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A microbial cultivation process model with variable biomass yield, control of substrate concentration, and biomass recycle
is formulated, where the biochemical kinetics follows an extension of the Monod and Contois models. Control of substrate
concentration allows for indirect monitoring of biomass and dissolved oxygen concentrations and consequently obtaining high
yield and productivity of biomass. Dynamics analysis of the proposed model is carried out and the existence of order-1 periodic
solution is deduced with a formulation of the period, which provides a theoretical possibility to convert the state-dependent control
to a periodic one while keeping the dynamics unchanged. Moreover, the stability of the order-1 periodic solution is verified by a
geometric method. The stability ensures a certain robustness of the adopted control; that is, even with an inaccurately detected
substrate concentration or a deviation, the system will be always stable at the order-1 periodic solution under the control. The
simulations are carried out to complement the theoretical results and optimisation of the biomass productivity is presented.

1. Introduction

Microorganisms play an important role in nature and their
activities have numerous industrial applications [1]. For that
reason, bioreactor engineering, as a branch of chemical engi-
neering and biotechnology, is an active area of research on
microbial cultivation process, including development, con-
trol, and commercialization of new technology [2]. Reaching
optimal results and attainingmaximal profits requiremodern
control strategies based on mathematical models or artificial
intelligence methods. Many dynamic models concerning
microbial cultivation processes, employing several types of
reactions and control technologies, have been established [3–
6]. In microbial cultivation process, there are a lot of factors
affecting the growth and reproduction of the microorgan-
isms. For example, for some aerobic microorganisms, the
dissolved oxygen content in the bioreactor medium is a key
factor tomicrobial growth. In order tomaintain the dissolved
oxygen content in an appropriate range, it is necessary to
monitor and control the dissolved oxygen concentration

(DOC) in the bioreactor medium since a low level of DOC
decreases biomass yield and specific growth rate.

For a given microorganism, the oxygen demand is
affected by several factors, for example, the biomass and
substrate concentrations and cell metabolism state. The
control of biomass and substrate concentrations is one of
the most important ways to maintain an appropriate dis-
solved oxygen concentration. To obtain this goal, several
approaches to bioprocess design have been presented in
recent years. Especially attractive is the use of the self-cycling
bioprocess. In such a bioprocess, impulsive controls are
introduced once the monitored state reaches an established
control level. In fact, many biological phenomena such as
bursting rhythm models in biology and pharmacokinetics
or frequency modulated systems exhibit impulsive effects,
and periodic and state-dependent impulsive effects are two
commonly occurring ones. In recent years, state-dependent
impulsive control strategies have been used in the study
on the interaction between wild and transgenic mosquito
populations [7], predator-prey systems [8–11], management
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of pests and fisheries [12–14], pulse vaccination for human
infectious diseases [15], and bioprocess models [16–20]. In
bioprocess, self-cycling is a new approach to deal with
important environmental problems [16], and for that reason
it has become a subject of consideration presented in this
work. In general, the self-cycling bioprocess is a computer-
controlled system, which can be considered as a specific
type of continuous bioprocess. The impulsive effect causes
the removal of a certain fraction of the medium and the
input of an equal volume of fresh medium [16, 21]. The
aim of introduction of the impulsive effect is to provide
among others appropriate oxygen conditions by limitation
of the biomass concentration, which stems from the fact
that insufficient dissolved oxygen concentration decreases the
biomass yield, specific growth rate, and biomass productivity.

In bioprocess control, a key question is how to monitor
reactant concentrations in a reliable and cost-effective man-
ner [22]. However, in many industrial applications, not all of
concentrations of the components (which are involved and
critical for quality control) are available for online measure-
ment. In this work, the substrate concentration is assumed
to be measured online [16, 23, 24], and the biomass con-
centration is controlled indirectly by substrate concentration
regulation. The microorganisms grow by assimilation of the
substrate; for that reason the biomass concentration increases
and substrate concentration decreases.Thus, in order to keep
the biomass concentration lower than a critical level, the
substrate concentration should be kept higher than a given
level. This is also reasonable since a low level of the substrate
concentration is disadvantageous to the transformation of
microorganisms.

Based on above considerations, this work proposes a
mathematical model of a microbial cultivation process with
variable biomass yield and substrate regulation. The paper
is organized as follows. In Section 2, a microbial cultivation
processmodel of the considered bioprocess is formulated, the
biochemical kinetics following an extension of the Monod
and Contois models. In Section 3, the dynamic analysis of the
proposed model is carried out, and the existence of order-
1 periodic solution is deduced. The complete expression of
the period of the order-1 periodic solution is also given. In
addition, it is shown that there does not exist any order-𝑘 (𝑘 ≥

2) periodic solution. Next, a stability criterion for a general
semicontinuous dynamic system is presented by a geometric
method, and the stability of the order-1 periodic solution is
verified. In Section 4, numerical simulations are carried out
to complement the theoretical results and optimisation of the
biomass productivity is presented. The final conclusions are
presented in Section 5.

2. Model Formulation and Preliminaries

2.1. Model Formulation. A general model to describe the
microbial growth on a limiting substrate is of the form

𝑑𝑠

𝑑𝑡
= 𝐷 (𝑠

𝑓
− 𝑠) −

1

𝑌𝑥/𝑠

𝜇 (𝑠, 𝑥) 𝑥

𝑑𝑥

𝑑𝑡
= 𝜇 (𝑠, 𝑥) 𝑥 − 𝐷𝑥

𝑠 (𝑡0) = 𝑠0,

𝑥 (𝑡0) = 𝑥0,

(1)

where 𝑥(𝑡) and 𝑠(𝑡) denote, respectively, the concentrations
of biomass and substrate in the bioreactor medium at time 𝑡

(g/L), 𝑠𝑓 denotes the substrate concentration in the input flow
(g/L), 𝐷 denotes the dilution rate (h−1) (𝐷 > 0: chemostat;
𝐷 = 0: batch process), 𝑌𝑥/𝑠 is the biomass yield (g/g)
defined as the ratio of the biomass produced to the amount
of substrate assimilated, and the function 𝜇(𝑠, 𝑥) describes
the biochemical kinetics, which is characterized by the cell
concentration (𝑥) and the limiting substrate concentration
(𝑠).

