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Gathering very accurate spatially explicit data related to the distribution of mean annual precipitation is required when laying the
groundwork for the prevention and mitigation of water-related disasters. In this study, four Bayesian maximum entropy (BME)
models were compared to estimate the spatial distribution of mean annual precipitation of the selected areas. Meteorological data
from 48 meteorological stations were used, and spatial correlations between three meteorological factors and two topological factors
were analyzed to improve the mapping results including annual precipitation, average temperature, average water vapor pressure,
elevation, and distance to coastline. Some missing annual precipitation data were estimated based on their historical probability
distribution and were assimilated as soft data in the BME method. Based on this, the univariate BME, multivariate BME, univariate
BME with soft data, and multivariate BME with soft data analysis methods were compared. The estimation accuracy was assessed by
cross-validation with the mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). The results showed
that multivariate BME with soft data outperformed the other methods, indicating that adding the spatial correlations between

multivariate factors and soft data can help improve the estimation performance.

1. Introduction

The spatial distribution of precipitation over any region
is an important parameter in the study of climate, flood
disasters caused by heavy rain, and several other water-
related issues. Although precipitation is typically gauged
using ground-based meteorological observation stations,
interpolating these records as a continuous map is useful for
many environmental studies and risk assessments related to
water-based issues [1, 2].

Although these sampled precipitation data sources col-
lected through ground-based meteorological stations provide
useful information that can be used to estimate the spatial
distribution of precipitation, the main interest in the coupling
between climate and topography has highlighted the need
to accurately describe precipitation as a function of both
elevation and position on the landscape [3-9]. Therefore,
meteorologists and geographers still face several practical
and methodological challenges in analyzing and modeling

sampled precipitation data, and they have concerns related to
elevation and position data.

One challenge is analyzing how the spatial distribution
of precipitation is influenced by elevation at each measuring
location and by the nearest distance from that location
to the coastline; this area still remains understudied. It is
generally accepted that the above two aspects, elevation and
distance to the coastline, affect the spatial distribution of
precipitation to a certain degree [4]. Terrain uplifting, which
occurs on windward flank, leads air masses to rise, expand,
and cool adiabatically which results in increasing relative
humidity of each air mass, creating clouds and precipitation.
Generally, a universal law of the distribution of precipitation
states that areas closer to the sea have a stronger marine
influence; in contrast, areas farther from the sea receive less
precipitation because water vapor from the ocean cannot
easily reach far inland. In addition, the quality and represen-
tativeness of the sampling data have a strong influence on
constructing the models of these relationships. Clearly, the



biased positioning of precipitation gauges cannot sufficiently
express the complex distribution processes of precipitation
in some area, particularly on slopes. As discussed below,
a large body of literature contains assessments of these
relationships. Through the use of geographically weighted
regression, the relationship between annual precipitation and
gauge elevation over Great Britain was reresearched [7].
Some researchers have developed computer-based methods
of mapping precipitation based on precipitation-elevation
relationships and topography [10], but the effects of topog-
raphy are generally not accounted for explicitly. Although
most researches indicate that precipitation trends to increase
with increased elevation and decrease with increasing the
nearest distance to the coastline, this relationship can vary
considerably and may not be valid at all in some situations.

The second issue relates to the effects of the spatial
correlations of meteorological factor to the distribution of
precipitation. Accurate meteorological data can be available
only at the sampling locations, that is, the meteorological
stations; if researchers want to get the values at any other
locations, they must be inferred from neighboring meteo-
rological stations or from relationships with other related
variables. Due to the fact that many other geographical and
positional variables hinging on climate and related data are
normally inaccessible, spatial autocorrelation of meteoro-
logical variables is of special interest. Therefore, integrating
the spatial correlation information of these meteorological
factors provides a better method of improving the accuracy
of precipitation estimation. A common view in many earlier
studies is that methods that make use of the relationship
between estimated variable and auxiliary variables usually
provide more accurate estimated results than approaches
that are based on only one variable such as precipitation
measurements [7]. These techniques can obtain satisfactory
results from limited sampling data, based mainly on the
geographical position of the sampling locations, on the
topological relationships between these locations, and on the
value of the variable to be measured.

