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RCGAu is a hybrid real-coded genetic algorithm with “uniform random direction” search mechanism. The uniform random direction
search mechanism enhances the local search capability of RCGA. In this paper, RCGAu was tested on the BBOB-2013 noiseless
testbed using restarts till a maximum number of function evaluations (#FEs) of 10°x D are reached, where D is the dimension of
the function search space. RCGAu was able to solve several test functions in the low search dimensions of 2 and 3 to the desired
accuracy of 10°. Although RCGAu found it difficult in getting a solution with the desired accuracy 10° for high conditioning and
multimodal functions within the specified maximum #FEs, it was able to solve most of the test functions with dimensions up to 40

with lower precisions.

1. Introduction

The simple genetic algorithm (GA) introduced by Holland
is a probabilistic algorithm based on the theory of natural
selection by Charles Darwin. GA mimics the evolutionary
process through the creation of variations in each generation
and the survival of the fittest individuals through the blending
of genetic traits. Individuals with genetic traits that increase
their probability of survival will be given more opportunities
to reproduce and their offspring will also profit from the
heritable traits. Over the period of time these individuals will
eventually dominate the population [1, 2].

GA consists of a set of potential solutions called chro-
mosomes, a selection operator, a crossover operator, and a
mutation operator. A chromosome is a string of zeros (0s) and
ones (1s). It is a metaphor of the biological chromosome in
living organisms. The zeros (0s) and ones (1s) are called genes.
A gene is the transfer unit of heredity. It contains genetic traits
or information that is passed on from a parent solution to its
offspring. The selection operator selects solutions for mating
based on the principle of “survival of the fittest” The crossover
operator generates new solution pairs called children by

combining the genetic materials of the selected parents. The
mutation operator is an exploratory operator that is applied,
with low probability, to the population of chromosomes to
sustain diversity. Without the mutation operator, GAs can
easily fall into premature convergence [1, 3].

The simple GA was designed to work on binary strings
and it is directly applicable to pseudoboolean objective
functions. However, most real life problems are represented
as continuous parameter optimization problems. A decoding
function was designed to map the solutions from binary space
to the real-valued space. This decoding process can become
prohibitively expensive for binary string GAs especially when
the problem dimension increases [1, 3]. To tackle this problem
real-coded genetic algorithms were introduced [4].

Real-coded genetic algorithms (RCGAs) use real-valued
vectors to represent individual solutions. Surveys show that
several variants of RCGAs have been proposed and used to
solve a wide range of real life optimization problems. Some
recent examples can be found in [1, 4-10].

Over the last three decades, researchers have con-
tinuously improved the performance of RCGAs through
hybridization. RCGAs have been hybridized with other
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(5) B, = perturb(P,)

(9) Y, = ulsearch(M,)
(10) f(x;,) = evaluate(Y,)
(11) P,,, = replace(P,)Y,)
(12)t=t+1

(13) end while

(1) Initialize P,_, P, = {x ,;, X, ..
(2) f(x;,) = evaluate(P,), {1 <i < N}

(3) While not stopping condition, do Steps 4-12

(4) Calculate o(f(P,)), if o(f(P,)) <& do Step 5 else do Step 6

(6) P, = tournamentSelection(P,)
(7) C, = blend-aCrossover(P,, p_)
(8) M, = non-uniformMutation(C,, p,,)

, XN} from X

AvrGoriTHM 1: The RCGAu Algorithm.

optimizers such as Nelder-Mead algorithms [11], simplex
method [12], quadratic approximation [13], and pattern
search [14-16].

In this paper, a set of noiseless testbed from the black-
box optimization benchmarking (BBOB) 2013 workshop is
used to benchmark RCGAu, a hybrid real-coded genetic
algorithm that consists of “uniform random direction” local
search technique.

The RCGAu algorithm is presented in Section 2, Section 3
provides the CPU timing for the experiments, Section 4
presents the results and discussion, and finally Section 5
concludes the paper with some recommendations.

2. The RCGAu Algorithm

RCGAu is a hybrid RCGA with a simple derivative-free local
search technique called “uniform random direction” local
search method. The local search technique operates on all
individuals after the mutation operator has been applied to
the population of individuals.