The key to the proper functioning of a bioreactor lies
mainly in understanding the growth rate of the biomass,
which plays an important role in the intrinsic oscillation
mechanisms [25]. Many kinetics models that have been
proposed in the literature, including Tessier [26], Monod
[27],Moser [28], Contois [29], andAndrews [30], address the
kinetics of the growth of the cell mass in the bioreactor and
most of these models report expressions for specific growth
rate of cell mass. In this study, an extension of theMonod and
Contois models is introduced; that is,

𝜇 (𝑠, 𝑥) =
𝜇M𝑠

𝐾] |𝑥|
]
+ 𝑠

, (2)

where ] ≥ 0 is a constant and 𝐾] > 0 is constant in the
extended Contois model (g/L) and |𝑥| is dimensionless bio-
mass concentration.

The biomass yield expression plays an important role
for the generation of oscillatory behaviour in continuous
bioreactor models [25]. In many models of bioreactors,
it is assumed that the biomass yield coefficient is a con-
stant during the course of the reaction. However, several
researchers also suggest that the experimentally found oscil-
latory behaviour of microbial population can be explained
when the biomass yield coefficient is dependent on the
substrate concentration [31, 32] and cannot when the biomass
yield coefficient is constant. Thus a variable biomass yield is
presented as [25, 33–35]:

𝑌𝑥/𝑠 = 𝑎 + 𝑏𝑠, 𝑎 > 0, 𝑏 ≥ 0. (3)

To effectively utilize the limiting substrate and avoid
unnecessary waste, a modification on the chemostat is made
by changing the inflow and outflow from continuous to
impulsive. The sketch map of the apparatus is illustrated in
Figure 1. The apparatus includes an optical sensing device
which continuously monitors the substrate concentration in
the bioreactor medium and two switches which work in
a synchronous way. When the substrate concentration is
higher than a substrate low control level, the switches are
closed.Once the substrate concentration 𝑠(𝑡) in the bioreactor
medium decreases to a control level 𝑠CL (where 0 < 𝑠min ≤

𝑠CL ≤ 𝑠max < 𝑠
𝑓), then part of the medium containing

biomass and substrate is discharged from the bioreactor to
a membrane filter, and the next portion of medium of a given
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Figure 1: Schematic view of the impulsive bioprocess.

substrate concentration is inputted impulsively. Therefore,
system (1) can be modified as follows by introducing the
impulsive state feedback control:

𝑑𝑠

𝑑𝑡
= −

1

𝑎 + 𝑏𝑠

𝜇M𝑠

𝐾] |𝑥|
]
+ 𝑠

𝑥,

𝑑𝑥

𝑑𝑡
=

𝜇M𝑠

𝐾] |𝑥|
]
+ 𝑠

𝑥,

𝑠 > 𝑠CL,

Δ𝑠 = (1 − 𝑘)𝑤𝑓 (𝑠
𝑓
− 𝑠) ,

Δ𝑥 = −𝑤𝑓 [1 − (1 − 𝜃) 𝑘] 𝑥,

𝑠 = 𝑠CL,

𝑥 (𝑡
+
0 ) = 𝑥0,

𝑠 (𝑡
+
0 ) = 𝑠0,

(4)

where 𝑠
𝑓 is the concentration of the feed substrate which is

inputted impulsively, 0 < 𝑤
min
𝑓 ≤ 𝑤𝑓 ≤ 𝑤

max
𝑓 < 1 is the

proportion of medium which is removed from the bioreactor
in each substrate oscillation cycle, 0 < 𝜃min ≤ 𝜃 ≤ 1

represents the biomass filter efficiency constant, and 0 ≤ 𝑘 ≤

𝑘max < 1 is the substrate recycle part.

2.2. Preliminaries. Let us consider a general model with im-
pulsive effects:

𝑑𝑠

𝑑𝑡
= 𝐹 (𝑠, 𝑥) ,

𝑑𝑥

𝑑𝑡
= 𝐺 (𝑠, 𝑥) ,

if 𝜙 (𝑠, 𝑥) ̸= 0,

Δ𝑠 = 𝛼 (𝑠, 𝑥) ,

Δ𝑥 = 𝛽 (𝑠, 𝑥) ,

if 𝜙 (𝑠, 𝑥) = 0,

(5)

where 𝐹(𝑠, 𝑥) and 𝐺(𝑠, 𝑥) are indefinitely differentiable with
respect to (𝑠, 𝑥) ∈ Ω ⊂ R2, and 𝜙, 𝛼, and 𝛽 are linearly
dependent on 𝑠 and 𝑥, that is, 𝜙𝑠, 𝜙𝑥, 𝛼𝑠, 𝛼𝑥, 𝛽𝑠, and 𝛽𝑥 are
constant.

Denote

𝑀IMP = {(𝑠, 𝑥) | 𝜙 (𝑠, 𝑥) = 0} ,

𝑁PHA = {(𝑠, 𝑥) | 𝑠 = 𝑠
󸀠
+ 𝛼 (𝑠

󸀠
, 𝑥

󸀠
) , 𝑥 = 𝑥

󸀠

+ 𝛽 (𝑠
󸀠
, 𝑥

󸀠
) , (𝑠

󸀠
, 𝑥

󸀠
) ∈ 𝑀IMP} .

(6)

Then 𝑀IMP is referred to as the control set, which contains
all the states at which the control strategy is taken on and
𝛼 and 𝛽 describe the effects of the control strategy. When
the state variables (𝑠, 𝑥) arrive at the control set 𝑀IMP, the
impulsive control measures are taken; then the state variables
(𝑠, 𝑥) jump from 𝑀IMP to the set 𝑁PHA.

Let x(𝑡) = (𝑠(𝑡), 𝑥(𝑡)) be any solution of system (5). Let
𝛾𝑡(x, x0) = x(𝑡), given the initial value x(0) = x0. Then,
the (forward) orbit is the set of all values that this trajectory
obtains 𝛾(x, x0) = {𝛾𝑡(x, x0) | 𝑡 ≥ 𝑡0}, also denoted as 𝛾(x) in
short. Denote x𝑘 = x(𝑡+𝑘 ) ∈ 𝛾(x), where 𝑡𝑘 ∈ ∏ ≜ {𝑡𝑘 | 𝑘 =

1, 2, . . .} with x(𝑡𝑘) ∈ 𝑀IMP.
Let 𝑆 ⊆ R2

= (−∞, +∞)
2 be an arbitrary set, let 𝑃 ∈ R2

be an arbitrary point, and 𝛿 > 0.Then the distance between 𝑃
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and 𝑆 and the noncentral 𝛿−neighborhood of 𝑃 are denoted
by

𝑑 (𝑃, 𝑆) = inf
𝑃0∈𝑆

󵄨󵄨󵄨󵄨𝑃 − 𝑃0
󵄨󵄨󵄨󵄨 ,

𝑈
𝑜
𝛿 (𝑃) = {𝑄 | 0 < 𝑑 (𝑃, 𝑄) ≤ 𝛿} .

