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We consider Volterra integral equations on time scales and present our study about the long time behavior of their solutions. We
provide sufficient conditions for the stability and investigate the convergence properties when the kernel of the equations vanishes
at infinity.

1. Introduction

In this paper we consider the Volterra integral equations
(VIEs) on time scales of the type

𝑥 (𝑡) = 𝑓 (𝑡) +∫

𝑡

𝑡0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) Δ𝑠,

𝑡 ∈ [𝑡0, +∞)T = [𝑡0, +∞) ∩ T ,

(1)

where T is a time scale, which is a nonempty, closed subset of
R. In (1) 𝑡0 ∈ T , the integral sign has to be intended as a delta-
integral (see Definition 4 in Section 2), and we assume that
the given real-valued functions 𝑓(𝑡) and 𝑘(𝑡, 𝑠) are defined in
[𝑡0, +∞)T and [𝑡0, +∞)T × [𝑡0, +∞)T , respectively.

In the following section we will give examples of time
scales; here we observe that the most popular examples are
T = R and T = Z. When T = R, (1) takes the form

𝑥 (𝑡) = 𝑓 (𝑡) +∫

𝑡

𝑡0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑡0, +∞) , (2)

of the classical VIE and when T = Z, we get the explicit
Volterra discrete equation

𝑥 (𝑡) = 𝑓 (𝑡) +

𝑡−1
∑

𝑠=𝑡0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) , 𝑡 ∈ [𝑡0, +∞)Z . (3)

So, all the results proved on the general time scale include
results for both integral and explicit discrete Volterra equa-
tions.

A generalized differential and integral calculus on time
scales was developed for the first time by Hilger in [1], where
he put the basis for establishing the theory of dynamical
equations (delta-derivative equations) over very general time
scales. This theory has received great attention [2–4] in
order to address many realistic continuous-discrete models
in biological and economic applications and to furnish a
theoretical framework for developing a unifying analysis.
In particular, in [5], a qualitative study of the solutions
to nonlinear dynamic equations is described as well as an
application to an economic model.

More recently, there has been a growing interest in
Volterra integral equations on time scales as they represent
a powerful instrument for the mathematical representation
of memory dependent phenomena in population dynamic,
economy, and so forth. Therefore, this theory has been
extended to the integral operator. A pioneering research
on this subject is [6], where the main results concerning
the existence, uniqueness, and boundedness on compact
intervals are presented. After that, a Volterra theory on time
scales has been developed and it is still evolving; see, for
example, [6–10] and the bibliography therein.
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In [6] a very accurate analysis of the qualitative behavior
of the solutions of both linear and nonlinear problems on
noncompact intervals is given. In case of linear problems it
has been proved that if 𝑓 is bounded and ∫𝑡

𝑡0
|𝑘(𝑡, 𝑠)|Δ𝑠 < 1,

the solution 𝑥(𝑡) of (1) is bounded, which means that it is
stablewith respect to bounded perturbations. In this paperwe
prove the stability of solutions to VIEs on time scales under
more general hypotheses on the delta-integral of the kernel
𝑘. Hence, we assume that there exists a 𝑡 < +∞ such that
∫

𝑡

𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 < 1, for all 𝑡 > 𝑡, and we study how the freedom

before 𝑡 affects the solution over the entire interval [𝑡0, +∞]T .
The investigation carried out here represents an extension of
a result already known both for continuous VIEs (see, e.g.,
[11, Ch. 9] and for discrete implicit Volterra equations (see
[12]). However, the technique used in the proof is different
and takes inspiration from [6, 13].

Moreover, when the kernel 𝑘 vanishes at infinity, we study
the asymptotic behavior of the solution 𝑥(𝑡). In the particular
case of discrete equation this result has already been proved
by analogous techniques by Győri and Reynolds in [12].

The paper is organized as follows. In Section 2 we intro-
duce some basicmaterial needed in the paper. In Section 3 we
define the linear model problem and obtain a bound for its
solution. Furthermore, in case of vanishing kernel, we prove
that the solution of (1) tends to a finite limit if the forcing
function 𝑓(𝑡) tends to 𝑓

∞
< +∞ as 𝑡 → +∞. In Section 4

an extension of the previous results to a Hammerstein type
nonlinear equation is shown; in Section 5 some examples are
given and Section 6 contains our concluding remarks.

