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This study proposes a new vehicle type recognition method that combines global and local features via a two-stage classification.
To extract the continuous and complete global feature, an improved Canny edge detection algorithm with smooth filtering and
non-maxima suppression abilities is proposed. To extract the local feature from four partitioned key patches, a set of Gabor wavelet
kernels with five scales and eight orientations is introduced. Different from the single-stage classification, where all features are
incorporated into one classifier simultaneously, the proposed two-stage classification strategy leverages two types of features and
classifiers. In the first stage, the preliminary recognition of large vehicle or small vehicle is conducted based on the global feature
via a 𝑘-nearest neighbor probability classifier. Based on the preliminary result, the specific recognition of bus, truck, van, or sedan
is achieved based on the local feature via a discriminative sparse representation based classifier. We experiment with the proposed
method on the public and established datasets involving various challenging cases, such as partial occlusion, poor illumination,
and scale variation. Experimental results show that the proposed method outperforms existing state-of-the-art methods.

1. Introduction

Vehicle type recognition (VTR) is one key component of
intelligent transportation systems (ITS) and has a wide range
of applications such as traffic flow statistics, intelligent park-
ing systems, electronic toll collection systems, and access con-
trol systems [1]. For example, it can be utilized to realize the
automatic fare collection (AFC) according to different vehicle
types in some paying parking lots or be applied to the nonstop
toll collection system to realize automatic toll calculation in
highway toll stations. Additionally, it can also be used to
find and locate the vehicles that break traffic regulations and
are escaping from the accident scene in traffic videomonitor-
ing.

With the extensive use of traffic surveillance cameras,
image-basedmethods are attractingmore andmore attention
of researchers in the VTR. The vehicle face image contains
precious information for the VTR, and extracting features
from the vehicle face image will lead to a better recognition

result. However, illumination change, scale variation, and
partial occlusion will badly influence the performance of the
VTR in real-world traffic environments. In order to improve
the performance of the VTR, researchers have proposed
many effective methods.These existing methods mainly con-
sist of two key steps, that is, feature extraction and classifier
design, which directly determine how well the VTR method
works.

There are many typical features that can be applied to the
VTR, such as edge based feature [2, 3], color based feature [4],
symmetry based feature [5–7], SIFT descriptor based feature
[8, 9], HOG descriptor based feature [10], and Gabor filter
based feature [11].The edge based feature extractionmethods
extract the edge of vehicle image by a certain edge operator,
such as Sobel operator. The symmetry based methods utilize
projection or corner detection algorithms according to the
geometric symmetry of the vehicle face image in spatial
profile to detect and recognize the vehicle. The two kinds of
methods are able to extract the geometrical contour of vehicle
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image accurately and quickly using small storage space and
little computation time. However, these methods are easily
influenced by some adverse factors, such as illumination
change, scale variation, and partial occlusion; when these
factors occur, their performance in feature extraction will
degrade. Therefore, these feature extraction methods are
commonly used to extract the global contour of vehicle
image, and the extracted features also only apply to the
preliminary recognition in the VTR.

Unlike the two kinds of methods mentioned above, fea-
ture extractionmethods, such as SIFT descriptor based,HOG
descriptor based, or Gabor filter based, can extract structural
details of vehicle image frommultiple scales and orientations,
and they are insensitive to illumination change or scale varia-
tion. Therefore, they are commonly used for precise recogni-
tion. However, due to extracting multiple features from mul-
tiple scales and orientations, these feature extractionmethods
always generate a large amount of additional feature informa-
tion compared with the original image, which will increase
the computational complexity of VTR algorithms.

Intuitively, global informationmeans the holistically geo-
metrical configuration of vehicle contour, while structural
details are embedded in the local variations of vehicle appear-
ance. Therefore, extracting both global geometrical informa-
tion and local structural details from vehicle images through
certain feature extraction methods and leveraging the
extracted feature information via suitable classifiers will help
improve the performance of the VTR.

In terms of the classifier design, typical classifiers include
KNN [3, 4], SVM [12–14], and ANN [15]. For the KNN
classifier, it has a simple principle and does not need training
in advance. However, when the number of the samples in
training set increases, its computation time will also increase
accordingly. The methods based on SVM or ANN classifier
can effectively utilize various vehicle features and obtain good
classification performance. However, these methods need to
train classifier parameters in advance by collecting many
samples of different types of vehicles and are easy to fall
into a local optimum solution during training the classifier
parameters. The classifier based on sparse representation has
been successfully applied to the face recognition due to excel-
lent characteristics: without involving complex parameter
training and only needing to consider original image samples
as a dictionary without any additional transformation [16].
Further research finds that if we can learn a discriminative
dictionary from the original dictionary via certain dictionary
learning schemes before pattern recognition, then we will
achievemore accurate and reliable classification results based
on the learned dictionary than based on the original dictio-
nary [17].

Additionally, the above-mentioned classification meth-
ods adopt a single-stage classification strategy; that is, all
features are incorporated into one classifier together to rec-
ognize the vehicle type. When the number of the recognized
vehicles types increases, the methods based on the single-
stage classification need lots of training samples to train
many classifier parameters, which will inevitably increase
the difficulty of classifier design for a given recognition
performance [18].

To address the aforementioned limitations, this paper
proposes a new VTR method combining global and local
features via a two-stage classification, whereby the global
feature and local feature are jointly applied to the VTR, and
their advantages in expressing vehicle geometrical contour
and structural details are leveraged by a proposed two-
stage classification strategy. The proposed method enables
an accurate and reliable VTR. First, the global feature is
used to preliminarily recognize the type of a vehicle from
the geometrical contour viewpoint, and the local feature is
further used to recognize the specific type from the structural
details viewpoint. Second, due to exploiting a two-stage clas-
sification strategy, the total classification task is appropriately
assigned to two different classifiers. Therefore, the design of
each classifier is simplified and their design difficulty is also
lowered accordingly. This improves the overall classification
performance of theVTR in accuracy and reliability compared
with the methods based on the single-stage classification
strategy.

This paper advances the research on VTR by making the
following specific contributions: First, an improved Canny
edge detection algorithm with smooth filtering and non-
maxima suppression abilities is proposed to extract a continu-
ous and complete global feature of vehicle image. Second, the
whole vehicle image is partitioned into four nonoverlapping
patches based on the key parts of a vehicle, and the local
feature is extracted by a set of Gabor wavelet kernels with five
scales and eight orientations based on four partitioned key
patches. When the vehicle is partially occluded, it still can
be correctly recognized by using the local feature extracted
from other nonoccluded patches.Third, a 𝑘-nearest neighbor
probability classifier (KNNPC) with the Hausdorff distance
measure is proposed to improve the reliability of the first
stage of classification, where vehicle type is preliminarily
recognized as a large or small vehicle from the geometrical
contour viewpoint. Fourth, a discriminative sparse repre-
sentation based classifier (DSRC) that adopts a dictionary
learning scheme based on the Fisher discrimination criterion
is introduced to the second stage of classification, which
enables a more specific classification based on the extracted
local feature.