(7)

Definition 1 (periodic orbit [36, 37]). An orbit 𝛾(x) of system
(5) is said to be periodic if there exists a positive integer𝑚 ⩾ 1

such that x𝑚 = x0. Denote 𝑘 = min{𝑚 | x𝑚 = x0}. Then the
orbit 𝛾(x) is said to be an order-𝑘 periodic orbit.

Definition 2 (𝜖-close [38]). Two orbits 𝛾(x) and 𝛾(x̂) are 𝜖-
close if there is a reparameterization of time (a smooth,
monotonic function) 𝑡̂(𝑡) such that

󵄨󵄨󵄨󵄨𝛾𝑡 (x) − 𝛾 𝑡̂(𝑡) (x̂)
󵄨󵄨󵄨󵄨 < 𝜖 ∀𝑡 ≥ 𝑡0. (8)

Definition 3 (orbitally stable [36–38]). An orbit 𝛾(x̂) is said to
be orbitally stable if, for any 𝜖 > 0, there is a neighborhood
𝑉 of x̂ so that, for all x in 𝑉, 𝛾(x) and 𝛾(x̂) are 𝜖-close, as
illustrated in Figure 2.

Definition 4 (asymptotic orbital stability [36–38]). An orbit
𝛾(x̂) is said to be asymptotically orbitally stable if it is orbitally
stable and additionally𝑉may be chosen such that, for all x ∈

𝑉, there exists a constant 𝜏(x) so that |𝛾𝑡(x) − 𝛾𝑡−𝜏(x)(x̂)| → 0

as 𝑡 → ∞, as illustrated in Figure 3.

Definition 5 (successor function [37]). Suppose that the
control set 𝑀IMP and the phase set 𝑁PHA are both lines, as
illustrated in Figure 4. The coordinate on the phase set 𝑁PHA
is defined as follows: the origin is defined as the intersection
point between 𝑁PHA and the 𝑠-axis, denoted as 𝑂

󸀠, and
the coordinate of any point 𝑃 on 𝑁PHA is defined as the
distance between 𝑃 and 𝑂

󸀠. Let 𝑃3 denote the intersection
point between the trajectory starting from 𝑃1 and the control
set 𝑀IMP, and 𝑃4 denote the phase point of 𝑃3 after control
measures. Let𝑃2 denote the intersection point if the trajectory
starting from 𝑃1 intersects the phase set 𝑁PHA. Then 𝑃4 is
called as the successor point of𝑃1, and themapping from𝑃1 to
𝑃4 constructs the successor function. If𝑃2 exists, the successor
function is called type-II; that is, 𝑓

II
SOR(𝑃1) = 𝑑(𝑃4, 𝑂

󸀠
) −

𝑑(𝑃1, 𝑂
󸀠
); otherwise, it is called type-I; that is, 𝑓I

SOR(𝑃1) =

𝑑(𝑃4, 𝑂
󸀠
) − 𝑑(𝑃1, 𝑂

󸀠
). Moreover, the successor function is

continuous on 𝑁PHA.

Remark 6. If there exists a point 𝑃(𝑠𝑃, 𝑥𝑃) ∈ 𝑁PHA such that
𝑓
I
SOR(𝑃) = 0 or 𝑓

II
SOR(𝑃) = 0, then the orbit starting from 𝑃

forms a periodic orbit.

3. Main Results

It is visible that 𝑀IMP = {(𝑠, 𝑥) | 𝑠 = 𝑠CL, 𝑥 ≥ 0} and

𝑁PHA = {(𝑠, 𝑥) | 𝑠 = 𝑠UP ≜ (1 − 𝑘)𝑤𝑓𝑠
𝑓

+ [1 − (1 − 𝑘)𝑤𝑓] 𝑠CL, 𝑥 ≥ 0} .

(9)

x

x

x̂

x̂

𝛾(x)

𝛾(x)

𝛾(x̂)

Figure 2: Orbital stability.
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3.1. Qualitative Analysis of the Bioprocess Model. By (4) it is
easily obtained that

𝑑𝑥 = − (𝑎 + 𝑏𝑠) 𝑑𝑠. (10)

Integrating both sides of (10) from 𝑡0 to 𝑡 yields

𝑥 (t) − 𝑥 (𝑡0) = 𝑎𝑠 (𝑡0) +
𝑏𝑠

2
(𝑡0)

2
− 𝑎𝑠 (𝑡) −

𝑏𝑠
2
(𝑡)

2
. (11)

Now it is assumed that (𝑠(𝑡0), 𝑥(𝑡0)) ∈ 𝑁PHA; that is, 𝑠(𝑡0) =

𝑠UP. Let 𝑡1 be the first time for the trajectory to reach the
control set 𝑀IMP; that is, 𝑠(𝑡1) = 𝑠CL. Then

𝑥 (𝑡1) − 𝑥 (𝑡0) = 𝑎𝑠 (𝑡0) +
𝑏𝑠

2
(𝑡0)

2
− 𝑎𝑠 (𝑡1) −

𝑏𝑠
2
(𝑡1)

2

= 𝑎 (𝑠UP − 𝑠CL) +
𝑏 (𝑠

2
UP − 𝑠

2
CL)

2
≜ Δ 𝑠.

(12)

Denote 𝑥1 = 𝑥(𝑡1). Due to the effects of the impulsive control,
one has

𝑥 (𝑡
+
1 ) = 𝑥 (𝑡1) − [1 − (1 − 𝜃) 𝑘]𝑤𝑓𝑥 (𝑡1) . (13)

Thus
𝑥 (𝑡

+
1 ) − 𝑥 (𝑡0) = 𝑥 (𝑡1) − [1 − (1 − 𝜃) 𝑘]𝑤𝑓𝑥 (𝑡1)

− 𝑥 (𝑡0)

= Δ 𝑠 − [1 − (1 − 𝜃) 𝑘]𝑤𝑓𝑥 (𝑡1)

= (1 − (1 − (1 − 𝜃) 𝑘)𝑤𝑓) Δ 𝑠

− [1 − (1 − 𝜃) 𝑘]𝑤𝑓𝑥 (𝑡0) .