Nevertheless, these related studies generally only take
into account spatial relationships among sampling locations
but do not consider the influences of the spatial correla-
tions between meteorological factors. In addition, the results
acquired by these researches in specific areas are still not very
accurate.

Moreover, because variables cannot be measured in all
locations of the studied region, researchers who deal with
those variables have to use interpolation techniques in their
studies. At present, ground-based meteorological observa-
tion systems cannot provide a continuous distribution map
of meteorological factors; complex topography is one of
the reasons, and the sparsity of meteorological stations in
these regions is another reason [11]. In this way, spatial
interpolation techniques are essential to the mapping of
meteorological factors, and values at unmeasured locations
can be estimated based on those observations. A number of
interpolation techniques have been proposed for mapping
precipitation at high resolution, such as inverse distance
weighting, linear or nonlinear regression, geographically
weighted regression, artificial neural networks, and the use
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of Thiessen polygons, ordinary kriging, universal kriging,
and regression kriging methods [11-13]. From these stud-
ies, because of their inherent constraints between several
variables, the above spatial interpolation techniques do not
always provide successful estimates. The Bayesian maximum
entropy (BME) approach offers a framework for spatiotem-
poral analysis and mapping, and it can integrate various
prior knowledge bases and assimilate uncertain observations
(soft data). A burgeoning literature finds that BME approach
is more accurate and physically meaningful than classical
spatial interpolation techniques [12,13], and these advantages
facilitate the process of spatially mapping multiple meteoro-
logical factors accurately.

In view of the above considerations, in this study, we
estimate mean annual precipitation data for our study area
(36°N-43°N, 113°E-120°E) using annual precipitation data
from 48 meteorological stations. In addition, spatial correla-
tions between five variables were analyzed, including annual
precipitation, average temperature, average water pressure,
elevation, and distance to coastline. We used Bayesian
maximum entropy (BME) by means of the BMEIlib 2.0
which is a powerful MATLAB numerical toolbox of Modern
Spatiotemporal Geostatistics to implement BME theory. In
addition, different BME methods were implemented with
different datasets. The estimation accuracy was assessed by
cross-validation with ME, MAE, and RMSE.

2. Materials and Methods

2.1. Area Description and Preprocessing of Original Data. The
study area is located in the Haihe Plain (36°N-43°N, 113°E-
120°E) in the northern part of the Huabei Plain. Taihang and
Yanshan mountains are located in the western and northern
parts of the region, respectively. The eastern and southern
areas are adjacent to the Yellow River and Bohai Sea. Beijing,
the capital of China, is located in the center of this region
as are other large cities, that is, Tianjin and Shijiazhuang;
more than 70 million people live in the region. Cultivated
land covers about 8 million ha in this region. However, in
this temperate monsoon climate, drought often strikes in the
spring, and flooding in the summer. Figure 1 shows the study
area and distribution of meteorological stations.

In this study, in addition to estimated variable (annual
precipitation), some other variables were selected as ancillary
variables that were used to find the distribution of precipita-
tion. Table 1lists a total of five variables that were used in the
Bayesian maximum entropy method for spatial interpolation
analyses. Figure 2 shows the nearest distance to the coastline
of meteorological station.

The 48 meteorological stations in this region recorded
annual precipitation, annual average temperature, and annual
average water vapor pressure from 1959 to 2012. At 40 of
these locations, so-called “true” values of the meteorological
observed data were available. The mean values of these
meteorological observed data of the period from 2003 to 2012
were calculated; these were considered exact data; that is, at
these locations the sampling data were deemed to have no
measurement errors and are used as hard data in the BME
method. These locations were called “hard data locations.”
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FIGURE 1: The study area and distribution of meteorological stations.