The rest of this paper is organized as follows. Section 2
presents the global and local feature extraction methods as
well as the image partitionmethod based on the key parts of a
vehicle. Section 3 describes a two-stage classification strategy
for theVTR. Experiments and analysis are shown in Section 4
to illustrate the effectiveness of the proposed VTR method.
The final section summarizes this study and future research
directions.

2. Feature Extraction

As mentioned previously, both the global geometrical con-
tour and local structural details of a vehicle play important
roles in the VTR. Therefore, there is a need to extract these
features through corresponding feature extraction methods.
In this paper, the global geometrical contour is extracted by
an improved Canny edge detection algorithm with smooth
filtering and non-maxima suppression abilities, and the local
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structural details are extracted by a set of Gabor wavelet
kernels with multiple scales and orientations.

2.1. Global Feature Extraction. The edge of vehicle image
contains rich contour information of the vehicle.Therefore, it
is regarded as a global feature to preliminarily recognize the
type of a vehicle in this paper.

Commonly, some operators can be used to extract the
edge of a vehicle, such as Sobel, Roberts, Prewitt, and Canny.
However, these edge detection algorithms based on a certain
operator have their own limitations. For example, the Sobel
and Prewitt operators have the ability to fast detect the edge
of an object but cannot produce a thin edge; therefore, they
are unsuitable for accurate location. The Roberts operator
is capable of locating the edge accurately but is sensitive
to noises; therefore, it cannot effectively suppress the noises
existing in the image. The Canny operator has the abilities
to smooth a strong edge and suppress noises. It also can
extract accurate and complete edge under good illumination;
however, when the illumination becomes poor, it cannot
detect a weak edge [19].

In order to achieve a better edge, we propose an edge
detection method based on the improved Canny operator
to extract the global feature of vehicle images. It exploits
a double-threshold algorithm based on OTSU to self-
adaptively determine the edge of a vehicle according to
illumination changes. Based on non-maxima suppression
and double-threshold judgment, the proposed method can
find a continuous and complete edge. The detailed steps are
as follows.

Step 1. According to (1), smooth the input image 𝑓(𝑥, 𝑦)
using a Gaussian filter 𝐺(𝑥, 𝑦, 𝜎) to remove Gaussian noise
[20]. 𝑆 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦, 𝜎) ∗ 𝑓 (𝑥, 𝑦) , (1)

where 𝜎 is variance and ∗ indicates convolution operation.
In this paper, when 𝜎 = 1, good smoothing results can be
obtained. Therefore, we let 𝜎 = 1, and

𝐺 (𝑥, 𝑦, 1) = [[[
0.0751 0.1238 0.07510.1238 0.2043 0.12380.0751 0.1238 0.0751

]]]
(2)

accordingly.

Step 2 (calculate gradient magnitude). The gradient of each
pixel in the smoothed image is determined by applying the
Sobel operator.The Sobel operators for𝑥 and𝑦 directions are,
respectively,

𝐻𝑥 = [[[
−1 0 1−2 0 2−1 0 1

]]]
,

𝐻𝑦 = [[[
1 2 10 0 0−1 −2 −1

]]]
.

(3)

In order to improve real-time performance, the gradient
magnitude𝑀(𝑥, 𝑦) and gradient direction 𝜃(𝑥, 𝑦) are deter-
mined by

𝑀(𝑥, 𝑦) = 󵄨󵄨󵄨󵄨𝑀𝑥 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑀𝑦 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨
𝜃 (𝑥, 𝑦) = arctan(𝑀𝑦 (𝑥, 𝑦)𝑀𝑥 (𝑥, 𝑦)) , (4)

where𝑀𝑥(𝑥, 𝑦) = 𝐻𝑥 ∗ 𝑆(𝑥, 𝑦) and𝑀𝑦(𝑥, 𝑦) = 𝐻𝑦 ∗ 𝑆(𝑥, 𝑦).
Step 3. Implement non-maxima suppression on the gradient
magnitude 𝑀(𝑥, 𝑦) calculated in Step 2 to determine the
candidates of edge pixels. We define a 3 × 3 mask template
that can traverse the entire image. In this template, if the
gradientmagnitude𝑀(𝑖, 𝑗) of the central pixel (𝑖, 𝑗) is not less
than that of two other pixels along the gradient orientation𝜃(𝑖, 𝑗), then we keep the maximal gradient magnitude and
let other gradient magnitude be equal to zero; that is, if𝑀(𝑖, 𝑗) is maximum, then let 𝑀̃(𝑥, 𝑦) = 𝑀(𝑖, 𝑗); otherwise,
let 𝑀̃(𝑥, 𝑦) = 0.The specific comparison process is as follows:
if 𝜃(𝑖, 𝑗) ∈ (−𝜋/2, −3𝜋/8] or 𝜃(𝑖, 𝑗) ∈ (3𝜋/8, 𝜋/2), then we
compare 𝑀(𝑖, 𝑗) with 𝑀(𝑖 + 1, 𝑗) and 𝑀(𝑖 − 1, 𝑗); if 𝜃(𝑖, 𝑗) ∈(−3𝜋/8, −𝜋/8], then we compare𝑀(𝑖, 𝑗) with𝑀(𝑖 − 1, 𝑗 − 1)
and𝑀(𝑖 + 1, 𝑗 + 1); if 𝜃(𝑖, 𝑗) ∈ (−𝜋/8, 𝜋/8], then we compare𝑀(𝑖, 𝑗)with𝑀(𝑖, 𝑗−1) and𝑀(𝑖, 𝑗+1); if 𝜃(𝑖, 𝑗) ∈ (𝜋/8, 3𝜋/8],
thenwe compare𝑀(𝑖, 𝑗)with𝑀(𝑖−1, 𝑗+1) and𝑀(𝑖+1, 𝑗−1).
Step 4. Double thresholds are used to determine strong and
weak edges. We set two thresholds 𝑇high and 𝑇low. (i) If𝑀̃(𝑥, 𝑦) ≥ 𝑇high, then the pixel at (𝑥, 𝑦) is determined as an
edge pixel and let 𝑀̃(𝑥, 𝑦) = 255. (ii) If 𝑀̃(𝑥, 𝑦) ≤ 𝑇low, then
the pixel at (𝑥, 𝑦) is determined as a nonedge pixel and let𝑀̃(𝑥, 𝑦) = 0. (iii) If 𝑇low < 𝑀̃(𝑥, 𝑦) < 𝑇high, then continue to
search in a 3 × 3 neighborhood based on the current central
pixel (𝑥, 𝑦) to find whether there is a pixel whose gradient
magnitude is more than 𝑇high. If such a pixel exists, then the
pixel is also determined as an edge pixel and let 𝑀̃(𝑥, 𝑦) =255; otherwise, the pixel is determined as a nonedge pixel and
let 𝑀̃(𝑥, 𝑦) = 0.