(14)
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Theorem 7. System (4) admits a unique order-1 periodic solu-
tion.

Proof. For any 𝑃(𝑠𝑃, 𝑥𝑃) ∈ 𝑁PHA, by Definition 5, one has

𝑓
I
SOR (𝑠𝑃, 𝑥𝑃) = (1 − (1 − (1 − 𝜃) 𝑘)𝑤𝑓) Δ 𝑠

− [1 − (1 − 𝜃) 𝑘]𝑤𝑓𝑥𝑃.

(15)

Define

𝑥1 ≜
𝑎 (𝑠UP − 𝑠CL) + 𝑏 (𝑠

2
UP − 𝑠

2
CL) /2

[1 − (1 − 𝜃) 𝑘]𝑤𝑓

,

𝑥0 ≜ (1 − [1 − (1 − 𝜃) 𝑘]𝑤𝑓) 𝑥1.

(16)

Denote 𝑃(𝑠UP, 𝑥0). Then there is 𝑓
I
SOR(𝑃) = 0, which implies

that the trajectory of (4) starting from 𝑃 first intersects
the control set 𝑀IMP at 𝑄(𝑠CL, 𝑥1) and then jumps to 𝑃

again, which forms an order-1 periodic solution. In addition,
𝑓
I
SOR(𝑃) < 0 for 𝑥𝑃 > 𝑥0 and 𝑓

I
SOR(𝑃) > 0 for 𝑥𝑃 < 𝑥0. This

means that 𝑓I
SOR(𝑃) = 0 if and only if 𝑥𝑃 = 𝑥0; that is, the

order-1 periodic solution is unique.

Theorem 8. System (4) does not admit any order-𝑘 (𝑘 ≥ 2)
periodic solution.

Proof. Define

𝑓 (𝑥) = 𝑥 + Δ 𝑠,

𝑔 (𝑥) = 𝑥 − [1 − (1 − 𝜃) 𝑘]𝑤𝑓𝑥,

𝑥 ≥ 0.

(17)

Then 𝑓(𝑥0) = 𝑥1 and 𝑔(𝑥1) = 𝑥0. In addition, there is
𝑓
I
SOR(𝑠UP, 𝑥) = 𝑔(𝑓(𝑥)) − 𝑥. For any point 𝑃(𝑠𝑃, 𝑥𝑃) ∈ 𝑁PHA,

if 𝑥𝑃 > 𝑥0, then 𝑓(𝑥𝑃) > 𝑓(𝑥0) = 𝑥1; thus 𝑥𝑃 > 𝑔(𝑓(𝑥𝑃)) >

𝑔(𝑥1) = 𝑥0. Similarly, if 𝑥𝑃 < 𝑥0, then 𝑓(𝑥𝑃) < 𝑓(𝑥0) = 𝑥1;
thus𝑥𝑃 < 𝑔(𝑓(𝑥𝑃)) < 𝑔(𝑥1) = 𝑥0.This implies that the order-
𝑘 (𝑘 ≥ 2) periodic solution does not exist.

Let 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡) be the order-1 periodic solution
determined inTheorem 7; that is, 𝜉(𝑡0) = 𝑠UP, 𝜂(𝑡0) = 𝑥0 and
𝜉(𝑡0 + 𝑘𝑇) = 𝑠CL, 𝜂(𝑡0 + 𝑘𝑇) = 𝑥1, 𝑘 ≥ 0.

Theorem 9. The period of the order-1 periodic solution is

𝑇 = ∫

𝑠UP

𝑠CL

(𝑎 + 𝑏𝑠) [𝐾] (Γ0 − 𝑎𝑠 − 𝑏𝑠
2
/2)

]
+ 𝑠]

𝜇M𝑠 (Γ0 − 𝑎𝑠 − 𝑏𝑠2/2)
𝑑𝑠, (18)

where Γ0 ≜ 𝑥0 + 𝑎𝑠UP + 𝑏𝑠
2
UP/2.

Proof. For the order-1 periodic solution 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡), by
(11), one has

𝜂 (𝑡) = 𝜂 (𝑡0) + 𝑎𝜉 (𝑡0) +
𝑏𝜉

2
(𝑡0)

2
− 𝑎𝜉 (𝑡) −

𝑏𝜉
2
(𝑡)

2
,

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇.

(19)

Meanwhile, by (4), one has

𝑑𝑡 = −
(𝑎 + 𝑏𝑠) (𝐾]𝜂

]
+ 𝜉)

𝜇M𝜉𝜂
𝑑𝜉. (20)

Substituting (19) into (20) yields

𝑑𝑡 = −

(𝑎 + 𝑏𝜉) [𝐾] (Γ0 − 𝑎𝜉 − 𝑏𝜉
2
/2)

]
+ 𝜉]

𝜇M𝜉 (Γ0 − 𝑎𝜉 − 𝑏𝜉2/2)
𝑑𝜉. (21)

Integrating both sides of (21) from 𝑡0 to 𝑡0 + 𝑇 yields

𝑇 = ∫

𝑠UP

𝑠CL

(𝑎 + 𝑏𝑠) [𝐾] (Γ0 − 𝑎𝑠 − 𝑏𝑠
2
/2)

]
+ 𝑠]

𝜇M𝑠 (Γ0 − 𝑎𝑠 − 𝑏𝑠2/2)
𝑑𝑠. (22)

Besides the qualitative analysis of model (4) presented
above, the stability of the controlled system is also an impor-
tant issue to be considered. As far as the stability is concerned,
most of the works in literature rely on the Analogue of
Poincaré Criterion [36]. Recently, a geometric method is
used to verify the stability of the order-1 periodic solution
for a general semicontinuous dynamic system [13]. For the
convenience of readers, a detailed overview is presented.

3.2. Stability Criterion Representation. To test the stability
of the order-1 periodic solution 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡), the
behaviour of the orbit of system (5) starting from 𝑈

𝑜
𝛿(𝐴) ∩

𝑁PHA for given small 𝛿 > 0 should be characterized. Let
𝑅 be a point on the order-1 periodic orbit with rectangular
coordinates (𝜙(𝑙), 𝜑(𝑙)), where 0 ≤ 𝑙 ≤ 𝐿 is the arc length
between 𝐴 and 𝑅. To begin with, assume 𝑅 = 𝐴; that is,
𝑙 = 0. For a given point 𝐷 ∈ 𝑈

𝑜
𝛿(𝐴) ∩ 𝑁PHA, here assume

that 𝐷 locates above 𝐴, where the rectangular coordinates of
𝐴 are (𝜑(𝑙), 𝜓(𝑙)).The trajectory starting from𝐷will intersect
the normal of 𝐴 and the intersection point is denoted by 𝐴𝑘.
When 𝑡 increases, this trajectory intersects the normal of 𝐵
and the control set 𝑀IMP at 𝐵𝑘 and 𝐶, respectively.