2. Background Material

In this section we will recall some definitions and theorems
that will be useful in the following (see [1–3] and the
bibliography therein).

As already mentioned in Section 1, a time scale T is any
closed subset of R.

We assume that the topology in T is inherited from the
standard one in R.

Definition 1. For all 𝑡 ∈ T and 𝑡 < sup T , the forward jump
operator is

𝜎 (𝑡) = {inf 𝜏 > 𝑡 : 𝜏 ∈ T} , (4)

and, for 𝑡 ∈ T and 𝑡 > inf T , the backward jump operator is

𝜌 (𝑡) = {sup 𝜏 < 𝑡 : 𝜏 ∈ T} . (5)

If 𝜎(𝑡) > 𝑡, the point 𝑡 is said to be right-scattered
(𝜌(𝑡) < 𝑡, left-scattered). If 𝜎(𝑡) = 𝑡, the point 𝑡 is said
to be right-dense (𝜌(𝑡) = 𝑡, left-dense). Points that are
simultaneously right-scattered and left-scattered are called
isolated.The graininess function is defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡.

When T = R, then 𝜎(𝑡) = 𝑡, and 𝜇(𝑡) = 0; when T = Z,
then 𝜎(𝑡) = 𝑡 + 1, and 𝜇(𝑡) = 1.

Definition 2 (see [14]). A function 𝑓 : T → R has a limit 𝐿
at 𝑡0 ∈ T if and only if for every 𝜖 > 0 there exists 𝛿 > 0 such
that if 𝑡 ∈ [𝑡0 − 𝛿, 𝑡0 + 𝛿], then

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝐿

󵄨
󵄨
󵄨
󵄨
< 𝜖. (6)

If 𝑡0 is an isolated point, then 𝐿 = 𝑓(𝑡0). If the limit exists, one
writes

lim
𝑡→ 𝑡0

𝑓 (𝑡) = 𝐿. (7)

Definition 3. Consider 𝑓 : T → R, for each 𝑡 < supT , and
define 𝑓Δ(𝑡) to be the number (provided it exists) with the
property that, given any 𝜖 > 0, there is a neighborhood 𝑈 of
𝑡 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) −𝑓

Δ
(𝑡) (𝜎 (𝑡) − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜖 |𝜎 (𝑡) − 𝑠| , (8)

for all 𝑠 ∈ 𝑈. 𝑓Δ(𝑡) is the delta-derivative of 𝑓(𝑡).

If T = R, then 𝑓Δ(𝑡) = 𝑓󸀠(𝑡), the usual derivative, and if
T = Z, then 𝑓Δ(𝑡) = 𝑓(𝑡 + 1) − 𝑓(𝑡), the forward difference
operator.

Definition 4. If 𝐹Δ(𝑡) = 𝑓(𝑡) and 𝑡, 𝑡0 ∈ T , one defines the
delta-integral by

∫

𝑡

𝑡0

𝑓 (𝑠) Δ𝑠 = 𝐹 (𝑡) − 𝐹 (𝑡0) . (9)

If T = R, then ∫𝑡
𝑡0
𝑓(𝑠)Δ𝑠 corresponds to the Cauchy

integral ∫𝑡
𝑡0
𝑓(𝑠)𝑑𝑠 and if T = Z, then ∫𝑡

𝑡0
𝑓(𝑠)Δ𝑠 = ∑

𝑡−1
𝑠=𝑡0
𝑓(𝑠).

Definition 5. A function 𝑓 : T → R is right-dense (rd)
continuous (𝑓 ∈ 𝐶rd(T ,R)) if it is continuous at every right-
dense point 𝑡 ∈ T and lim

𝑠→ 𝑡
−𝑓(𝑠) exists for every left-dense

point 𝑡 ∈ T . Similarly, a function 𝑓 : T → R is left-dense
(ld) continuous (𝑓 ∈ 𝐶ld(T ,R)) if it is continuous at every
left-dense point 𝑡 ∈ T and lim

𝑠→ 𝑡
+𝑓(𝑠) exists for every right-

dense point 𝑡 ∈ T .