Different from the traditional Otsu algorithm [21] that
only determines a single threshold, in this step, we propose
a self-adaptive algorithm to determine the two thresholds of𝑇high and 𝑇low based on the histogram of the gradient image𝑀(𝑥, 𝑦). Assume that the gradient magnitude 𝑖 ranges from
zero to 𝐿 − 1 in the 𝑀(𝑥, 𝑦); that is, 𝑖 ∈ [0, 1, 2, . . . , 𝐿 − 1],
and we divide the pixels into three categories according to the
gradient magnitude, that is, 𝐶0, 𝐶1, and 𝐶2, where 𝐶0 is used
to indicate nonedge pixels and their range is defined as [0, 𝑘];𝐶2 is used to indicate edge pixels and their range is defined
as [𝑚 + 1, 𝐿 − 1]; and 𝐶1 is used to indicate the pixels that
cannot be definitely determined as edge pixels or nonedge
pixels and their range is defined as [𝑘 + 1,𝑚]. Let 𝑛𝑖 denote
the number of the pixels whose gradient magnitude is 𝑖, 𝑁
denotes the total number of the pixels in the gradient image𝑀(𝑖, 𝑗), and 𝑝𝑖 indicates the percentage of the pixels whose
gradient magnitude is 𝑖 in the gradient image𝑀(𝑖, 𝑗); that is,
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𝑝𝑖 = 𝑛𝑖/𝑁. The expectation of the gradient magnitude in the
whole image is 𝐸 = ∑𝐿−1𝑗=0 𝑖 ⋅ 𝑝𝑖.

The expectations of the gradient magnitude of the pixels
in 𝐶0, 𝐶1, and 𝐶2 are, respectively,𝐸0(𝑘) = ∑𝑘𝑖=0(𝑖⋅𝑝𝑖)/𝑝(𝑘), 𝐸1(𝑘, 𝑚) = ∑𝑚𝑖=𝑘+1(𝑖⋅𝑝𝑖)/𝑝(𝑘,𝑚),
and 𝐸2(𝑚) = ∑𝐿−1𝑖=𝑚+1(𝑖 ⋅ 𝑝𝑖)/𝑝(𝑚), where 𝑝(𝑘) = ∑𝑘𝑖=0 𝑝𝑖,𝑝(𝑘,𝑚) = ∑𝑚𝑖=𝑘+1 𝑝𝑖, and 𝑝(𝑚) = ∑𝐿−1𝑖=𝑚+1 𝑝𝑖.

In order to determine 𝑇high and 𝑇low, we define an
evaluation function 𝜎2(𝑘,𝑚) inspired by the traditional Otsu
algorithm:

𝜎2 (𝑘,𝑚) = (𝐸0 (𝑘) − 𝐸)2 ⋅ 𝑝 (𝑘) + (𝐸1 (𝑘,𝑚) − 𝐸)2
⋅ 𝑝 (𝑘,𝑚) + (𝐸2 (𝑚) − 𝐸)2 ⋅ 𝑝 (𝑚) . (5)

Calculate and compare every 𝜎2(𝑘,𝑚); let (𝑘̂, 𝑚̂) =
argmax(𝜎2(𝑘,𝑚)), where 𝑘 = 0, 1, 2, . . . , 𝐿 − 2, or 𝐿 − 1, and𝑚 = 𝑘 + 1, 𝑘 + 2, . . . , 𝐿 − 2, or 𝐿 − 1. Then, we let 𝑇low = 𝑘̂ and𝑇high = 𝑚̂; the two thresholds 𝑇low and 𝑇high are determined
accordingly.

2.2. Local Feature Extraction. The global feature can be used
to recognize the type of a vehicle roughly, such as large or
small. In order to further recognize a specific type, such as
sedan, van, bus, or truck, other features to represent the local
structural details of a vehicle need to be extracted.

2.2.1. Image Partition Based on Key Parts. Not all parts in
a vehicle face image are useful for the VTR; only some
key parts with salient features (e.g., vehicle roof, windscreen
and rear-view mirror, hood, and license plate) are available.
Additionally, the partial occlusion always occurs under real-
world traffic environments. If we partition the vehicle face
image into several key patches, even when the partial occlu-
sion occurs, we can still recognize the vehicle type through
other key parts in other nonoccluded patches. Therefore,
we averagely partition the vehicle face image into four key
patches from the top to the bottom, (i) vehicle roof, (ii)
windscreen and rear-view mirror, (iii) hood, and (iv) license
plate, as shown in Figure 1.

2.2.2. Local Feature Extraction. Gabor wavelets, whose ker-
nels act very similarly to mammalian visual cortical cells,
have strong characteristics of spatial locality and orientation,
making them a suitable choice for image feature extraction in
the VTR [22].Therefore, the Gabor wavelet representation of
the vehicle image is introduced to extract the local features
in every partitioned patch in this paper, which can not
only obtain better structural details with multiple scales and
multiple orientations but also improve the robustness to
illumination change or partial occlusion. The Gabor wavelet
kernels can be defined by [22]

𝐺𝑢,V (𝑧) = 󵄩󵄩󵄩󵄩𝑘𝑢,V󵄩󵄩󵄩󵄩2𝜎2 exp[−󵄩󵄩󵄩󵄩𝑘𝑢,V󵄩󵄩󵄩󵄩2 ‖𝑧‖22𝜎2 ]
× [exp (𝑖 ⋅ 𝑘𝑢,V ⋅ 𝑧) − exp(−𝜎22 )] ,

(6)

where 𝑢 and V define the orientation and scale of the Gabor
kernels, respectively, 𝑧 = (𝑥, 𝑦), ‖ ⋅ ‖ denotes the norm
operator, (𝑥, 𝑦) represents the pixel coordinates, and the wave
vector 𝑘𝑢,V is defined as

𝑘𝑢,V = 𝑘V exp (𝑖 ⋅ 𝜑𝑢) , (7)

where 𝑘V = 𝑘max/𝑓V, 𝜑𝑢 = 𝑢 ⋅ 𝜋/8, 𝑘max is the maximum
frequency, and 𝑓 is the spacing factor between kernels in the
frequency domain.

It is usual to use the Gabor wavelets at five different scales,
V ∈ {0, 1, . . . , 4}, and eight orientations, 𝑢 ∈ {0, 1, . . . , 7}, with
the following parameters: 𝜎 = 2𝜋, 𝑘max = 𝜋/2, and 𝑓 = √2
[23].