Define

𝜌Γ ≜ max {𝜌𝐷 | 𝐷 ∈ 𝑈
𝑜
𝛿 (𝐴) ∩ 𝑁PHA} . (23)

If 𝜌Γ < 1, then the order-1 periodic solution 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡)

is orbitally asymptotically stable.
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Theorem 10 (stability criterion [13]). The order-1 𝑇-periodic
solution 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡) of system (5) is orbitally asymptoti-
cally stable if

∫

𝑇

0
[
𝜕𝐹

𝜕𝑠
(𝜉 (𝑡) , 𝜂 (𝑡)) +

𝜕𝐺

𝜕𝑥
(𝜉 (𝑡) , 𝜂 (𝑡))] 𝑑𝑡 < Ξ, (24)

where
Ξ

≜ ln(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝐼
𝜙𝑠 + 𝐺

𝐼
𝜙𝑥

𝐹𝐼
+ [(1 + 𝛽𝑥) 𝜙𝑠 − 𝛽𝑠𝜙𝑥] + 𝐺𝐼

+ [(1 + 𝛼𝑠) 𝜙𝑥 − 𝛼𝑥𝜙𝑠]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) ,

(25)

where 𝐹𝐼
(𝐺

𝐼
) represents the value of 𝐹 (𝐺) at 𝐶(𝜉(𝑇), 𝜂(𝑇)) ∈

𝑀IMP, and 𝐹
𝐼
+ (𝐺

𝐼
+) represents the value of 𝐹 (𝐺) at 𝐴(𝜉(0),

𝜂(0)) ∈ 𝑁PHA.

Proof. As illustrated in Figure 5, the slope of the control set is
𝐾𝑀IMP

= −𝜙
󸀠
𝑠/𝜙

󸀠
𝑥 (in case of 𝜙

󸀠
𝑥 = 0, 𝐾𝑀IMP

is equal to ∞).
Due to the specific forms of the impulsive control, for any
𝑅(𝑠𝑅, 𝑥𝑅) ∈ 𝑀IMP, if 𝛼

󸀠
𝑠, 𝛼

󸀠
𝑥, 𝛽

󸀠
𝑠, and 𝛽

󸀠
𝑥 are constants, one has

(
𝑠𝑅+

𝑥𝑅+
) = (

1 + 𝛼
󸀠
𝑠 𝛼

󸀠
𝑥

𝛽
󸀠
𝑠 1 + 𝛽

󸀠
𝑥

)(
𝑠𝑅

𝑥𝑅

) + (
𝛼 (0, 0)

𝛽 (0, 0)
) . (26)

Denote

Φ = (
1 + 𝛼

󸀠
𝑠 𝛼

󸀠
𝑥

𝛽
󸀠
𝑠 1 + 𝛽

󸀠
𝑥

) . (27)

Then

(𝜙
󸀠
𝑠, 𝜙

󸀠
𝑥)

Φ
−1

|Φ|
(

𝑠𝑅+

𝑥𝑅+
) − (𝜙

󸀠
𝑠, 𝜙

󸀠
𝑥)

Φ
−1

|Φ|
(
𝛼 (0, 0)

𝛽 (0, 0)
)

= −𝜙 (0, 0) ,

(28)

which implies that the phase set 𝑁PHA is also a straight line
with slope 𝐾𝑁PHA

, where

𝐾𝑁PHA
= −

𝜙
󸀠
𝑠 (1 + 𝛽

󸀠
𝑥) − 𝜙

󸀠
𝑥𝛽

󸀠
𝑠

𝜙󸀠
𝑥 (1 + 𝛼󸀠

𝑠) − 𝜙󸀠
𝑠𝛼

󸀠
𝑥

=
𝛽
󸀠
𝑠 + (1 + 𝛽

󸀠
𝑥)𝐾𝑀IMP

(1 + 𝛼󸀠
𝑠) + 𝛼󸀠

𝑥𝐾𝑀IMP

.

(29)

On the other hand, by the effect of the impulsive controls,
one has

𝑑 (𝐴, 𝐶)

= √[(1 + 𝛼󸀠
𝑠 + 𝐾𝑀IMP

𝛼𝑥)
2
+ (𝛽󸀠

𝑠 + 𝐾𝑀IMP
(1 + 𝛽󸀠

𝑥))
2
] (𝑠𝐶 − 𝑠𝐵)

2
.

(30)

Since 𝑑(𝐵, 𝐶) = √(𝑠𝐶 − 𝑠𝐵)
2
+ (𝑥𝐶 − 𝑥𝐵)

2
=

√(1 + 𝐾2
𝑀IMP

)(𝑠𝐶 − 𝑠𝐵)
2, then

𝑑 (𝐴, 𝐶)

𝑑 (𝐴,𝐷)
=

󵄨󵄨󵄨󵄨󵄨
1 + 𝛼

󸀠
𝑠 + 𝐾𝑀IMP

𝛼
󸀠
𝑥

󵄨󵄨󵄨󵄨󵄨
√

1 + 𝐾
2
𝑁PHA

1 + 𝐾2
𝑀IMP

𝑑 (𝐵, 𝐶)

𝑑 (𝐴,𝐷)
. (31)

x
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Figure 5: Illustration of the disturbance nearby the periodic orbit of
model (5).