TABLE 1: Variables used in the Bayesian maximum entropy method.

Variable Description

Annual precipitation at

Annual precipitation . .
uaiprecip meteorological stations

Annual average temperature at

Average temperature . .
8 P meteorological stations

Average water vapor
pressure

Annual average water vapor
pressure at meteorological stations

Height of region at the resolution of

Elevation 1 radian second (about 30 m)

Distance to coastline at each

Distance to coastline 0.1 X 0.1° gri d point

At the remaining 8 locations, the available information
consisted of historical statistical laws of annual precipitation,
and these locations are called “soft data locations.” Annual
precipitation data were missing for eight of those stations
in some years during the period. To assimilate this part
of the data into the BME method, the probability density
functions (pdfs) of annual precipitation were estimated based
on the historical values (1983 to 2012) from the corresponding
stations allowing the missing values to be represented by the

Coastline

~

Meteorological
station

FIGURE 2: The nearest distance to the coastline.

pdfs. Then the ten-year mean values could be calculated in the
probability distribution form, that is, probability soft data.

The region was divided into a 0.1°x 0.1° grid; then, the
distance to coastline was calculated for each grid point using
ArcGIS10.2.

Elevation data for the region were based on the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) version 2
[14]. The resolution of ASTER GDEM v2 data was 1 radian
second, approximately 30 m. Figure 3 shows the detailed data
preprocessing procedure.

2.2. Multivariate Statistical Analysis and Variograms. We
used data from the 40 sets of “hard data” and eight sets of “soft
data” from 48 meteorological stations as described above for
multivariate analysis and to produce variograms. Statistical
methods were used to relate the precipitation variable to
other meteorological variables, the elevation variable, and the
nearest distance to the coastline variable.

Density scaled histograms use regularly spaced bins
between specified minimum and maximum values. The
histogram has the meaning of a probability distribution
function; thatis, the sum of the displayed rectangular surfaces
is equal to 1. Kernel density estimates were evaluated from
—7000 to 35,000 by steps of 1000 (annual precipitation), from
—170 to 400 by steps of 5 (average temperature), and from —70
to 350 by steps of 1 (average water pressure).

The spatial distribution of an estimated variable (in our
case, the mean annual precipitation) is represented by means
of a spatial random field X(p), where the vector p denotes
spatial location. We want to estimate the mean annual
precipitation values of arbitrary positions within the study
region, X(p), at a location, p, (k # i = 1,...,m), given
data at the adjacent meteorological stations in this region,
p;iG=1,...,m).

The spatial relationships between precipitation and the
other independent variables depended on the distance
between these variables, which are represented by variograms
and cross-variograms. They are a prerequisite for the analysis,
and their use can enhance the accuracy of the estimated
results. The variogram y(h) can be represented as

1 nh) 2
y(h)=m;[X(pk+h)—X(pk)], (D



Advances in Meteorology

Original data concerning
meteorological factors

)

i

Sort meteorological data
according to station IDs

Traverse one stations” data of
specific year

i

Are
there missing data during
the period?

Calculate the mean of those
data during a specific period

Find invalid data (equal to
32,766 or —32,766) and remove
them

Yes
N2

Combine the historical
probability distribution to form
a soft datum

Use as a hard datum

Next station

Yes

J

Are
all satations’ data
processed?

Stations’ geographic
information(latitude,
longitude, and attitude)

1 )

End

Combine climatic data and
geographic information

/ ASTER GDEM v2 (digital
\ elevation model) data

< East Asia coastline data O

Calculate the distance to
coastline of each grid point of
specific area using ArcGIS 10.2

T
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where h denotes the lag distance which separates pairs
of meteorological stations; X(p;) is the value of annual
precipitation at location py, and X(p; + h) denotes the value
at location (p;, + h) of annual precipitation; n(h) represents
the number of pairs separated by the distance h; y(h) denotes
the variogram for the lag-distance h.