For Gabor feature extraction, we convolve the image 𝐼(𝑧)
with a set of Gabor wavelet kernels defined by (6) at every
pixel (𝑥, 𝑦):

𝐹𝑢,V (𝑧) = 𝐼 (𝑧) ⊗ 𝐺𝑢,V (𝑧) , (8)

where 𝑧 = (𝑥, 𝑦),𝐹𝑢,V(𝑧) is the convolution result correspond-
ing to the Gabor wavelet kernel at orientation 𝑢 and scale V,
and it also is called Gabor feature image in this paper, 𝐼(𝑧)
expresses gray level distribution of an image, and⊗ represents
the convolution operator. Therefore, the set 𝑆 = {𝐹𝑢,V(𝑧) :𝑢 ∈ {0, 1, . . . , 7}, V ∈ {0, 1, . . . , 4}} forms the Gabor wavelet
representation of the image 𝐼(𝑧).

Applying the convolution theorem, we can derive every𝐹𝑢,V(𝑧) via the fast Fourier transform (FFT) [24].

𝐹𝑢,V (𝑧) = F
−1 {F {𝐼 (𝑧)}F {𝐺𝑢,V (𝑧)}} , (9)

whereF andF−1 indicate the Fourier transform and inverse
Fourier transform, respectively.

To leverage the advantage of Gabor wavelets with five
scales and eight orientations, we concatenate all these Gabor
feature images 𝐹𝑢,V(𝑧) in set 𝑆 and derive an augmented fea-
ture vector 𝜒. Before the concatenation, we first downsample
every 𝐹𝑢,V(𝑧) into 𝐹(𝜌)𝑢,V by a factor 𝜌 to reduce the space
dimension and normalize it to zero mean and unit variance.
We then transform every 𝐹(𝜌)𝑢,V into a vector by concatenating
its columns. Finally, the reduced Gabor feature vector 𝜒(𝜌)
is defined as 𝜒(𝜌) = (𝐹(𝜌)0,0 T𝐹(𝜌)0,1 T ⋅ ⋅ ⋅ 𝐹(𝜌)4,7 T)T, where T is the
transpose operator.

3. Recognition

3.1. Two-Stage Classification Strategy. Unlike the single-stage
classification basedmethods that need to design amore com-
plicated classifier, collect more training samples, and spend
more computational time on training classifier parameters,
we propose a two-stage classification strategy based on two
different types of classifiers and features. In the first stage of
classification, we firstly recognize the type of the test sample
as large vehicle or small vehicle using the KNNPC based
on the extracted global feature. Based on this, we further
recognize the type of the large vehicle as bus or truck aswell as
the type of the small vehicle as van or sedan using the DSRC
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(a) Original image

(b) Vehicle roof

(c) Windscreen and rear-view mirror

(d) Hood

(e) License plate

Figure 1: Vehicle image partition.

based on the extracted local feature in the second stage of
classification. The detailed classification process is illustrated
in Figure 2.

3.2. Preliminary Recognition Based on Global Feature and
KNNPC. In the first stage of classification, we propose a
robust classification method based on the local feature and
KNNPC in the first stage of classification. This method first
estimates the cumulative probabilities of the test sample on its𝑘-nearest neighbors that may belong to different classes and
then selects the maximumweighted class as the classification
result. The selection of the 𝑘-nearest neighbors is based on
an improved Hausdorff distance measure (IHDM), and the
cumulative probabilities of the test sample are based on
Gaussian kernel density estimation (KDE).

3.2.1. Improved Hausdorff Distance Measure. Hausdorff dis-
tance (HD) is one of the commonly used measures for
object matching. It calculates the distance between two point
sets of the edges in two-dimensional binary images without
establishing correspondences. Compared with other meth-
ods, such as Euclidean distance, the HD has better robustness
to noises and partial occlusion due to not involving point-to-
point distance calculation. In order to enhance the first stage
of classification of the VTR, we introduce an IHDM based
on a statistics scheme to calculate the HD between the test
sample and training samples [25].

The classical HD measure between two point sets 𝐴 ={𝑎1, 𝑎2, . . . , 𝑎𝑁𝐴} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑁𝐴} with sizes 𝑁𝐴 and𝑁𝐵, respectively, is defined as𝐻(𝐴, 𝐵) = max (ℎ (𝐴, 𝐵) , ℎ (𝐵, 𝐴)) , (10)
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Test sample input

Global feature extraction

KNNPC classifier

Local feature extraction

DSRC classifier based
on large vehicle dataset

Local feature extraction

DSRC classifier based
on small vehicle dataset

Bus or truck Van or sedan

First stage of classi�cation

Second stage of classi�cation
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Figure 2: Two-stage classification strategy.

where ℎ(𝐴, 𝐵) represents the directed distance between two
sets 𝐴 and 𝐵. The distance value of point 𝑎 to the set 𝐵 is
defined as 𝑑𝐵(𝑎) = min𝑏∈𝐵‖𝑎 − 𝑏‖ and the directed distanceℎ(𝐴, 𝐵) is denoted by

ℎ (𝐴, 𝐵) = max
𝑎∈𝐴

𝑑𝐵 (𝑎) , (11)

where ‖ ⋅ ‖ represents Euclidean norm.
Because the classical HD measure is sensitive to noises

and partial occlusion, the scheme of the least trimmed
square (LTS) is introduced. In the IHDM, the directed
distanceℎLTS(𝐴, 𝐵) is defined by a linear combination of order
statistics:

ℎLTS (𝐴, 𝐵) = 1𝐾H

𝐾H∑
𝑖=1

𝑑𝐵 (𝑎)(𝑖) , (12)

where 𝑑𝐵(𝑎)(𝑖) represents the 𝑖th distance value in the sorted
sequence (𝑑𝐵(𝑎)(1) ≤ 𝑑𝐵(𝑎)(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑑𝐵(𝑎)(𝑁𝐴)); 𝐾H = 𝑓 ×𝑁𝐴. A parameter 𝑓, 0 ≤ 𝑓 ≤ 1, depends on the amount of
occlusion. The measure ℎLTS(𝐴, 𝐵) is minimized by keeping
the smaller 𝐾H distance values after large distance values are
eliminated.

