾ℎ + 𝜇)2 < 0,
𝜕𝑅0𝜕𝛾𝑙 = −

1
𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇)2 < 0,

𝜕𝑅0𝜕𝛾ℎ = −
1

𝜇 (𝛾𝑙 + 𝛾ℎ + 𝜇)2 < 0.

(28)

Thus, 𝑅0 is increasing with 𝛽𝑙, 𝛽ℎ, 𝑏𝑙, 𝑏ℎ and is decreasing with𝜇, 𝛾𝑙, 𝛾ℎ.
Based on the above discussions, an incomplete list of

effective measures for users to contain the virus prevalence
is presented below:

(1) Timely acquire the updated versions of the antivirus
software, so that the two infecting probabilities,𝛽𝑙 and

𝛽ℎ, are both reduced and the curing probabilities, 𝛾𝑙
and 𝛾ℎ, are enhanced.

(2) Do not connect computers to the Internet when
unnecessary, so that the recruitment rate, 𝜇, is low-
ered.

(3) For both cost and security, let the threshold value of
computer virus lead administrator to take measures
to upgrade the security level approaching the value of
stable infections in the stage of taking measures.

8. Conclusions

In this paper, we presented a novel intervention mechanism
to restrain the virus spreading under the framework of
security classification. The model reflects a realistic scenario
how the intervention is applied when the number of infected
nodes reaches the intervention threshold. Theoretical anal-
ysis and numerical evaluation are used to study how 𝐼max,𝛼 affect the propagation behaviors. The main results are
listed as follows: (1) The dynamic behaviors of computer
virus under security classification are different with common
circumstance. Obviously, much higher security computers
will lead to fewer infections. (2)The earlier and the stronger
the intervention is introduced, the fewer the nodes finally get
infected. (3) According to the brief parameter analysis, some
other effectivemeasures in reality are presented. Viewed from
a real-world perspective, in order to make better use of this
intervention mechanism, one of the most important things is
how to detect the exact number of infected nodes. Although
an in-depth discussion of this is outside this paper’s scope,
we are forced to point out that the measured value is below
the actual one. In this case, the actual value of intervention
threshold must be set below the theoretical one.

Our future work will be focused on studying such
intervention mechanism in heterogeneous networks, such as
small-world network and scale-free network.
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