The RCGAu used in this work is a modified version
of the RCGAu used in [16, 17]. It consists of five major
operators, namely, tournament selection, blend-« crossover,
nonuniform mutation, uniform random direction local
search method, and a stagnation alleviation mechanism.
Algorithm 1 shows the RCGAu algorithm.

The notations used in this paper are defined as follows.

P, denotes the population of individual solutions x;, at
time ¢, N is the size of P,, o(f(P,)) represents the standard
deviation of the fitness values f(P,) of all solutions x;,, € P,,

P, is the mating pool containing the parent solutions, C, is
the population of offspring solutions obtained after applying
crossover on the parents in P, p, is the crossover probability,
M, is the resultant population of solutions after applying
mutation on C,, p,, is the mutation probability, and Y, is
the population of solutions obtained after ulsearch has been
applied to M,, where ulsearch denotes the uniform random
direction local search. Also, e = 107'%, a very small positive
value [18].

The evolutionary process in Algorithm 1 starts by initial-
izing P,_, from the search space X ¢ R". The domain of X is

defined by specifying upper (/) and lower (1) limits of each
jth component of x; that is, ¥ < x/ < u/ and V,u/ € R,
j = L,2,...,n. Next, the fitness value f(x;;), Vx;; € Py, is
calculated and the population diversity of P, is measured by
calculating the standard deviation o(f(P,)) of f(x;,).

If 6(f(P,)) < € and the global optimum has not been
found, then 90% of P, is refreshed with newly generated
solutions using the function perturb (P,). P, is refreshed by
sorting the solutions according to their fitness values and
preserving the top 10% of P,. The remaining 90% of P,
are replaced with uniformly generated random values from
the interval [-4,4]" and the resultant population; P, =
{X16 X5 45 - - - Xy, 1} 18 created. m is the size of the mating pool

13t and m < N.If, on the other hand, o(f(P,)) > e then
tournament selection is applied on P, to create an equivalent
mating pool P,.

The tournament selection scheme works by selecting r
number of solutions uniformly at random from P,, where r is
the tournament size and < N. The selected r individuals are
compared using their fitness values and the best individual
is selected and assigned to P,. This procedure is repeated m
times to populate P,.

After the mating pool has been created, blend-a crossover
is applied to a pair of parent solutions (x;, x; ;) if a randomly
generated number 7 drawn uniformly from the interval [0, 1]
is greater than the specified crossover probability threshold
P Blend-a crossover creates a pair of offspring (c, ;, ¢, ;) from
j

the interval [min(x/,, x]’c)t) —axdl, max(x/,, xi)t) +oa*d]as

follows:

_ : i j joN j
o= (mm (xi’t,xk)t) o * d’, max (xi)t, xk)t) +axd )
i _ j ( o ) j)
xk)l) o * d’, max Xip Xy, ) Fox d),

)

— (i J
Gy = (mln (xl.’t,

where (1 <k < N),«=0.3 +0.2 X 2, z is a uniform random
number drawn from the interval [0, 1], and d’ = Ixf, .~ xi’tl.
The new pair (¢, ;, ¢, ) is then copied to the set C,; otherwise
the pair (x;;, x; ;) is copied to C,.
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FIGURE 1: Expected number of f-evaluations (ERT, lines) to reach f,, + Af; median number of f-evaluations (+) to reach the most difficult
target that was reached not always but at least once; maximum number of f-evaluations in any trial (x); interquartile range with median
(notched boxes) of simulated run lengths to reach f,, + Af; all values are divided by dimension and plotted as log,, values versus dimension.

targets. The light thick line with diamonds indicates the respective best results from BBOB-2009 for Af = 10~®. Horizontal lines mean linear

scaling and slanted grid lines depict quadratic scaling.

Then the nonuniform mutation [4] is applied to the
components of each member of C, with probability, p,,, as
follows :

J

tou - ci)t) if u<0.5,

A (t, ci{t - lj) otherwise,

j
i {ci{t + A(
(T
Gt~

)

m j

where u is a uniformly distributed random number in the
interval [0, 1]. / and I/ are the upper and lower boundaries

of x € X, respectively. The function A(t, u - ci{t) given below
takes a value in the interval [0, y]:

Alt,y)=y (1 _ r(l—(t/T)))ﬁ ,

where r is a uniformly distributed random number in the
interval [0, 1], T is the maximum number of generations, and
B is a parameter that determines the nonuniform strength of
the mutation operator. The mutated individual m;, is then
copied to the set M,; otherwise ¢;; is copied to M,.