3.2.2. Kernel Density Estimation. Assume that the number
of the target classes is 𝑀E, and for each class there are 𝑛(𝑗)E
(𝑗 = 1, 2, . . . ,𝑀E) samples. First, we obtain the 𝐾-nearest
neighbors to the test sample in training set using the proposed
IHDM. Suppose that 𝑎E(𝑥, 𝑦) is the point set that consists
of the edge points extracted from the test sample by the
global feature extraction method proposed in Section 2.1,𝑏(𝑖)E (𝑥, 𝑦) indicates the point set that consists of the edge

points extracted from the 𝑖th training sample in the sample
set 𝐵E by the global feature extraction method proposed in
Section 2.1, and 𝐵E = {𝑏(1)E (𝑥, 𝑦), 𝑏(2)E (𝑥, 𝑦), . . . , 𝑏(𝑁E)E (𝑥, 𝑦)},𝑁E = ∑𝑀E

𝑗=1 𝑛(𝑗)E . According to (12), we can calculate the
Hausdorff distance between 𝑎E(𝑥, 𝑦) and every 𝑏(𝑖)E (𝑥, 𝑦),
defined as ℎLTS(𝑖), 𝑖 ∈ {1, 2, . . . , 𝑁E}. Compare ℎ(𝑖)LTS; we can
obtain the smallest 𝐾 values of ℎ(𝑖)LTS, defined as ℎ̃LTS(𝑖), 𝑖 ∈{1, 2, . . . , 𝐾}. The 𝐾 training samples corresponding to the
smallest𝐾 values will be regarded as the𝐾-nearest neighbors{𝑏̃(𝑖)E | 𝑖 = 1, 2, . . . , 𝐾) to the test sample.

Then, the KDE method [26] is used to estimate the
cumulative influences on 𝑎E(𝑥, 𝑦) from its 𝐾-nearest neigh-
bors corresponding to different classes. We use Gaussian
kernel function and set window width parameter 𝑤H =
max𝑖∈{1,2,...,𝐾}ℎ̃LTS(𝑖)/𝐿H in the estimation, where 𝐿H is a
coefficient, to narrow (larger 𝐿H) or expand (smaller 𝐿H) the
influences of the neighbors with different distances. Finally,
we get

𝜔𝑗 (𝑎E (𝑥, 𝑦))
= 1√2𝜋𝑤H𝐾 ∑

𝑙|̃𝑏(𝑖)E ∈𝑗

exp(−(ℎ̃LTS (𝑙))22 (𝑤H)2 ) , (13)

where 𝜔𝑗(𝑎E(𝑥, 𝑦)) is the weight of 𝑎E(𝑥, 𝑦) belonging to the𝑗th class and 𝑙 | 𝑏̃(𝑖)E ∈ 𝑗 indicates that every 𝑏̃(𝑖)E belongs to the
same 𝑗th class.

The final classification result is determined by

identify (𝑎E (𝑥, 𝑦)) = arg max
𝑗

{𝜔𝑗 (𝑎E (𝑥, 𝑦))} . (14)

3.3. Precise Recognition Based on Local Feature and DSRC.
To exploit the Gabor feature of vehicle image, before the
following precise recognition, we need to firstly express all
samples using their reduced Gabor feature vector 𝜒(𝜌) that is
computed by the proposed local feature extraction method
in Section 2.2. Then, based on the reduced Gabor feature
vectors, we set up training set and test set to design theDSRC.

The core idea of the sparse representation based classifica-
tion (SRC)methods is to represent a test sample using a sparse
linear combination of training samples [27]. Suppose that
there are 𝐶 classes of samples, and let 𝐴 = [𝐴1, 𝐴2, . . . , 𝐴𝐶]
be the set of training samples, called dictionary, where 𝐴 𝑖
is the subset of training samples from class 𝑖. Let 𝑦 be a
test sample. The procedures of the SRC are summarized as
follows.

(i) Sparsely represent 𝑦 on 𝐴 via 𝑙1-minimization:

𝛼̂ = arg min
𝛼

{󵄩󵄩󵄩󵄩𝑦 − 𝐴𝛼󵄩󵄩󵄩󵄩22 + 𝛾 ‖𝛼‖1} , (15)

where 𝛾 is a scalar constant.
(ii) Implement classification via

identity (𝑦) = arg min
𝑖

{𝑒𝑖} , (16)
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where 𝑒𝑖 = ‖𝑦 − 𝐴 𝑖𝛼̂𝑖‖2 and 𝛼̂ = [𝛼̂1; 𝛼̂2; . . . ; 𝛼̂𝐶] and 𝛼̂𝑖 is
the coefficient vector associated with the class 𝑖. Obviously,
the SRC method classifies the test sample as the category to
which the smallest representation residual 𝑒𝑖 belongs.

Poststudies find that the employed dictionary plays an
important role in sparse representation based image clas-
sification. While learning a dictionary from the training
data has led to state-of-the-art results in image classification,
many models of dictionary learning harness only the one-
sided discriminative information in either the representation
coefficients or the representation residual, which limits their
performance. In this paper, we proposed a DSRC that adopts
a novel dictionary learning scheme based on Fisher dis-
crimination criterion. Based on this, a structured dictionary,
whose atoms have correspondences to the subject class
labels, is learned, by which both the representation residual
and representation coefficients can be used to distinguish
different classes.

3.3.1. Dictionary Learning Based on Fisher Discrimination
Criterion. Unlike themethod based on the shared dictionary,
we adopt a new dictionary learning scheme based on Fisher
discrimination criterion [17], which learns a structured dic-
tionary𝐷 = [𝐷1, 𝐷2, . . . , 𝐷𝐶𝐺], where𝐷𝑖 is the subdictionary
associated with class 𝑖. Let 𝐺 = [𝐺1, 𝐺2, . . . , 𝐺𝐶𝐺] express the
set of training samples with𝐶𝐺 classes, and let𝑋 be the sparse
coefficientmatrix of𝐺 over𝐷; that is,𝐺 ≈ 𝐷𝑋, where𝐺𝑖 is the𝑖th subset of class 𝑖. We can write𝑋 as𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝐶𝐺],
where 𝑋𝑖 is the coefficient matrix of 𝐺𝑖 over 𝐷. Besides
requiring that 𝐷 should have powerful ability to represent 𝐺
(i.e., 𝐺 ≈ 𝐷𝑋), we also require that 𝐷 should have powerful
ability to distinguish the images in 𝐷. For this reason, the
dictionary learning scheme based on Fisher discrimination
criterion is defined as follows:

𝐽(𝐷,𝑋) = argmin
(𝐷,𝑋)

