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Fruit fly optimization algorithm (FOA) invented recently is a new swarm intelligencemethod based on fruit fly’s foraging behaviors
and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO) algorithm.
However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum
value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA),
by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation.
The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of
the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production.
Simulation results demonstrate the effectiveness of the CFOA.

1. Introduction

As we all know, there are a lot of bioinspired optimization
algorithms that are applied in practical engineering success-
fully, such as genetic algorithm (GA) inspired by the genetic
science and natural selection [1, 2], particle swarm opti-
mization (PSO) algorithm inspired by the simulation of the
behavior of birds in nature [3–5], artificial bee colony (ABC)
algorithm inspired by the intelligent behavior of honeybee
swarm [6], artificial immune algorithm (AIA) inspired by the
biological immune system [7–10], and ant colony optimiza-
tion (ACO) algorithm inspired by the foraging behavior of
the real ants [11].

By simulating the foraging behavior of fruit fly swarm,
Pan [12] recently proposed a new kind of optimization algo-
rithm called fruit fly optimization algorithm (FOA) for
financial distress model. The FOA has some advantages,
such as a simple structure to be realized with computer and
ease of understanding. Since its invention in 2011, the FOA
has been applied in many kinds of practical problems. Li
et al. [13] applied the FOA to the forecasting problem of
power load in electric power industry. Lin [14] used the FOA

to optimize artificial neural network for analysis of service
satisfaction in Web auction logistics service. Sheng and Bao
[15] applied the FOA to search the optimal parameters values
of the fractional order fuzzy-PID controller. Tu et al. [16]
used the FOA to optimize generalized regression neural
network for studying on business performance. Li et al.
[17] used the FOA to optimize the two parameters for the
least squares support vector machine to forecast the annual
electricity consumption in China. Chen et al. [18] used the
FOA to optimize the grey neural network model to perform
satisfaction analysis for e-business service. According to all
kinds of applications mentioned above, the FOA seems to be
an excellent optimization algorithm.However, there is still an
insufficiency in the FOA regarding the search strategy, which
is used to produce new candidate solutions of the FOA based
on the random information of foregoing solutions.

In order to overcome the lack of search strategy control
mechanism in the basic FOA leading to poor quality of
solution, in this paper, inspired by the cell communication
mechanism, we propose an improved FOA based on the cell
communication mechanism (CFOA) by incorporating the
information of the global worst, mean, and best solutions
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into the search strategy to improve the exploitation. A set of
numerical experiment results on function optimization [19–
22] show that the CFOA has excellent global optimization
capability and the ability to obtain accurate solution. And its
convergence speed is faster than that of the PSO and the FOA.
Further, we apply the CFOA to optimize the controller for
preoxidation furnaces in carbon fibers production. Simula-
tion results demonstrate the effectiveness of the CFOA.

Carbonfibers are producedmainly frompolyacrylonitrile
(PAN), pitch, and rayon. Attributing to intrinsic composites,
the PAN-based carbonfibers havemaintained their dominant
position in the market of engineering materials. It has been
documented thatmore than 90%ofworld’s total carbon fibers
produced today aremade from the PAN precursor [23].Their
high specific modulus and outstanding fatigue characteris-
tics, combined with their lower weight and stiffness, make
these fibers attractive for wide applications ranging from
sporting goods to engineering components [24]. It is well
known that the preoxidation process is one of the most basic
and necessary stages in the conversion process from the PAN
fibers to high specific strength carbon fibers. For example,
Young’s modulus of carbon fibers can be increased by high
temperature treatment [25]. Although the preoxidation has
beenwidely used in the production line of carbon fibers, it has
not been given too much attention and few detailed studies
of temperature control are presently available. Wangxi et al.
[26] referred to the evolution of structure and properties of
the PAN precursors in the process of preoxidation. Yu et al.
[27] monitored the processing of preoxidation through their
experimental results which indicated that the percent of O
increases remarkably along with the gradual decrease of C,
H, and N. Hou et al. [28] investigated the influence of ozone
on chemical reactions during the preoxidation process of the
PAN as a carbon fiber precursor. Xue et al. [29] investigated
the oxygen-induced modification of the PAN-based carbon
fibers during the final stage of thermal-oxidative stabilization
which is used to control the degree of chemical reactions and
the radial structural homogeneity of fibers. However, most of
the previous work was focused on analyzing the properties of
carbon fibers by means of physical or chemical instruments,
and little was concerning the control effect of the temperature
on preoxidation reactions.Therefore, further studies are very
essential from the point of view for improving the properties
of carbon fibers in actual product, decreasing the cost wasting
in practical production, and increasing the yield of carbon
fibers.