Of course, every continuous function on T is also rd-
continuous and ld-continuous on T . Furthermore, it is
possible to prove (see [15]) that every rd-continuous function
on T is delta-integrable on T .

Let 𝛽 ∈ R+; the exponential function 𝑒
𝛽
(𝑡, 𝑡0), 𝑡 ∈ T , is

defined as the unique solution of the initial value problem
(see, e.g., [5, 16])

𝑥
Δ
= 𝛽𝑥,

𝑥 (𝑡0) = 1.
(10)

The explicit form of 𝑒
𝛽
(𝑡, 𝑡0) is given by

𝑒
𝛽
(𝑡, 𝑡0)

=

{
{

{
{

{

exp (𝛽 (𝑡 − 𝑡0)) , if 𝜇 = 0

exp(∫
𝑡

𝑡0

ln (1 + 𝜇 (𝑠) 𝛽)
𝜇 (𝑠)

Δ𝑠) , if 𝜇 > 0.

(11)
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Observe that since 𝛽 > 0, we have 𝑒
𝛽
(𝑡, 𝑡0) > 0 for all 𝑡 ∈

[𝑡0, +∞]T . Furthermore, 𝑒
𝛽
(𝑡, 𝑡0) is the solution of problem

(10), so 𝑒
𝛽
(𝑡, 𝑡0)
Δ
= 𝛽𝑒
𝛽
(𝑡, 𝑡0) > 0; hence 𝑒

𝛽
(𝑡, 𝑡0) is a strictly

increasing function (see [3, Th. 1.76]) and

∫

𝑡

𝑡0

𝑒
𝛽
(𝑠, 𝑡0) Δ𝑠 =

1
𝛽

∫

𝑡

𝑡0

𝑒
Δ

𝛽
(𝑠, 𝑡0) Δ𝑠 =

𝑒
𝛽
(𝑡, 𝑡0) − 1
𝛽

. (12)

When T = R, then 𝑒
𝛽
(𝑡, 𝑡0) = 𝑒

𝛽(𝑡−𝑡0), and if T = Z, then
𝑒
𝛽
(𝑡, 𝑡0) = (1 + 𝛽)

𝑡−𝑡0 .
In the following it will be useful to define

𝐶
𝛽
([𝑡0, +∞]T ;R) as the space of continuous functions

𝐶([𝑡0, +∞]T ;R) such that

sup
𝑡∈[𝑡0 ,+∞]T

|𝑥 (𝑡)|

𝑒
𝛽
(𝑡, 𝑡0)

< ∞. (13)

Let

‖𝑥‖
𝛽
= sup
𝑡∈[𝑡0 ,+∞]T

|𝑥 (𝑡)|

𝑒
𝛽
(𝑡, 𝑡0)

, (14)

the norm associated with 𝐶
𝛽
([𝑡0, +∞]T ;R), and, for 𝑡 < +∞,

set

‖𝑥‖
𝑡

𝛽
= sup
𝑡∈[𝑡0 ,𝑡]T

|𝑥 (𝑡)|

𝑒
𝛽
(𝑡, 𝑡0)

. (15)

As already mentioned in the previous section, classical
examples of time sets are T = R and T = Z. Particularly
useful from a theoretical point of view are the following time
sets (see, e.g., [2]): T = 𝑞Z, T = ℎZ, and T = {𝑡

𝑗
: 𝑗 ∈ Z},

which lead, respectively, to the 𝑞-difference equation

𝑥 (𝑡) = 𝑓 (𝑡) + (𝑞 − 1)
log
𝑞

(𝑡)−1

∑

𝑗=log
𝑞

(𝑡0)