{𝑟 (𝐺,𝐷,𝑋) + 𝜆1 ‖𝑋‖1 + 𝜆2𝑓 (𝑋)}
s.t. 󵄩󵄩󵄩󵄩𝑑𝑛󵄩󵄩󵄩󵄩2 = 1, ∀𝑛, (17)

where 𝑟(𝐺,𝐷,𝑋) is the discriminative data fidelity term;‖𝑋‖1 is the sparsity penalty; 𝑓(𝑋) is a discrimination term
imposed on the coefficient matrix𝑋; and 𝜆1 and 𝜆2 are scalar
parameters. Each atom 𝑑𝑛 of 𝐷 is constrained to have a unit𝑙2-norm to avoid that𝐷 has arbitrarily large 𝑙2-norm, result-
ing in trivial solutions of the coefficient matrix 𝑋. Further,
by means of the Fisher discrimination criterion, 𝑟(𝐺,𝐷,𝑋)
and 𝑓(𝑋) are defined as 𝑟(𝐺,𝐷,𝑋) = ∑𝐶𝐺𝑖=1 𝑟(𝐺𝑖, 𝐷,𝑋𝑖) and𝑓(𝑋) = tr(𝑆𝑊(𝑋) − 𝑆𝐵(𝑋) + 𝜂‖𝑋‖2𝐹), where tr(⋅) denotes the
trace of a matrix, 𝑆𝑊(𝑋) and 𝑆𝐵(𝑋) indicate the within-class
scatter and between-class scatter of 𝑋, respectively, 𝑆𝑊(𝑋) =∑𝐶𝐺𝑖=1∑𝑥𝑘∈𝑋𝑖(𝑥𝑘−𝑚𝑖)(𝑥𝑘−𝑚𝑖)T, 𝑆𝐵(𝑋) = ∑𝐶𝐺𝑖=1 𝑛𝑖(𝑚𝑖−𝑚)(𝑚𝑖−𝑚)T, where 𝑚𝑖 and 𝑚 are the mean vectors of 𝑋𝑖 and 𝑋,
respectively, and 𝑛𝑖 is the number of samples in class 𝐺𝑖; 𝜂
is a parameter.

Although the objective function 𝐽(𝐷,𝑋) in (17) is not jointly
convex to (𝐷,𝑋), we will find that it is convex with respect
to each of 𝐷 and 𝑋 when the other is fixed. Therefore, the
objective function 𝐽(𝐷,𝑋) can be divided into two subproblems

by optimizing𝐷 and𝑋 alternatively: updating𝑋with𝐷 fixed
and updating𝐷 with𝑋 fixed. The alternative optimization is
iteratively implemented to find the desired dictionary 𝐷 and
coefficient matrix𝑋.

Suppose that the dictionary 𝐷 is fixed, and then the
objective function in (17) is reduced to a sparse representation
problem to compute𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝐶𝐺]. We can compute𝑋𝑖 class by class. When computing𝑋𝑖, all𝑋𝑗, 𝑗 ̸= 𝑖, are fixed.
The objective function in (17) is further simplified into

min
𝑋𝑖

{𝑟 (𝐺𝑖, 𝐷,𝑋𝑖) + 𝜆1 󵄩󵄩󵄩󵄩𝑋𝑖󵄩󵄩󵄩󵄩1 + 𝜆2𝑓𝑖 (𝑋𝑖)} , (18)

where 𝑓𝑖(𝑋𝑖) = ‖𝑋𝑖 − 𝑀𝑖‖2𝐹 − ∑𝐶𝐺
𝑘=1

‖𝑀𝑘 − 𝑀‖2𝐹 + 𝜂‖𝑋𝑖‖2𝐹;𝑀𝑘 and𝑀 are the mean vector matrices (by taking the mean
vector 𝑚𝑘 or 𝑚 as all the column vectors) of class 𝑘 and all
classes, respectively. We can solve (18) to obtain 𝑋𝑖 using the
improved iterative projection method (IPM) [28].

Then we will discuss how to update 𝐷 =[𝐷1, 𝐷2, . . . , 𝐷𝐶𝐺], when 𝑋 is fixed. We also update𝐷𝑖 = [𝑑1, 𝑑2, . . . , 𝑑𝑝𝑖] class by class. That is, when every𝐷𝑖 is updated, all 𝐷𝑗, 𝑗 ̸= 𝑖, are fixed. The objective function
in (17) is reduced to

min
𝐷𝑖

{{{
󵄩󵄩󵄩󵄩󵄩𝐺 − 𝐷𝑖𝑋𝑖󵄩󵄩󵄩󵄩󵄩2𝐹 + 󵄩󵄩󵄩󵄩󵄩𝐺𝑖 − 𝐷𝑖𝑋𝑖𝑖󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝐶𝐺∑

𝑗=1,𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩𝐷𝑖𝑋𝑖𝑗󵄩󵄩󵄩󵄩󵄩2𝐹}}}
s.t. 󵄩󵄩󵄩󵄩𝑑𝑙󵄩󵄩󵄩󵄩2 = 1, 𝑙 = 1, 2, . . . , 𝑝𝑖,

(19)

where 𝐺 = 𝐺 − ∑𝐶𝐺𝑗=1,𝑗 ̸=𝑖𝐷𝑗𝑋𝑗, 𝑋𝑖 is the representation
matrix of 𝐺 over 𝐷𝑖, and 𝑋𝑖𝑗 is the representation of 𝐺𝑖 over
subdictionary 𝐷𝑗. Equation (19) can be efficiently solved to
obtain every𝐷𝑖 via the algorithm like [29].

3.3.2. Classification Scheme. Using the dictionary𝐷 obtained
by the proposed dictionary learning scheme based on Fisher
discrimination criterion to represent the test sample, both the
representation residual and the representation coefficients
will be discriminative, and hence we can make use of both
of them to achieve more accurate classification results.

Let 𝑔 = 𝜒(𝑦) express the reduced Gabor feature vector𝜒(𝜌) of the test sample 𝑦; then sparsely represent 𝑔 on 𝐷 via𝑙1-minimization:

𝛼̂ = arg min
𝛼

{󵄩󵄩󵄩󵄩𝑔 − 𝐷𝛼󵄩󵄩󵄩󵄩22 + 𝛾 ‖𝛼‖1} , (20)

where 𝛾 is a constant, 𝛼̂ = [𝛼̂1, 𝛼̂2, . . . , 𝛼̂𝐶𝐺], and 𝛼̂𝑖 is the
coefficient subvector associated with subdictionary𝐷𝑖.

By considering the discrimination capability of both
representation residual and representation vector, we define
the following metric for classification:

𝑒𝑖 = 󵄩󵄩󵄩󵄩𝑔 − 𝐷𝑖𝛼̂𝑖󵄩󵄩󵄩󵄩22 + 𝜔 ⋅ 󵄩󵄩󵄩󵄩𝛼̂ − 𝑚𝑖󵄩󵄩󵄩󵄩22 , (21)

where 𝜔 is a preset weight to balance the contribution of the
two terms to classification. The classification rule is defined
as

identity (𝑔) = argmin
𝑖
{𝑒𝑖} . (22)
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4. Experiments

4.1. Experiment Setup. To validate the proposed method,
we constructed a dataset including 6,000 vehicle images.
The vehicle images are captured by a camera fixed on an
overpass with 640 × 480 pixels and 256 gray scale levels. The
proportion of the challenging vehicle images that are partially
occluded by other vehicles or captured in a bad illumination
condition is about 10% in the whole dataset. The location of
each vehicle is adjusted to the center of the whole image and
the size is cropped into 96 × 96 pixels by manual operations
in advance. Figure 3 shows the example images of the dataset
under various conditions.