Let 𝜃 denote the angle between the normal at 𝐴 and the
phase line and let 𝜗 denote the angle between the normal at
𝐵 and the impulse line. When𝐷 is sufficiently close to𝐴, one
has 𝑑(𝐴, 𝐴𝑘) ≈ 𝑑(𝐴,𝐷) cos(𝜃), 𝑑(𝐵, 𝐵𝑘) ≈ 𝑑(𝐵, 𝐶) cos(𝜗),
which implies that

𝑑 (𝐵, 𝐶)

𝑑 (𝐴,𝐷)
=

𝑑 (𝐵, 𝐵𝑘)

𝑑 (𝐴, 𝐴𝑘)

cos (𝜃)
cos (𝜗)

. (32)

Denote 𝜃1 (𝜗1) as the angle between𝑁PHA (𝑀IMP) and the
𝑠-axis and 𝜃2 (𝜗2) as the angle between the tangent at 𝐴 (𝐵)
and the 𝑠-axis. Then there are tan(𝜃1) = −𝐾𝑁PHA

, tan(𝜃2) =

𝑥
󸀠
𝐴, tan(𝜗1) = −𝐾𝑀IMP

, and tan(𝜗2) = 𝑥
󸀠
𝐵. Thus

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cos (𝜃)
cos (𝜗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
󸀠
𝐴 − 𝐾𝑁PHA

𝑥󸀠
𝐵 − 𝐾𝑀IMP

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

√(1 + (𝑥󸀠
𝐵)

2
) (1 + 𝐾2

𝑀IMP
)

√(1 + (𝑥󸀠
𝐴)

2
) (1 + 𝐾2

𝑁PHA
)

. (33)

Summing up (31)–(33) yields

𝑑 (𝐴, 𝐶)

𝑑 (𝐴,𝐷)
=

󵄨󵄨󵄨󵄨󵄨
1 + 𝛼

󸀠
𝑠 + 𝐾𝑀IMP

𝛼
󸀠
𝑥

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
󸀠
𝐴 − 𝐾𝑁PHA

𝑥󸀠
𝐵 − 𝐾𝑀IMP

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅

√1 + (𝑥󸀠
𝐵)

2

√1 + (𝑥󸀠
𝐴)

2

𝑑 (𝐵, 𝐵𝑘)

𝑑 (𝐴, 𝐴𝑘)
.

(34)

To characterize the ratio 𝑑(𝐵, 𝐵𝑘)/𝑑(𝐴, 𝐴𝑘), it needs to
introduce the curvilinear coordinates (𝑙, 𝑛); the description
is as follows: 𝑙 represents length of the arc starting from 𝐴

and its increasing direction is consistent with that of time 𝑡;
𝑛 represents the normal length and its positive direction is to
the right side when traveling along the periodic orbit.

The relationship between the rectangular coordinates
(𝑠, 𝑥) and the curvilinear coordinates (𝑙, 𝑛) on point 𝑅 is 𝑠 =

𝜙(𝑙) − 𝑛𝜑
󸀠
(𝑙), 𝑥 = 𝜑(𝑙) + 𝑛𝜙

󸀠
(𝑙), where

𝜙
󸀠
(𝑙) =

𝑑

𝑑𝑙
𝜙 =

𝐹
0

√(𝐹0)
2
+ (𝐺0)

2
,

𝜑
󸀠
(𝑙) =

𝑑

𝑑𝑙
𝜑 =

𝐺
0

√(𝐹0)
2
+ (𝐺0)

2
.

(35)
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𝐹
0 and𝐺

0 denote the values of𝐹 and𝐺 at the order-1 periodic
orbit x = (𝜙(𝑙), 𝜑(𝑙)); that is, 𝐹0

= 𝐹(𝜙(𝑙), 𝜑(𝑙)) and 𝐺
0

=

𝐺(𝜙(𝑙), 𝜑(𝑙)). It can be inferred that

𝑑

𝑑𝑙
𝑛 =

𝐺𝜙
󸀠
− 𝐹𝜑

󸀠

𝐹𝜙󸀠 + 𝐺𝜑󸀠
−

𝑛 (𝐹𝜙
󸀠󸀠
+ 𝐺𝜑

󸀠󸀠
)

𝐹𝜙󸀠 + 𝐺𝜑󸀠

≜ 𝐽1 (𝑙, 𝑛) − 𝐽2 (𝑙, 𝑛) = 𝐽 (𝑙, 𝑛) .

(36)

Since 𝜙 and 𝜑 are periodic functions of 𝑙, then 𝐽(𝑙, 𝑛) in
(36) is also a periodic coefficient nonlinear equation with 𝑙 as
the variable and 𝑛 as the undetermined function. By (35) it
can be obtained that 𝑛 = 0 is a solution of (36) corresponding
to the order-1 periodic orbit. Since 𝐹 and 𝐺 are continuously
differentiable, 𝐽(𝑙, 𝑛) also has continuous partial derivatives
with respect to 𝑛, and (36) can be rewritten as

𝑑

𝑑𝑙
𝑛 = 𝐽

󸀠
𝑛 (𝑙, 𝑛)

󵄨󵄨󵄨󵄨󵄨𝑛=0
⋅ 𝑛 + 𝑜 (𝑛) . (37)

In order to calculate 𝐽
󸀠
𝑛(𝑙, 𝑛)|𝑛=0, it is noted that (𝜙󸀠

(𝑙))
2
+

(𝜑
󸀠
(𝑙))

2
= 1, which implies that 𝜙

󸀠
𝜙
󸀠󸀠

+ 𝜑
󸀠
𝜑
󸀠󸀠

= 0; that is,
𝐹0𝜙

󸀠󸀠
+ 𝐺0𝜑

󸀠󸀠
= 0. Thus,

𝐽2𝑛
󵄨󵄨󵄨󵄨𝑛=0 =

𝐹𝜙
󸀠󸀠
+ 𝐺𝜑

󸀠󸀠

𝐹𝜙󸀠 + 𝐺𝜑󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=0

+ 𝑛
𝜕

𝜕𝑛
(

𝐹𝜙
󸀠󸀠
+ 𝐺𝜑

󸀠󸀠

𝐹𝜙󸀠 + 𝐺𝜑󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=0

= 0.