𝑞
𝑗
𝑘 (𝑡, 𝑞

𝑗
) 𝑥 (𝑞

𝑗
) ,

𝑞 > 1,

(16)

the Volterra discrete equation with constant stepsize

𝑥 (𝑡) = 𝑓 (𝑡) + ℎ

𝑡/ℎ−1
∑

𝑗=𝑡0/ℎ

𝑘 (𝑡, 𝑗ℎ) 𝑥 (𝑗ℎ) , (17)

and the discrete equation

𝑥 (𝑡
𝑛
) = 𝑓 (𝑡

𝑛
) +

𝑛−1
∑

𝑗=0
(𝑡
𝑗+1 − 𝑡𝑗) 𝑘 (𝑡𝑛, 𝑡𝑗) 𝑥 (𝑡𝑗) . (18)

In addition to the previous ones, examples are T = {𝑛2 : 𝑛 ∈
N}, T = [0, 1] ∪ N, T = {∑𝑛

𝑘=1(1/𝑘) : 𝑛 ∈ N} ∪ {0}, and the
biological relevant time scale

T = ⋃
𝑘∈N0

[2𝑘, 2𝑘 + 1] , (19)

where the life span of a certain species is supposed to be one
unit of time and the time scale for simulating electric circuit
is

T = ⋃
𝑘∈N0

[𝑘, 𝑘 + 1− 𝛿] , (20)

where 𝛿 represents the time units for discharging the capaci-
tor (see [3, Ex. 1.39, 1.40] for details).

3. Stability and Convergence for
Linear Equations

In this section we investigate the boundedness of the solution
to (1) when the forcing term 𝑓(𝑡) is bounded on [𝑡0, +∞)T .
Since (1) is linear, it may be regarded as the error equation.
Hence, our purpose here is to prove stability results for (1)
under bounded perturbations, according to the following
definition.

Definition 6. The zero solution 𝑥(𝑡) = 0 of the VIE on
time scales (1) corresponding to 𝑓(𝑡) = 0 is called stable on
𝐶([𝑡0, +∞]T ;R) if for each 𝜖 > 0 there exists a 𝛿 = 𝛿(𝜖, 𝑡0) > 0
such that |𝑓(𝑡)| ≤ 𝛿 and 𝑓(𝑡) ∈ 𝐶([𝑡0, +∞]T ;R), implying
that each solution 𝑥(𝑡) of (1) exists and satisfies |𝑥(𝑡)| ≤ 𝜖, for
all 𝑡 ≥ 𝑡0.

From now on we assume that, in (1), the kernel 𝑘 :

[𝑡0, +∞)
2
T → R is continuous with respect to the first

variable and rd-continuous in the second variable. Further-
more, we assume that the forcing function𝑓 is continuous on
[𝑡0, +∞)T (observe that, from Definition 2, if 𝑡 is an isolated
point, the definition of continuity is vacuously true).

In these hypotheses, if in addition 𝑓 ∈ 𝐶
𝛽
([𝑡0, +∞)T ,R),

Theorem 4.2 in [6] assures that the delta-integral equation (1)
has a unique solution 𝑥 ∈ 𝐶

𝛽
([𝑡0, +∞)T , 𝑅) and

|𝑥 (𝑡)| ≤ 𝑋𝑒
𝛽
(𝑡, 𝑡0) , (21)

where 𝑋 is a positive constant. This bound, which is useful
in applications (see [17, p. 37]), does not address the problem
of the boundedness of the solution to (1) on [𝑡0, +∞)T . In [6]
it is shown that this is true under the additional hypothesis
∫

𝑡

𝑡0
|𝑘(𝑡, 𝑠)|Δ𝑠 ≤ 𝑚 < 1, for all 𝑡 ∈ [𝑡0, +∞)T . Here, we consider

more general assumptions; that is,
(h1) sup

𝑡∈[𝑡0 ,+∞)T
|𝑓(𝑡)| < +∞;

(h2) sup
𝑡∈[𝑠,+∞)T

|𝑘(𝑡, 𝑠)| = 𝐾 < +∞, for each 𝑠 ≥ 𝑡0;

(h3) ∃𝑡 > 0 such that sup
𝑡∈[𝑡,+∞)T

∫

𝑡

𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 ≤ 𝛼 < 1.

and we prove that the solution to (1) is bounded at [𝑡0, +∞)T .