To facilitate the VTR, all vehicle images in the whole
dataset are firstly divided into two datasets: large vehicle
and small vehicle. The large vehicle dataset consists of two
subdatasets: bus and truck.The small vehicle dataset consists
of two subdatasets: van and sedan.Thenumbers of the images
in every subdataset are all 1,500.

All the experiments are conducted on the computer with
3GHz CPU and 16Gb memory, and all program codes are
compiled and run on Matlab 2014b.

4.2. Results of Global Feature Extraction. In order to verify
the advantage of the improved Canny operator, the edge
detection results based on other three operators such as Sobel,
Roberts, and Prewitt are compared in Figure 4. As can be seen
from Figure 4, the proposed method based on the improved
Canny operator in Section 2.1 can obtain a more accurate and
complete edge compared to themethods based on three other
operators.

In addition, we compare the global feature extraction
method based on the improved Canny operator with the
method based on traditional Canny operator. Comparative
results are shown in Figure 5, where original gray images are
in the first column, the detection results based on traditional
Canny operator are in the second column, and the detection
results based on the improvedCanny operator are in the third
column. Additionally, in order to verify the performance of
the proposed global feature extractionmethod under various
illumination, Figure 5(a) is captured in the morning in a
fine day with good illumination, Figures 5(b) and 5(c) are
captured at dusk in a cloudy day, and Figure 5(d) is captured
in the afternoon in a fine day, but the bus is partially covered
by shadow for the lighting is shielded by a building nearby.
As can be seen from Figure 5, we can find that the method
based on the improved Canny operator can obtain a more
continuous and complete edge with respect to different kinds
of vehicles compared to the method based on traditional
Canny operator, even though the illumination condition was
poor.

4.3. Results of Local Feature Extraction. Based on themethod
proposed in Section 2.2.2, we use the Gabor wavelet kernels
with five different scales and eight different orientations
to extract the Gabor feature of every local patch of the
detected vehicle image. Take the patch of the hood as an
example, the extracted Gabor feature image by a set of Gabor
wavelet kernels with five different scales and eight different
orientations is shown in Figure 6.

As can be seen from Figure 6, the feature extraction
method based on the Gabor wavelet kernels can extract many
structural details of local patch of vehicle image frommultiple
scales and multiple orientations, and the extracted Gabor
feature images can be regarded as local feature for the VTR.

In the paper, the resolution of every patch is defined as96×24 pixels. After implementing the convolution operation,
the dimension of augmented feature vector 𝜒will reach 92160
(40 × 96 × 24). The increased dimension will result in slow
computation speed and largememory occupation, which will
be adverse to the following recognition and classification.
Therefore, before implementing the VTR, we need to down-
sample 𝜒 using an appropriate sample factor 𝜌. In order to
select an appropriate sample factor, we experiment on the
augmented Gabor feature vector 𝜒(𝜌) defined in Section 2.2.2
with five different downsampling factors, respectively: 𝜌 =16, 32, 64, 128, or 256. Experimental results show that the
average accuracy rates based on the DSRC proposed in
Section 3.3 are 95.8%, 95.9%, 95.9%, 96.8%, 73%, and 34%,
respectively, when 𝜌 = 1, 16, 32, 64, 128, or 256. It is very clear
that when 𝜌 = 64, the DSRC has the highest accuracy rate.
Therefore, in this paper, we let 𝜌 = 64, and the dimension
of the augmented Gabor feature vector is reduced to 1440
(40×12×3) accordingly, which will reduce the computational
complexity of VTR on the premise to assure a high recogni-
tion accuracy.

4.4. Results of Two-Stage Classification. In order to demon-
strate the performance of the proposed two-stage clas-
sification strategy, we introduce three evaluation criteria:
precision, recall, and accuracy [30]. Their definitions are as
follows: precision = TP/(TP + FP), recall = TP/(TP + FN),
and accuracy = (TP + TN)/(TP + FN + FP + TN), where
TP, FP, FN, and TN are abbreviations for true positives, false
positives, false negatives, and true negatives, respectively.

We randomly select 400 samples as training samples and
400 samples as test samples from four vehicle type datasets,
bus, truck, van, and sedan, respectively.

4.4.1. Results of the First Stage of Classification. For the first
stage of classification, we experiment on the whole dataset.
We randomly select 1200 samples as training samples and
400 samples as test samples. If the type of the test sample is
recognized as bus or truck, then the test sample is determined
as a large vehicle. Similarly, if the type of the test sample is
recognized as van or sedan, then the test sample is determined
as a small vehicle. Table 1 shows the experimental results
where the test samples are captured under good illumination
and no occlusion. Further, Table 2 gives the results under bad
illumination or partial occlusion.

As can be seen from Tables 1 and 2, the first stage
of classification still has high accuracy and reliability, even
though the test samples are captured under bad illumination
or partial occlusion.

4.4.2. Results of the Second Stage of Classification. Based on
the result of the first stage of classification, if the test sample
is recognized as a large vehicle, the large vehicle dataset
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(a) Fine day

(b) Partially occluded

(c) Rainy day

(d) Dusk and night

Figure 3: Example images under various conditions.

including the bus and truck images needs to be used in the
following second stage of classification. Similarly, if the test
sample is recognized as a small vehicle, the small vehicle
dataset including the van and sedan images needs to be used.

We still randomly select 1200 samples as training samples and
400 samples as test samples from the large vehicle dataset
or small vehicle dataset in the second stage of classification.
Table 3 shows the experimental results where the test samples
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(a) Original image (b) Sobel based image (c) Roberts based image

(d) Prewitt based image (e) Improved Canny image

Figure 4: Edge detection results based on improved Canny operator and other operators.

are captured under good illumination or no occlusion. Table 4
gives the results under bad illumination or partial occlusion.

As can be seen from Tables 3 and 4, although the
performance of the second stage of classification slightly
degrades compared with the first stage of classification, it still
has very good reliability.

To verify that the proposed method exploiting the dic-
tionary learning scheme based on Fisher discrimination
criterion is effective, after implementing the first stage of
classification, we use the traditional SRC method that does
not exploit the dictionary learning scheme based on Fisher
discrimination criterion to implement the second stage of
classification. The classification results under good illumina-
tion and no occlusion are shown in Table 5.

As can be seen from Tables 3 and 5, the proposed
classification method that exploits the dictionary learning
scheme based on Fisher discrimination criterion is superior
to the traditional method in terms of precision, recall,
and accuracy. Therefore, exploiting the dictionary learning
scheme based on Fisher discrimination criterion in the
second stage of classification is very effective for improving
recognition performance of classifier for the VTR.