3)
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FIGURE 2: Empirical cumulative distribution functions (ECDF), plotting the fraction of trials with an outcome not larger than the respective
values on the x-axis. Left subplots: ECDF of the number of function evaluations (FEvals) divided by search space dimension D, to fall below
Jope + Af with Af = 105, where k is the first value in the legend. The thick red line represents the most difficult target value Sopr + 1075,
Legends indicate for each target the number of functions that were solved in at least one trial within the displayed budget. Right subplots:
ECDF of the best achieved Af for running times of 0.5D, 1.2D, 3D, 10D, 100D, 1000D, . .. function evaluations (from right to left cycling
cyan-magenta-black. . .) and final Af-value (red), where Af and Df denote the difference to the optimal function value. Light brown lines in
the background show ECDF for the most difficult target of all algorithms benchmarked during BBOB-2009.

Then ulsearch is applied on each solution m;, € M, with
the aim of performing local searches around the neighbor-
hood of each solution. ulsearch works by randomly selecting
a solution m;, € M, and creating a trial point y;, using

Yig = my + AU, (4)
where A, is a step size parameter and U = (U;,U,,..., Un)T
is a directional cosine with random components

R; ,
Uj=———"—7353 J=L2...n (5)

(R + R2)™
where R; ~ Unif([-1, 1]). There are cases when the compo-

nents of the trial point y;, = ( yil,t, yft, .-+ Yiy) generated by
(4) fall outside the search space X during the search. In these
cases, the components of y;, are regenerated using

' ml{t+/l(uj—m£t), ifyi{t>uj ©)
Y=\ md A (ml, -V), if y, <1,
where A~ Unif([0,1]) and mit is the corresponding

component of the randomly selected solution 1, € M,.
The step size parameter, A, is initialized at time t = 0
according to [15, 16] by

Aozrxmax{uj—ljljz1,2,...,n}, (7)

where 7 € [0,1]. The idea of using (7) to generate the
initial step length is to accelerate the search by starting with a
suitably large step size to quickly traverse the search space and
as the search progresses the step size is adaptively adjusted at
the end of each generation, t, by

18,
Aty = Eizzlyl’ (8)

where K is the number of Euclidean distances {yl R yz, . yK }
between K nearest points to the mean X and x of a set of
randomly selected distinct points Q = {x;, x,,...,x,} C P,

After the trial point y;, € Y has been created, it is
evaluated and compared with my; ;. If y;, < m,,, then y;, € Y
is used to replace m;, € M,; otherwise the search direction
is changed by changing the sign of the step length. The new
step length is used to recalculate a new trial point. After a new
trial point has been recalculated and evaluated, it is used to
replace m;, € M, with y,,,if y;, < m;; otherwise m,, € M,
is retained.

At the end of ulsearch, P, is updated with M, to form P, ,
and elitism is used to replace the worst point in P,,, with
the best point in P, because the generational model is the
replacement strategy adopted in this work [19].

3. Experimental Procedure and
Parameter Settings

The experimental setup was carried out according to [20]
on the benchmark functions provided in [21, 22]. Two
independent restart strategies were used to restart RCGAu
whenever P, stagnates or when the maximum number of
generations is exceeded and fi ... is not found. For each
restart strategy, the experiment is reinitialized with an initial
population P, which is uniformly and randomly sampled
from the search space [-4, 4]P [6,18].

Two stopping conditions used for the restart strategies are
as follows.

(i) A test for stagnation is carried out to check if the best
solution obtained so far did not vary by more than
107"% during the last (50 + 25 x D) generations as in

[6].
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TABLE 2: ERT loss ratio versus the budget (both in number of f-evaluations divided by dimension). The target value f, for a given budget
FEvals is the best target f-value reached within the budget by the given algorithm. Shown is the ERT of the given algorithm divided by best
ERT seen in GECCO-BBOB-2009 for the target f,, or, if the best algorithm reached a better target within the budget, the budget divided by
the best ERT. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum
ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in a single trial in this function subset. See also
Figure 3 for results on each function subgroup.