Besides, cross-variograms between two used variables (¢
and ¢) in the estimation process can be represented as

n(h)

1
Yoo (h) = T(h); [X¢ (px +h) - Xy (Pk)]

: [X(p (pk + h) - X(p (pk)] .

The nested variogram can be modeled as linear combina-
tions:

N, N,
Vop () = Y v, (1) = Y B+ sy (), (3)
u=1 u=1

where N, is the number of the spatial scale, bfz)q) are coeffi-

cients, and s; q)(h) are variogram functions.

Consequently, to characterize the spatial structure of the
variables used here, we introduced a four-step procedure to
construct the variogram model.

Step 1. We computed the directional variograms for the mean
annual precipitation along the N-S and the W-E directions,
using an angular tolerance of 90°.

Step 2. We computed the omnidirectional variograms for the
mean annual precipitation.

Step 3. We plotted the nested variogram models. Nested
models were defined as linear combinations of several basic
models composed of one nugget effect and one Gaussian
model (see the following equation):

r(h)

1.808 x 10°, h=0" (4)

1.808 x 10° + 7.095 x 10° (1 - e‘3hz/158~72), h> 0.

Step 4. The entire set of variograms and cross-variograms
were then fitted using the weighted least squares method and
the same nested model above.

2.3. BME Methodology. The information used in BME
includes two parts. Physical laws, statistics moments, and
experts’ experience form the general knowledge (G-KB).
Sampled data (both hard data and soft data) consist of site-
specific knowledge (S-KB). The BME approach is mainly
based on the principle of maximum entropy and Bayes’
theorem [13]. Under the constraint conditions from G-KB,
the probability density function (pdf) that maximizes the
information entropy is obtained, namely, prior pdf. And the
posterior pdf is generated by applying prior pdf and S-KB
to calculating conditional probability according to Bayes’
theorem. The posterior pdf is the pdf we need to estimate
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the probability distribution of meteorological factor. The
formulations used in BME approach are as follows.

The joint cumulative distribution function (cdf) for the
estimation location p, and m hard data locations can be
expressed as

Ee (Xo> Xao -+ -5 Xowo Xk)

)

> X S Yoo Xge < Xk)

and we also can obtain its corresponding pdf (i.e., prior pdf):

I (o o X) (g
1+ OOk

Shannon’s information entropy is simply expressed as
follows:

=P(x, < xp X < X - -

e (X Xowo X&) =

Info (ap ) = ~10g [ fi (Xomap) ] @)

where fG(Xmap) has the same definition as (6), except that x
is replaced by G. The mathematical expectation of Info(x,;,)
(i.e., Shannon entropy function) can be simply expressed as

E [Info (xmap)]

- J 10g [ f (Xemap )] f& (Xomap) Aomap-

The constraint conditions from G-KB are denoted as g,,.
In the case of the present study, g, functions include the
variogram models. Using the Lagrange multipliers, the prior
pdf which maximizes the information entropy is obtained:

NC
fG (Xmap) = 271 exp |: Zl’locgoz (Xmap)] > (9)

a=1

where Z = exp(—p,) is a normalization constant; p, is
Lagrange multiplier.

The stage that obtains prior pdfis called prior stage [13].

There are two kinds of sampled data yg4,, according to
their precision. Those data which are considered to be precise
are so-called hard data. And those observations which are
not precise as we need but are still valuable as supplementary
information are named soft data. So that Yy, = [Xhard> Xsoft) -
In this research, the hard data include annual precipitation at
up to 40 meteorological stations. And the soft data include
pdf fitted based on the analysis of long time sequences.

According to Bayes’ theorem, the posterior pdf should be

fG (Xmap)
K ata) = TF7 (10)
f (Xk | X ) f(Xdata)

where fi(XilXdata) 18 the posterior pdf of annual precipita-
tion.