Theorem 7. Assume that (h1)–(h3) hold. Then, there exists a
constant Φ > 0 such that

sup
𝑡∈[𝑡0 ,+∞)T

|𝑥 (𝑡)| ≤

Φ

1 − 𝛼
sup
𝑡∈[𝑡0 ,+∞)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
. (22)

Proof. Choose 𝛽 > 0 such that 𝛾 = 𝐾/𝛽 < 1, and consider
the exponential function 𝑒

𝛽
(𝑡, 𝑡0) defined in (11). Let 𝑡 < 𝑡;

dividing each member of (1) by 𝑒
𝛽
(𝑡, 𝑡0) one gets

𝑥 (𝑡)

𝑒
𝛽
(𝑡, 𝑡0)

=

𝑓 (𝑡)

𝑒
𝛽
(𝑡, 𝑡0)

+

1
𝑒
𝛽
(𝑡, 𝑡0)

∫

𝑡

𝑡0

𝑘 (𝑡, 𝑠) 𝑒
𝛽
(𝑠, 𝑡0)

𝑥 (𝑠)

𝑒
𝛽
(𝑠, 𝑡0)

Δ𝑠.

(23)
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Thus, since (h1) and (h2) hold, by using the norm ‖⋅‖𝑡
𝛽
defined

in (15) and the identity in (12), we get

‖𝑥‖
𝑡

𝛽
≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑡

𝛽
+ ‖𝑥‖
𝑡

𝛽
𝐾

1
𝑒
𝛽
(𝑡, 𝑡0)

𝑒
𝛽
(𝑡, 𝑡0) − 1
𝛽

≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑡

𝛽
+ ‖𝑥‖
𝑡

𝛽

𝐾

𝛽

.

(24)

Since 𝛾 = 𝐾/𝛽 < 1, then

‖𝑥‖
𝑡

𝛽
≤

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑡

𝛽

1 − 𝛾
.

(25)

When 𝑡 ≥ 𝑡 (1) can be rewritten as

𝑥 (𝑡) = 𝑓 (𝑡) +∫

𝑡

𝑡0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) Δ𝑠 +∫

𝑡

𝑡

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) Δ𝑠. (26)

Observing that ∫𝑡
𝑡0
|𝑘(𝑡, 𝑠)||𝑥(𝑠)|Δ𝑠 ≤ 𝐾∫

𝑡

𝑡0
(|𝑥(𝑠)|/𝑒

𝛽
(𝑠, 𝑡0))

𝑒
𝛽
(𝑠, 𝑡0)Δ𝑠, then result (25) can be used to obtain a bound

|𝑥(𝑠)|/𝑒
𝛽
(𝑠, 𝑡0) and hence, since (h3) holds,

sup
𝑡∈[𝑡0 ,+∞)T

|𝑥 (𝑡)|

≤ sup
𝑡∈[𝑡0 ,+∞)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
(1+ 𝐾

1 − 𝛾
𝑒
𝛽
(𝑡, 𝑡0) − 1
𝛽

)

+𝛼 sup
𝑡∈[𝑡0,+∞)T

|𝑥 (𝑡)| .

(27)

We know, from (h3), that 𝛼 < 1; then

sup
𝑡∈[𝑡0 ,+∞)T

|𝑥 (𝑡)| ≤

Φ

1 − 𝛼
sup
𝑡∈[𝑡0 ,+∞)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
, (28)

where Φ = 1 + (𝐾/(1 − 𝛾))(𝑒
𝛽
(𝑡, 𝑡0) − 1/𝛽).

Remark 8. Boundedness results under hypothesis (h3) can
be found, for example, in [11, Sec. 9, Th. 9.1] and in [12, 13]
for nonconvolution VIEs (T = R) and Volterra summation
equations (T = Z), respectively. The novelty here is that the
different approach used in the proof of Theorem 7 allows the
generalization to other kinds of time scales, as, for example,
the ones in (19) and (20) motivated by the applications or
T = ℎZ motivated by numerical schemes. An analysis
completely devoted to the stability of parameter-dependent
Volterra summation equations has been carried out by the
authors in [18].