4 P 4
fiad T ° froa T

-

[=}
o -
o

log,, of ERT loss ratio
log,, of ERT loss ratio

5 5-D 5 20-D
1 2 3 4 5 1 2 3 4 5
log,, of FEvals/dimension log,, of FEvals/dimension

#FEs/D f1—f24 in 5-D, maxFE/D = 100018

best 10% 25% med 75% 90%
2 0.62 1.0 1.4 2.5 4.0 8.5
10 1.3 1.6 2.9 3.5 5.8 16
100 23 2.6 6.4 8.4 13 42
le3 4.2 5.0 12 40 62 4.2e2
le4 13 25 32 1.6e2 3.9e2 1.2e3
le5 3.4 35 83 5.1e2 1.7e3 3.0e3
le6 3.4 35 1.4e2 8.6e2 1.2e4 2.2e4
RLys/D 3e4 4e4 5e4 Se4 7e4 le5
#FEs/D f1—f4 in 20-D, maxFE/D =100004

best 10% 25% med 75% 90%
2 0.94 1.1 5.8 24 40 40
10 1.3 4.8 7.0 16 1.3e2 2.0e2
100 43 6.2 1 21 39 2.7e2
le3 5.0 7.6 23 48 1.8e2 4.7e2
le4 39 53 1.0e2 2.8e2 5.2e2 1.7e3
le5 43 2.3e2 4.0e2 9.4e2 1.9e3 8.3e3
le6 2.4e2 4.2e2 9.9¢e2 3.9¢e3 1.1e4 6.8e4
RLys/D 4e4 5e4 5e4 6e4 le5 le5

(ii) A testis carried out to check if the maximum number (viii) crafting effort CrE = 0 [20].
of generations is satisfied and ftarget is not found.
The parameters used for RCGAu on all functions are 4. CPU Timing Experiment

(i) population size = min(100, 10 x D), where D is the The CPU timing experiment was conducted for RCGAu

problem dimension; using the same independent restart strategies on the function
fs for a duration of 30 seconds on an AMD Turion (tm)
) IT Ultra Dual-Core Mobile M620 CPU processor, running
(iif) tournament size r = 3; at 2.50 GHz under a 32-bit Microsoft Windows 7 Profes-
(iv) crossover rate p. = 0.8; sional service pack 1 with 2.75 GB RAM usable and Matlab
7.10 (R2010q).

The time per function evaluation was 2.5, 2.6, 2.9, 3.0, 3.2,
and 3.5 times 10~* seconds for RCGAu in dimensions 2, 3,
(vii) elitism E = 1; 5,10, 20, and 40, respectively.

(ii) maximum number of evaluations #FEs = 10° x D;

(v) mutation rate p,, = 0.15;

(vi) nonuniformity factor for the mutation f3 = 15;
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5. Results

The results of the empirical experiments conducted on
RCGAu according to [20] on the benchmark functions given
in [21, 22] are presented in Figures 1, 2, and 3 and in Tables 1
and 2.

Figure 1 shows the performance of RCGAu on all the
noiseless problems with the dimensions 2, 3, 5, 10, 20, and
40. RCGAu was able to solve many test functions in the low
search dimensions of 2 and 3 to the desired accuracy of 10°.
It is able to solve most test functions with dimensions up to
40 at lowest precision of 10",

Although RCGAu found it difficult in getting a solution
with the desired accuracy 10° for high conditioning and
multimodal functions within the specified maximum #FEs it
was able to solve f,, with dimensions up to 40, f; and f, with
dimensions up to 20, f; and f, with dimensions up to 10, and
fu fo fi5> fo0» and f,, with dimensions up to 5.

In Figure 2, the left subplot graphically illustrates the
empirical cumulative distribution function (ECDF) of the
number of function evaluations divided by the dimension of
the search space, while the right subplot shows the ECDF
of the best achieved Af. This figure graphically shows the
performance of RCGAu in terms of function evaluation.

Table 1 presents the performance of RCGAu in terms of
the expected running time (ERT). This measure estimates
the run time of RCGAu by using the number of function
evaluations divided by the best ERT measured during BBOB
2009 workshop. This benchmark shows that RCGAu needs
some improvement in terms of performance.

6. Conclusion

The performance of RCGAu on the suite of noiseless black-
box optimization testbed has been average on a number of
problems but it has excelled in solving functions f, f,, f3,
f7, and f,;. Studies have currently been carried out to find
out why RCGAs do not efficiently solve highly conditioned
problems. Further modifications to RCGAs are needed to
exploit the full strength of evolutionary processes.
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