Given the S-KB, which includes soft data, the posterior
pdf should be

-[I fG (Xmap) fS (Xsoft) dXsoft
_[1 fG (Xdata) fS (Xsoft) dXsoft

where fo(¥of) is the pdf of soft data and I is in the defined
domain for fg(xoe)-

Jx (Xk) = > (11

2.4. Cross-Validation. The performances of four BME imple-
mentations, that is, univariate and multivariate BME with
and without soft data, were evaluated and compared using
cross-validation. The basic idea consists of reestimating mean
annual precipitation at the locations of meteorological sta-
tions after removing it. The difference between the estimated
value X(p,) and the corresponding measured value X'(py) at
the location p is the experimental error g:

& =X (pe) - X' (Px)- (12)

Thus, repeating this estimation for all hard locations with the
size n = 40, the cross-validation statistics of mean error (ME)
can be expressed as

ME =1 Y (13)
(g}
we also can obtain the mean absolute error (MAE):
1 n
MAE = 5; EE (14)

and the root mean square error (RMSE) can be calculated:

1 n
RMSE = 1|~ ) g2 (15)

The function has a determination coeflicient (r) as a
measure of the goodness of fit of the model:

e Cov(X,Y)
i/ Var (X) Var (Y) '
where Cov(X,Y) represents the covariance between random

variable X and Y, Var(X) is the variance of variable X, and
Var(Y) is the variance of variable Y.

(16)

2.5. Flowchart of Methodology. The flowchart of the method-
ology applied in this study (Figure 4) is composed of prepro-
cessing of original data, multivariate statistical analysis and
variograms, soft pdfs used in the BME estimation, estimation
of the spatial distribution of mean annual precipitation, and
assessment of the performance of different BME method
using cross-validation.

3. Results and Discussion

3.1. Numerical Results and Plots. Figure5 shows density
scaled histograms and kernel density estimates for annual
precipitation, average temperature, and average water vapor
pressure.

Figure 6 shows the cumulative distribution function of
three meteorological factors.

Figure 7 shows the variograms for mean annual precipi-
tation.

Figure 8 shows the entire set of variograms and cross-
variograms for variables used in this study.
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Variables one through five represent annual precipitation,
average temperature, average water vapor pressure, elevation,
and distance to coastline, respectively.

Figure 9 shows the pdfs generated at these soft locations
to have axisymmetric shapes. The shapes of soft pdfs were
based on statistical analysis of 30-year data sequences (from
1983 to 2012) of meteorological factors and expert knowledge
of the variability of the local distributions.

Figure 10 shows the values of correlation coeflicients
between each of the variables used here. The correlation plots

univariate BME, multivariate BME, univariate BME with soft
data, and multivariate BME with probabilistic soft data.

Comparison of mean error (ME), mean absolute error
(MAE), and root mean square error (RMSE) using these four
methods for average annual precipitation.

Figure 13 presents the scatter plots of observed values
versus estimated value for the average annual precipitation.

In order to assess the impact of removing an auxiliary
variable on the estimated values of precipitation, we also
perform cross-validation to test the performances of the
multivariate BME with probabilistic soft data after removing
it (Table 2).

3.2. Discussion. Researchers have studied the spatial distri-
bution of precipitation in many ways, and a great deal of
knowledge regarding the mechanisms related to the distribu-
tion has been reported in [1, 5, 7-9, 15-17], which are used in
studies of climate, urban planning, flood disasters caused by
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heavy rain, and several other water-related issues. However,
few scholars have studied the effects of the elevation of
meteorological stations, the nearest distance to the coastline,
and the statistical correlations between these two variables
on the spatial distribution of precipitation in specific areas.
Therefore, we investigated the distribution of mean annual

precipitation over the study region (36°N-43°N, 113°E-120°E)
with a focus on analyzing and spatial modeling of the sampled
meteorological data and those two variables (elevation and
distance to coastline) using the BME method.