Consider T = T ∪ {supT} ∪ {infT}. If +∞ ∈ T , +∞ is
said to be left-dense (see [15, Sec. 4]). So we can consider
lim
𝑡→+∞

𝑦(𝑡) for any function 𝑦 defined in [𝑡0, +∞)T . For the
definition of lim sup on time scales we refer to [15, Sec. 4].

The following theorem is a generalization ofTheorem 4.4
in [12] to Volterra equations on time scales.

Theorem 9. Assume that (h1)–(h3) hold. Furthermore, let

(h4) lim
𝑡→+∞

𝑓(𝑡) = 𝑓
∞
,

(h5) lim
𝑡→+∞

𝑘(𝑡, 𝑠) = 0, ∀𝑠 ∈ [𝑡0, +∞)T ,

(h6) lim
𝜏→+∞

lim sup
𝑡→+∞

| ∫

𝑡

𝜏
𝑘(𝑡, 𝑠)Δ𝑠−𝐼

𝑘
| = 0, for some

𝐼
𝑘
.

Then lim
𝑡→+∞

𝑥(𝑡) = 𝑥
∞
, where 𝑥

∞
= 𝑓
∞
/(1 − 𝐼

𝑘
).

Proof. First of all observe that, from (h3), 𝐼
𝑘
≤ 𝛼 < 1.

Manipulating (1) and subtracting 𝑥
∞
= 𝑓
∞
+ 𝐼
𝑘
𝑥
∞
, one gets

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∞

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝑓

∞

󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝜏

𝑘 (𝑡, 𝑠) Δ𝑠 − 𝐼
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥
∞

󵄨
󵄨
󵄨
󵄨

+ ∫

𝜏

𝑡0

|𝑘 (𝑡, 𝑠)| |𝑥 (𝑠)| Δ𝑠

+∫

𝑡

𝜏

|𝑘 (𝑡, 𝑠)|
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑥

∞

󵄨
󵄨
󵄨
󵄨
Δ𝑠.

(29)

Let us take the limit superior of each side of (29) as 𝑡 → ∞.
Since 𝑘 is sufficiently smooth on [𝑡0, +∞)T × [𝑡0, +∞)T and
hypotheses (h2) and (h5) hold, the limit can be passed under
the integral sign in ∫𝜏

𝑡0
|𝑘(𝑡, 𝑠)||𝑥(𝑠)|Δ𝑠 to obtain zero (we refer

to [19] for the Lebesgue bounded convergence theorem on
time scales). Thus,

lim sup
𝑡→+∞

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∞

󵄨
󵄨
󵄨
󵄨

≤ lim
𝑡→+∞

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝑓

∞

󵄨
󵄨
󵄨
󵄨

+ lim sup
𝑡→+∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝜏

𝑘 (𝑡, 𝑠) Δ𝑠 − 𝐼
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥
∞

󵄨
󵄨
󵄨
󵄨

+ sup
𝑡≥𝜏

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∞

󵄨
󵄨
󵄨
󵄨
sup
𝑡≥𝜏

∫

𝑡

𝜏

|𝑘 (𝑡, 𝑠)| Δ𝑠.

(30)

By taking the lim sup for 𝜏 → ∞, in view of (h4), (h6), and
(h3), we get the result.

4. Extension to Nonlinear Equations

For nonlinear equations of the form

𝑥 (𝑡) = 𝑓 (𝑡) +∫

𝑡

𝑡0

𝑘 (𝑡, 𝑠) 𝑔 (𝑥 (𝑠)) Δ𝑠, 𝑡 ∈ [𝑡0, +∞]T , (31)

we assume that 𝑔 is a differentiable map on R and 𝑔(0) = 0.
This condition is not restrictive; as a matter of fact, if this is
not the case, we replace 𝑔(𝑥) with 𝑔(𝑥) − 𝑔(0) and 𝑓(𝑡) with
𝑓(𝑡) + ∫

𝑡

𝑡0
𝑘(𝑡, 𝑠)𝑔(0)Δ𝑠.

Theorem 10. Assume that, for (31), |𝑔󸀠(𝑥)| ≤ 𝐺, with 0 ≤ 𝐺 <
+∞, (h1) and (h2) hold, and

(h3󸀠) ∃𝑡 > 0 such that sup
𝑡∈[𝑡,+∞)T

𝐺∫

𝑡

𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 ≤ 𝛼 < 1.