In order to demonstrate the efficacy of the two-stage clas-
sification strategy, the proposed KNNPC in Section 3.2 and
theDSRC in Section 3.3 are regarded as single-stage classifiers
to implement the classification task of four types of vehicles,
respectively.We also randomly select 1200 samples as training
samples and 400 samples as test samples from the whole
dataset. The results of single-stage classification based on the
KNNPC and global feature and those based on the DSRC
and local feature are shown in Tables 6 and 7, respectively.
It is clearly noted that the proposed two-stage classification
strategy overpasses the single-stage classification strategy in
terms of precision, recall, and accuracy. Further analysis finds
out that the extracted global feature has an excellent ability
to distinguish the large vehicles from small vehicles or to
distinguish the small vehicles from large vehicles based on the
KNNPC.When the four types of vehicles are mixed together,
it becomes difficult for the global feature to distinguish the
buses or trucks in the large vehicle dataset or distinguish the
vans or sedans in the small vehicle dataset. Moreover, when
the four types of vehicles are mixed together, the single-stage
classification based on the DSRC and local feature needs to
train more classifier parameters simultaneously using more
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(a) Van

(b) Sedan

(c) Truck

(d) Bus

Figure 5: Global feature extraction of four types of vehicles based on traditional and improved Canny operators under various illumination.
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(a) Original image

(b) Gabor feature image

Figure 6: Extracted Gabor feature image.

Table 1: Results of first stage of classification under good illumina-
tion and no occlusion.

Vehicle type Precision Recall Accuracy
Large vehicle 98.2% 96.9% 98.7%
Small vehicle 98.1% 97.2% 98.5%

Table 2: Results of first stage of classification under bad illumination
or partial occlusion.

Vehicle type Precision Recall Accuracy
Large vehicle 91.6% 90.8% 91.7%
Small vehicle 91.3% 90.6% 91.1%

Table 3: Results of second stage of classification under good
illumination and no occlusion.

Vehicle type Precision Recall Accuracy
Bus 96.1% 96.2% 96.4%
Truck 96.7% 95.9% 96.6%
Van 96.1% 95.8% 96.3%
Sedan 95.6% 96.3% 96.2%

Table 4: Results of second stage of classification under bad illumi-
nation or partial occlusion.

Vehicle type Precision Recall Accuracy
Bus 88.3% 87.7% 87.3%
Truck 91.2% 89.3% 90.9%
Van 89.1% 90.1% 89.5%
Sedan 88.2% 87.3% 87.6%

training samples than when two types of vehicles are mixed
together for a given recognition performance. Therefore, the
performance of the single-stage classification based on the
DSRC and local feature will degrade compared with the
proposed two-stage classification strategy.

Table 5: Results of second stage of classification without the dictio-
nary learning scheme based on Fisher discrimination criterion.

Vehicle type Precision Recall Accuracy
Bus 90.8% 91.6% 91.1%
Truck 91.3% 90.8% 91.7%
Van 90.7% 91.5% 91.3%
Sedan 90.8% 91.1% 90.6%

Table 6: Results of single-stage classification based on the KNNPC
and global feature.

Vehicle type Precision Recall Accuracy
Bus 88.8% 88.3% 88.9%
Truck 88.8% 88.7% 88.2%
Van 88.1% 87.8% 87.9%
Sedan 88.0% 87.7% 87.6%

Table 7: Results of single-stage classification based on theDSRCand
local feature.

Vehicle type Precision Recall Accuracy
Bus 92.1% 93.2% 92.8%
Truck 92.3% 92.8% 92.5%
Van 91.8% 91.6% 92.1%
Sedan 91.3% 90.8% 91.2%

4.5. Comparison of Results with Other Methods. In order to
compare our method with other popular methods, we test
our method on the dataset used in [31]. Similar to [31], the
experiments on daylight images and nighttime images are
performed, respectively. Before implementing the classifica-
tion, we firstly divide the dataset in [31] into two categories:
large vehicle dataset and small vehicle dataset, where large
vehicle dataset consists of two types of vehicles, bus and truck,
and small vehicle dataset consists of three types of vehicles,
passenger car, minivan, and sedan. Our method averagely
achieves 96.3% classification accuracy on daylight images and
89.5% on nighttime images, better than the results of previous
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Table 8: Comparison between our method’s results and other
methods’ results.

Methods Accuracy
Daylight Nighttime

Psyllos et al. [32] 78.3% 73.3%
Petrovic and Cootes [33] 84.3% 82.7%
Peng et al. [31] 90.0% 87.6%
Dong and Jia [8] 91.3% —
Dong et al. [1] 96.1 89.4
Ours 96.3% 89.7%

methods, as demonstrated in Table 8. Additionally, we also
test our method on the BIT-Vehicle dataset provided in [1];
our method achieves 90.1% classification accuracy, yet the
accuracy of the method used in [1] reaches 88.11%.

The underlying reasons are as follows: the proposed
Canny edge operator and Gabor wavelet kernels are able
to extract discriminative global and local features for VTR.
The proposed two-stage classification strategy can leverage
the advantages of the extracted global and local features
according to their characteristics; that is, the extracted global
feature that can represent the geometrical contour of a vehicle
is just applied to the first stage of classification to determine
whether the test sample belongs to large vehicle or small
vehicle, and then the local feature that can represent the
structural details of a vehicle is just applied to the second stage
of classification to determine whether the sample belongs to
bus or truck in the large vehicle dataset as well as van or
sedan in the small vehicle dataset. The dictionary learning
scheme based on Fisher discrimination criterion is able to
learn a discriminative classifier for precision recognition in
the second stage of classification. Extracting local feature
from the four partitioned patches enables strong robustness
to partial occlusion.

5. Conclusions

The two key steps of improving the VTR are the feature
extraction and classifier design. Based on the need to rec-
ognize the vehicle type accurately and reliably, we propose
a VTR method combining global and local features via two-
stage classification.The improvedCanny edge detection algo-
rithm is capable of extracting the continuous and complete
global feature. The employed Gabor wavelet kernels with five
scales and eight orientations are able to successfully extract
the local feature. The proposed KNNPC is able to realize the
preliminary recognition of a large vehicle or small vehicle
based on the global feature. Further, the DSRC has a stronger
ability in recognizing bus, truck, van, or sedan based on the
local feature. As demonstrated by the experiments on the
challenging dataset and a compared dataset, the proposed
method can solve the VTR problem much more efficiently
and outperforms existing state-of-the-art methods.

The study offers the possibility of developing more
sophisticated VTR methods. First, this method can be
extended to the VTR context involving more vehicle types.

Second, more effective features and corresponding feature
extraction algorithms can be adopted. Third, more discrim-
inative classifiers can be incorporated into the two-stage
classification.
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