(38)

Therefore,

𝐽
󸀠
𝑛 (𝑙, 𝑛)

󵄨󵄨󵄨󵄨󵄨𝑛=0
= 𝐽

󸀠
1𝑛 (𝑙, 𝑛)

󵄨󵄨󵄨󵄨󵄨𝑛=0

=
(𝐹

0
)
2
𝐺

0
𝑥 − 𝐹

0
𝐺

0
(𝐹

0
𝑥 + 𝐺

0
𝑠) + (𝐺

0
)
2
𝐹
0
𝑠

[(𝐹0)
2
+ (𝐺0)

2
]
3/2

≜ 𝐻 (𝑙) ,

(39)

where𝐻(𝑙) represents the curvature of the orthogonal trajec-
tory of (5) at point 𝑅. The first-order approximation of (37) is
𝑑𝑛/𝑑𝑙 = 𝐻(𝑙)𝑛, with the solution

𝑛 (𝑙) = 𝑛0𝑒
∫
𝑙

0
𝐻(𝜍)𝑑𝜍

(𝑛0 = 𝑛 (0)) . (40)

Note that 𝑑𝑙 = √𝜙̇
2
+ 𝜑̇

2
𝑑𝑡 = √(𝐹0)

2
+ (𝐺0)

2
𝑑𝑡. Then

∫

𝐿

0
𝐻(𝜁) 𝑑𝜁 = ∫

𝑡𝐿

0+

1

(𝐹0)
2
+ (𝐺0)

2
[(𝐹

0
)
2
𝐺

0
𝑥

− 𝐹
0
𝐺

0
(𝐹

0
𝑥 + 𝐺

0
𝑠) + (𝐺

0
)
2
𝐹
0
𝑠 ] 𝑑𝑡,

(41)

which results in the fact that
𝑛 (𝐿)

𝑛0

= 𝑒
∫
𝐿

0
𝐻(𝜁)𝑑𝜁

=

√(𝐹𝐼
+)

2
+ (𝐺𝐼

+)
2

√(𝐹𝐼)
2
+ (𝐺𝐼)

2
𝑒
∫
𝑡𝐿

0
+ [𝜕𝐹/𝜕𝑠+𝜕𝐺/𝜕𝑥](𝜙(𝑡),𝜑(𝑡))𝑑𝑡.

(42)

Combined with (34), this yields the conclusion.

Theorem 11. The order-1 periodic solution 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡)

determined in Theorem 7 is orbitally asymptotically stable.

Proof. Denote 𝐴(𝑠UP, 𝑥0) and 𝐵(𝑠CL, 𝑥1), where 𝑠max is
defined by (9) and 𝑥1, 𝑥0 are defined by (16). In system (4),
there are

𝐹 (𝑠, 𝑥) = −
1

𝑎 + 𝑏𝑠
𝜇 (𝑠, 𝑥) 𝑥,

𝐺 (𝑠, 𝑥) = 𝜇 (𝑠, 𝑥) 𝑥,

𝛼 (𝑠, 𝑥) = (1 − 𝑘)𝑤𝑓 (𝑠
𝑓
− 𝑠) ,

𝛽 (𝑠, 𝑥) = −𝑤𝑓 [1 − (1 − 𝜃) 𝑘] 𝑥,

𝜙 (𝑠, 𝑥) = 𝑠 − 𝑠CL,

(43)

where

𝜇 (𝑠, 𝑥) =
𝜇M𝑠

𝐾]𝑥
] + 𝑠

. (44)

Then

𝜕𝐹

𝜕𝑠
= −

1

𝑎 + 𝑏𝑠

𝜕𝜇 (𝑠, 𝑥)

𝜕𝑠
𝑥 +

𝑏

(𝑎 + 𝑏𝑠)
2
𝜇 (𝑠, 𝑥) 𝑥,

𝜕𝐺

𝜕𝑥
= 𝜇 (𝑠, 𝑥) +

𝜕𝜇 (𝑠, 𝑥)

𝜕𝑥
𝑥,

𝛼
󸀠
𝑠 = − (1 − 𝑘)𝑤𝑓,

𝛼
󸀠
𝑥 = 0,

𝛽
󸀠
𝑠 = 0,

𝛽
󸀠
𝑥 = −𝑤𝑓 [1 − (1 − 𝜃) 𝑘] ,

𝜙
󸀠
𝑠 = 1,

𝜙
󸀠
𝑥 = 0.

(45)

Thus

𝜕𝐹

𝜕𝑠
+

𝜕𝐺

𝜕𝑥
= −

1

𝑎 + 𝑏𝑠

𝜕𝜇 (𝑠, 𝑥)

𝜕𝑠
𝑥 +

𝜕𝜇 (𝑠, 𝑥)

𝜕𝑥
𝑥

+
𝑏

(𝑎 + 𝑏𝑠)
2
𝜇 (𝑠, 𝑥) 𝑥 + 𝜇 (𝑠, 𝑥) .

(46)

Hence, the left side of (24) is

∫

𝑇

0
[
𝜕𝐹

𝜕𝑠
+

𝜕𝐺

𝜕𝑥
]

(𝜉,𝜂)

𝑑𝑡 = ∫

𝑇

0
[−

1

𝑎 + 𝑏𝜉

𝜕𝜇 (𝜉, 𝜂)

𝜕𝑠
𝜂 +

𝜕𝜇 (𝜉, 𝜂)

𝜕𝑥
𝜂

+ (
𝑏𝜂

(𝑎 + 𝑏𝜉)
2
+ 1)𝜇 (𝜉, 𝜂)] 𝑑𝑡 = ∫

𝜂1

𝜂0

1

𝜂
𝑑𝜂

− ∫

𝜉1

𝜉0

𝑏

𝑎 + 𝑏𝜉
𝑑𝜉 + ∫

𝜇(𝜉1,𝜂1)

𝜇(𝜉0,𝜂0)

1

𝜇
𝑑𝜇 = ln(

𝜂1

𝜂0

𝑎 + 𝑏𝜉0

𝑎 + 𝑏𝜉1

𝜇 (𝜉1, 𝜂1)

𝜇 (𝜉0, 𝜂0)
)
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Figure 6: Verification ofTheorem 7.The change of substrate concentration (𝑠), biomass concentration (𝑥), and phase diagrams with (𝑠0, 𝑥0) =

(6, 2).

= ln(
𝐹 (𝜉1, 𝜂1)

𝐹 (𝜉0, 𝜂0)
) < ln(

𝐹 (𝜉1, 𝜂1)

(1 − 𝑤𝑓 [1 − (1 − 𝜃) 𝑘]) 𝐹 (𝜉0, 𝜂0)
)

= Ξ

≜ ln(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝐼
𝜙
󸀠
𝑠 + 𝐺

𝐼
𝜙
󸀠
𝑥

𝐹𝐼
+ [(1 + 𝛽󸀠

𝑥) 𝜙
󸀠
𝑠 − 𝛽󸀠

𝑠𝜙
󸀠
𝑥] + 𝐺𝐼

+ [(1 + 𝛼󸀠
𝑠) 𝜙

󸀠
𝑥 − 𝛼󸀠

𝑥𝜙
󸀠
𝑠]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(47)

Therefore, the order-1 periodic solution 𝑠 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡) is
orbitally asymptotically stable.