Then the solution 𝑥(𝑡) to (31) is bounded.
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Proof. By Taylor’s theorem we write 𝑔(𝑥) = 𝑔(0) + 𝑔󸀠(𝜉)𝑥,
𝜉 ∈ (0, 𝑥). Since 𝑔(0) = 0 and |𝑔󸀠(𝑥)| ≤ 𝐺, for all 𝑥, from (31)
one gets

|𝑥 (𝑡)| ≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
+𝐺𝐾∫

𝑡

𝑡0

|𝑥 (𝑠)| Δ𝑠, 𝑡 ∈ [𝑡0, +∞]T . (32)

Then, for 𝑡 < 𝑡, by dividing each member of (32) by 𝑒
𝛽
(𝑡, 𝑡0) it

turns out that

‖𝑥‖
𝑡

𝛽
≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑡

𝛽
+ ‖𝑥‖
𝑡

𝛽

𝐺𝐾

𝛽

. (33)

Choosing 𝛽 > 0 such that 𝛾
𝐺
= 𝐺𝐾/𝛽 < 1, then

‖𝑥‖
𝑡

𝛽
≤

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝑡

𝛽

1 − 𝛾
𝐺

.
(34)

When 𝑡 ≥ 𝑡, the following result is easily obtained:

sup
𝑡∈[𝑡0 ,+∞)T

|𝑥 (𝑡)| ≤

Φ
𝐺

1 − 𝛼
sup
𝑡∈[𝑡0 ,+∞)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
, (35)

where Φ
𝐺
= 1 + (𝐺𝐾/(1 − 𝛾

𝐺
))((𝑒
𝛽
(𝑡, 𝑡0) − 1)/𝛽).

5. Examples

For our examples we consider (1) with bounded 𝑓(𝑡) on
[𝑡0, +∞]T and

𝑘 (𝑡, 𝑠) = 10𝑠𝑒−𝑠(𝑡+1), (36)

which does not satisfy the hypothesis ∫𝑡
𝑡0
|𝑘(𝑡, 𝑠)|Δ𝑠 < 1,

considered in [6]. We study the stability of the solution for
different choices of the time set T .

T = R. Here ∫𝑡
𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 = ∫

𝑡

𝑡
|𝑘(𝑡, 𝑠)|𝑑𝑠.With 𝑘 defined as in

(36) it is |𝑘(𝑡, 𝑠)| ≤ 10𝑠𝑒−𝑠 and∫𝑡
𝑡
|𝑘(𝑡, 𝑠)|𝑑𝑠 ≤ 10(𝑒−𝑡(1+𝑡)), the

last term in the inequality being a function in 𝑡 which tends
to zero as 𝑡 → ∞. Hence ∫𝑡

𝑡
|𝑘(𝑡, 𝑠)|𝑑𝑠 < 1 for 𝑡 > 𝑡 ≈ 3.9.

T = Z. Here ∫𝑡
𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 = ∑

𝑡−1
𝑠=𝑡
|𝑘(𝑡, 𝑠)|.With 𝑘 defined as in

(36) it is |𝑘(𝑡, 𝑠)| ≤ 10𝑠𝑒−𝑠 and, by simple manipulations, for
𝑡 > 1, one gets∑𝑡−1

𝑠=𝑡
|𝑘(𝑡, 𝑠)| ≤ 10(𝑒2−𝑡𝑡)/(𝑒 − 1)2, the last term

in the inequality being a function in 𝑡 which tends to zero as
𝑡 → ∞. Hence ∫𝑡

𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 < 1 for 𝑡 > 𝑡 ≈ 4.8.