Using four BME methods, that is, univariate BME, multi-
variate BME, univariate BME with soft data, and multivariate
BME with probabilistic soft data, here we evaluated the spatial
distribution of mean annual precipitation values over the
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TaBLE 2: Cross-validation results for the multivariate BME with probabilistic soft data after removing an auxiliary variable.
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FIGURE 11: Spatial distribution of mean annual precipitation in the studied area.

study region defined above. The results showed that the
southeastern region of the spatial distribution map, that is,
Shandong Province, had the highest estimated values of mean
annual precipitation, and the northwestern region, that is,
northeast Shanxi Province, northern Hebei Province, and
Inner Mongolia, had the lowest estimated values of mean
annual precipitation (Figures 11(a)-11(d)). These results agree
with the previous finding [18].

We found an inverse correlation between annual pre-
cipitation and the elevation of the meteorological stations.
Locations with lower elevation had greater amounts of annual
precipitation. In addition, with an increase in the distance

from the ocean, the correlation between mean annual precipi-
tation and elevation decreased (Figure 8). In terms of statistic
correlation and variogram, the precipitation-elevation rela-
tionship is similar to studies that employed other methods
in analogous regions [5-8, 15]. However, the relatively small
coeflicient (—0.50833) suggests that the elevation variable in
the studied region contributes relatively little to the spatial
distribution of mean annual precipitation (Figure 10). The
effect on the distribution of precipitation appears to be
minor mainly because of the nature of the study region;
specifically, plains dominate the study area with relatively
low elevations and little change in topography and few areas
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with soft data, and multivariate BME with probabilistic soft data.

of high mountains exist here. In addition, meteorological
stations are generally established on the relatively flat plains
of this region; few meteorological stations have been built on
hilltops or hillsides.

An inverse correlation was observed between annual pre-
cipitation and the nearest distance to the coastline from each
meteorological station. The maps showing the spatial distri-
bution of precipitation acquired by the above four methods
also verified the inverse relationship observed between mean
annual precipitation and distance to the nearest coastline in
the same latitude (Figure 11). From the perspective of the
statistic correlation and variograms, the relationship between
mean annual precipitation and the distance to the coastline
is similar to findings of previous studies [1, 2, 9, 10, 16, 19].
Figure 11 also illustrates that variograms in the N-S direction
and W-E direction have significant spatial heterogeneity, and
the distributive differences of estimated precipitation in N-S
direction are more outstanding than the differences in W-E
direction.

Previous studies [18, 20] have shown that meteorological
factors are not the only suitable regionalized variables that
can be used to estimate annual precipitation rates, but they
are correlated with other variables; if these other variables are
not taken into consideration, more accurate estimates cannot
be made. Among all studied meteorological variables, corre-
lation coeficients between the variables used here (Figure 10)
show that average water vapor pressure contributes more
to the annual precipitation in the studied area compared
to any other variables. Average water vapor pressure was
closely correlated with annual precipitation, with a positive
correlation between average water vapor pressure and annual
precipitation. The second significant variable was average

temperature. The relatively smaller coeflicient of average
temperature when compared to average water vapor pressure
suggests that average temperature in the area contributes rel-
atively little to annual precipitation. Overall, for all variables
in this study, the descending order of correlation coefficients
to annual precipitation was average water vapor pressure >
average temperature > elevation > distance to coastline. In
addition, after removing the average water vapor pressure,
the assessment results of [ME'|, MAE', and RMSE’ were
all greater than the case of removing other variables (see
Table 2). In contrast, the assessment results of [ME'|, MAE',
and RMSE' are all smaller than the case of removing other
variables after removing the distance to coastline (also see
Table 2). This provides further evidence that the relatively
smaller coefficient of used variable in the studied area
contributes relatively little to annual precipitation.

In this paper, we needed to integrate the correlation
information of the above variables so as to gain more accurate
estimates from the sites where fewer data were available
from areas with sparse data condition sites. Based upon the
BME framework, the univariate BME, multivariate BME,
univariate BME with soft data, and multivariate BME with
soft data analysis methods were compared, as summarized in
the next paragraph.