4. Verifications and
Biomass Productivity Optimisation

The microbial cultivation process for pulse dosage supply
of substrates and removal of bioreactor medium has been

analyzed theoretically. In order to complement the theoretical
results, simulations of system (4)’s dynamics are presented
firstly. The model parameters used in simulations are as
follows: 𝜇M = 0.5 [1/h], ] = 0.5, 𝐾] = 1 [g/L], 𝑠𝑓 = 16 [g/L],
𝑎 = 0.5, 𝑏 = 0.025, 𝜃 = 0.8, 𝑘 = 0.4, and 𝑤𝑓 = 15% =

0.15. The low substrate control level is a decision parameter,
which should be set according to an actual demand. Firstly,
in order to verify the theoretical results, 𝑠CL is set to 10% 𝑠

𝑓
=

1.6 [g/L]. Next, an optimal 𝑠∗CL is determined by a biomass
productivity minimization problem.

4.1. Verification of the Main Results. The change of substrate
concentration (𝑠), biomass concentration (𝑥), and phase
diagram (𝑠, 𝑥) starting from (𝑠0, 𝑥0) = (12, 0.5) are shown
in Figure 6. It can be observed that the trajectories tend to
be periodic, and this phenomenon is not dependent on the
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Figure 7: Verification ofTheorem 7.The change of substrate concentration (𝑠), biomass concentration (𝑥), and phase diagrams with (𝑠0, 𝑥0) =

(2.9, 4.5).

model parameters. Furthermore, from Figure 6(b), it can be
concluded that the biomass concentration is controlled below
a certain level through substrate regulation. Figure 7 illus-
trates the order-1 periodic solution with period 𝑇 = 0.6 [h] =

36 [min]. The phase diagrams for different initial biomass
concentrations on 𝑁PHA are illustrated in Figure 8, from
which the stability of the order-1 periodic solution can be
observed.

4.2. Biomass Productivity Optimisation. Besides analyzing
the dynamics of the proposed bioprocess model, another
important aspect is to find the optimal substrate control
level such that the biomass productivity is maximized. In the

proposed bioprocess, the biomass productivity (BP𝑥 [g/Lh])
is formulated as follows:

BP𝑥 (𝑤𝑓, 𝑠CL) = 𝜃𝑤𝑓

𝑥OUT

𝑇 (𝑤𝑓, 𝑠CL)
, (48)

where 𝑥OUT = 𝑥1 is determined by (16) and 𝑇(𝑤𝑓, 𝑠CL)
is determined by (18). For the given model parameters, the
dependence of BP𝑥 on 𝑤𝑓 and the substrate control level 𝑠CL
is shown in Figure 9. The maximum biomass productivity
occurs for 𝑤

∗
𝑓 = 0.1 and 𝑠

∗
CL = 6 [g/L]. Note that, for

the maximum biomass productivity, the bioreactor medium
removal part is also kept at the minimum value, which
increases the frequency of the operation. For bigger 𝑤𝑓, the
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Figure 9:The dependence of BP𝑥 on the control parameters𝑤𝑓 and
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dependence of BP𝑥 on the substrate control level 𝑠CL is shown
in Figure 10, and, for different substrate control level 𝑠CL, the
dependence of BP𝑥 on 𝑤𝑓 is illustrated in Figure 11.

The model parameters also have a certain impact on the
biomass productivity. For given 𝑠CL = 6 [g/L], 𝑤𝑓 = 0.1, the
biomass productivity achieves its maximum at 𝜃

∗
= 1 and

𝑘
∗

= 0, as illustrated in Figure 12. This is easily understood
since in case of full filter efficiency the recycling operation
is unnecessary. The recycling takes effect only for low filter
efficiency. The dependence of BP𝑥 on the model parameters
𝑘 for different 𝜃 is given in Figure 13, and the dependence
of BP𝑥 on the model parameter 𝜃 for different 𝑘 is given
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Figure 10:The dependence of BP𝑥 on the substrate control level 𝑠CL
for different 𝑤𝑓.
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Figure 11: The dependence of BP𝑥 on 𝑤𝑓 for different substrate
control level 𝑠CL.

in Figure 14. It can be concluded that the optimal substrate
recycling proportion 𝑘 is dependent on 𝜃; that is, when 𝜃

is small, for example, 𝜃 ≤ 0.2, 𝑘 should be set equal to
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Figure 13: The dependence of BP𝑥 on the model parameters 𝑘 for
the given 𝑠CL = 6 [g/L], 𝑤𝑓 = 0.1.

𝑘max = 90%; when 𝜃 = 0.4, 𝑘 should be set equal to 40%;
while, for bigger 𝜃, for example, 𝜃 ≥ 0.5, 𝑘 should be set equal
to zero, which means that the substrate recycling operation
is unnecessary. But it should be pointed that the recycling
operation is indeed beneficial in saving the substrate loss.

5. Conclusions

In the paper the dynamic behaviour of amicrobial cultivation
process model with variable biomass yield and substrate
regulation was analyzed. For the proposed bioprocess model,
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Figure 14: The dependence of BP𝑥 on the model parameters 𝜃 for
the given 𝑠CL = 6 [g/L], 𝑤𝑓 = 0.1.

it was shown that (i) the existence of the order-1 periodic
solution does not depend on the biomass yield and the kinetic
model (Theorem 7), but the bioprocess behaviour (i.e., the
order-1 periodic solution) is dependent on the biomass yield
and the kinetic model (see (11)–(18)); (ii) the system is not
chaotic due to nonexistence of the order-𝑘 periodic solution
(Theorem 8) and orbit asymptotic stability of the order-1
periodic solution (Theorem 11); (iii) the stability of the order-1
periodic solution is independent from the biomass yield and
the kinetic model. The analytical results offer the possibility
of establishing general and more systematic operation and
control strategies based on the counteraction of the mecha-
nisms underlying the adverse effects of bioreactor dynamics.
In addition, microorganisms in the considered bioprocess
always kept a suitable growth rate through substrate regu-
lation. The biomass concentration could also be controlled
to a certain level, which should ensure an appropriate
dissolved oxygen concentration. Moreover, through biomass
productivity optimisation, the optimal substrate control level
and bioreactor medium removal proportion were obtained.
The study showed how the biomass productivity depended
on the bioprocess parameters (i.e., the substrate recycling
proportion 𝑘 and the biomass filter efficiency 𝜃).
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