T = ℎZ. Here ∫𝑡
𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 = ℎ∑

𝑡/ℎ−1
𝑗=𝑡/ℎ

|𝑘(𝑡, 𝑗ℎ)|. By simple

manipulations, for 𝑡 > 1, one gets ℎ∑𝑡/ℎ−1
𝑠=𝑡/ℎ

|𝑘(𝑡, 𝑠)| ≤

10ℎ(𝑒2ℎ−𝑡𝑡)/(𝑒ℎ − 1)2, the last term in the inequality being
a function in 𝑡 which tends to zero as 𝑡 → ∞. Hence

∫

𝑡

𝑡
|𝑘(𝑡, 𝑠)|Δ𝑠 < 1 for 𝑡 > 𝑡 depending on ℎ. Of course, when

ℎ = 1 we reduce to the case T = Z. For ℎ = 0.1 we get 𝑡 ≈ 6.6.

T = (19). Let 𝑡 = 2𝑘 and 𝑡 ∈ [2𝑁 + 2, 2𝑁 + 3); then

∫

𝑡

𝑡

|𝑘 (𝑡, 𝑠)| Δ𝑠 =

𝑁

∑

𝑗=𝑘

∫

2𝑗+1

2𝑗
|𝑘 (𝑡, 𝑠)| 𝑑𝑠

+∫

𝑡

2𝑁+2
|𝑘 (𝑡, 𝑠)| 𝑑𝑠

+

𝑁

∑

𝑗=𝑘

󵄨
󵄨
󵄨
󵄨
𝑘 (𝑡, 2𝑗 + 1)󵄨󵄨󵄨

󵄨

≤ ∫

𝑡

𝑡

|𝑘 (𝑡, 𝑠)| 𝑑𝑠 +

𝑡−1
∑

𝑠=𝑡

|𝑘 (𝑡, 𝑠)| .

(37)

According to the discussion related to the cases T = R and
T = Z, when 𝑘(𝑡, 𝑠) is given by (36), it is possible to find 𝑡
such that for all 𝑡 > 𝑡 both ∫𝑡

𝑡
|𝑘(𝑡, 𝑠)|𝑑𝑠 and ∑𝑡−1

𝑠=𝑡
|𝑘(𝑡, 𝑠)| are

less than 1/2. It turns out that this value for 𝑡 is ≈ 5.8.
Then, the hypotheses ofTheorem 7 are fulfilled in each of

the time sets considered.
Observe that the kernel (36) satisfies also (h5) and (h6)

for all the time sets considered above. So, for Theorem 9,
lim
𝑡→+∞

𝑥(𝑡) = 𝑓
∞
, if lim

𝑡→+∞
𝑓(𝑡) = 𝑓

∞
.

6. Concluding Remarks

The research reported in this paper deals with the stability
properties of Volterra equations on time scales. After examin-
ing the importance and the potential impact of this operator
on the applications, we have surveyed the literature related to
the calculus on time scales. As alreadymentioned in Section 1
and in Remark 8, in this paper, we extend some aspects of
the stability theory, already developed in the continuous [11]
and discrete [12] cases, to VIEs on time scales. Among the
existing results for Volterra equations on time scales, the
one in [6], concerning the existence and boundedness of the
solutions to (1), has been our starting point for investigating
their long time behavior.With respect to the results contained
in [6], the boundedness of the solution is obtained here under
more general sufficient conditions. This allows us to enlarge
the class of problems under consideration, as shown in the
example reported in Section 5 where kernel (36) is stable
according to the current analysis, but does not satisfy the
sufficient condition stated in [6].

The technique used in the proof of the main theorem put
the basis for an analogous investigation about the numerical
stability of Volterra integral equations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



6 Discrete Dynamics in Nature and Society

Acknowledgments

The authors thank the referee for his helpful suggestions.This
work was supported by GNCS-INDAM.

References

[1] S. Hilger, “Analysis on measure chains. A unified approach to
continuous and discrete calculus,” Results in Mathematics, vol.
18, no. 1-2, pp. 18–56, 1990.

[2] R. P. Agarwal, M. Bohner, D. O’Regan, and A. Peterson,
“Dynamic equations on time scales: a survey,” Journal of
Computational and Applied Mathematics, vol. 141, no. 1-2, pp.
1–26, 2002.

[3] M. Bohner and A. Peterson,Dynamic Equations on Time Scales.
An Introduction with Applications, Birkhäauser, Boston, Mass,
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