The ME estimators determined by multivariate BME with
probabilistic soft data were the closest to zero (Figure 12). The
ME fluctuated because of the offset of the positive and nega-
tive errors. In addition, both MAE and RMSE estimators that
had been determined by multivariate BME with probabilistic
soft data provided the minimum values. The scatter plot
of observed values and estimated values (Figure 13) shows
the good performance of BME methods. And according to
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FIGURE 13: Scatter plots of observed values versus estimated value for the average annual precipitation. Scattergrams driven by using (a)
univariate BME, (b) multivariate BME, (c) univariate BME with soft data, and (d) multivariate BME with probabilistic soft data.

the determination coefficients, multivariate BME with proba-
bilistic soft data outdid the other methods. The above analysis
indicates that the multivariate BME methods (multivariate
BME and multivariate BME with probabilistic soft data) were
more accurate than univariate BME methods (univariate
BME and univariate BME with soft data), and the BME with
probabilistic soft data methods were more accurate than BME
without using soft data methods. In all the cases, the best
results were produced by multivariate BME with probabilistic
soft data, which produced better results than those produced
using multivariate BME, univariate BME, and univariate
BME with soft data.

Based on the above discussion, the main advantages of
the multivariate BME with probabilistic soft data can be
summarized as follows: (1) integration of spatial correlation
information of the used variables into interpolation process,
(2) assimilation of uncertain observations (soft data) into
BME interpolation without hardening, and (3) lack of any

required assumption regarding the shape of any of the
underlying probability distributions (non-Gaussian laws are
automatically incorporated). All these advantages facilitate
the process of spatially mapping precipitation accurately.
However, approach must be improved and supplemented in
more applications with verification and development.

Multivariate BME approach can assimilate spatial corre-
lation information of the used variables into interpolation
process but could not utilize uncertain observations. On the
contrary, univariate BME with soft data can assimilate soft
data, but spatial correlation information of the used variables
cannot be used for improving the interpolation accuracy
in this method. In addition, compared with other three
BME methods, univariate BME neither assimilates uncertain
observations nor integrates various prior knowledge bases.
And it has been shown to be less accurate than the other three
methods.
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4. Conclusion

To explore the mean annual precipitation values over the
current study region in northeast China including the Beijing
area, the univariate BME, multivariate BME, univariate BME
with soft data, and multivariate BME with probabilistic soft
data were used and compared, covering five variables, that
is, annual precipitation, average temperature, average water
vapor pressure, elevation, and distance to coastline. The
extendibility of BME allowed the amalgamation of prior
knowledge and soft data, which enhanced the accuracy of
the estimation process. Correlations between five variables
provided in the multivariate BME method rendered the
results even more accurate. Using cross-validation tests,
multivariate BME with probabilistic soft data was found to
be the best method for estimating the spatial distribution
of mean annual precipitation in the studied area. The map
showing the spatial distribution of precipitation showed that
southeastern portion of the study area, that is, Shandong
Province, had the highest estimated values of mean annual
precipitation, while the lowest were found in the northwest-
ern part of the study area, that is, northeast Shanxi Province,
northern Hebei Province, and Inner Mongolia. These results
demonstrate that BME is a promising tool that can be used
for the estimation of the spatial distribution of average annual
precipitation; it also can be used in other areas of interest or
with other meteorological factors after further development
of this approach to provide support for studies of climate,
flood disasters caused by heavy rain, and several other water-
related issues.

This study has limitations that should be addressed. First,
the versatility of BME approach has yet to be verified. Some
of the problems associated with BME may be overcome by
extending the study to other research areas and studying
additional types of meteorological factors. Second, we plan
to obtain more field-based meteorological data using mobile
weather stations to improve the accuracy of spatial estima-
tion. Third, the spatiotemporal changes of the distribution
of mean average precipitation were found to vary over
time by extending the BME model from the current spatial
dimensions to space-time dimensions and by analyzing the
laws associated with this change.
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