The main contributions of this paper include the follow-
ing aspects: (1)We propose the CFOA, which pushes forward
the development of intelligent computing; (2) The CFOA is
used to optimize the controller for preoxidation furnaces
in carbon fibers production. With the proposed approach,
we can control the temperature of preoxidation reactions,
reducing not only wasted time but also energy consumption.

The main structure of this paper is organized as follows.
Section 2 proposes the improved fruit fly optimization
algorithm with cell communication mechanism. Section 3
provides the test of applying the proposed algorithm in
finding minimal values of numerical benchmark functions.
Section 4 applied the CFOA to the optimal control model of
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Figure 1: Food searching iterative process of fruit flies.

preoxidation furnace for producing the PAN-based carbon
fibers and compares the results with the former methods.
Section 5 concludes the paper.

2. An Improved Fruit Fly Optimization
Algorithm with Cell Communication

2.1. The Fruit Fly Optimization Algorithm. The FOA is a new
swarm intelligent method based on fruit fly’s foraging behav-
iors, and it belongs to a kind of interactive evolutionary
computation. Fruit flies are very small ones to eat fruit and
rotting plants, which widely exist in temperate and tropical
climate zones around the world. Fruit flies have visual and
olfactory senses better than other species. They can easily
make good search of various odors floating in the air with
their olfactory organ or even smell the food sources 40 km
away from them. Then, they would fly to the food by their
sensitive vision. The food finding process made by the fruit
fly can be summarized into the following steps: (1) firstly,
smelling the food source by olfactory organ and flying
towards that location; (2) secondly, getting close to the food
location by their sensitive visions; (3) at last, other fruit flies’
flocking location and flying towards that direction. Figure 1
[13] shows the food searching iterative process of fruit fly.

According to the food finding characteristics of fruit fly
swarm, the FOA can be divided into seven steps as follows.

Step 1. Parameters initialization: the main parameters of the
FOA are the total evolution number, the population size pop,
and the initial fruit fly swarm location (𝑋

0
, 𝑌
0
).

Step 2. Population initialization:

𝑋
𝑖
= 𝑋
0
+ rand,

𝑌
𝑖
= 𝑌
0
+ rand.

(1)
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Step 3. Computation of distance (𝐷
𝑖
) and smell (𝑆

𝑖
):

𝐷
𝑖
= √𝑋2

𝑖
+ 𝑌2
𝑖
,

𝑆
𝑖
=

1

𝐷
𝑖

.

(2)

Step 4. Computation of the fitness function (𝑓
𝑖
):

𝑓
𝑖
= 𝑓 (𝑆

𝑖
) . (3)

Step 5. Find out the minimum individual fruit fly with the
best fitness function (𝑓

𝑏
) among the fruit fly swarm:

[best𝑋 bestindex] = min (𝑓 (𝑆
𝑖
)) . (4)

Step 6. Selection operation: keep the best fitness function
value and coordinates (𝑋

𝑏
, 𝑌
𝑏
). Then, the fruit fly swarm flies

towards that location with the best fitness function value by
using vision:

𝑓
𝑏
= best𝑋,

𝑋
𝑏
= 𝑋 (bestindex) ,

𝑌
𝑏
= 𝑌 (bestindex) .

(5)

Step 7. Judge if the stopping condition is satisfied. If not, go
to Step 2; otherwise, stop the circulation.

2.2. The Basic Characteristic of the Cell Communication. Cell
communication refers to a message through a medium to
another cell and interacts with corresponding receptors of
target cells, and after that a series of physiological changes
taking place in the interior of cells. Indeed, cells can not
survive in isolation and survive by receiving and processing
information from the external environment. Cell to cell
communication is essential for coordination of cellular events
in multicellular systems [30]. Intercellular communication
has three main ways: gap junction, cell recognition, and
chemical communication.

Gap junction: narrow water-filled channels that connect
the cytoplasm of adjacent epithelial cells, as well as of some
other types of cells.

Cell recognition: mutual recognition among cells, usually
with specific complementary interaction among their respec-
tive surface molecules or membrane glycoproteins.

Chemical communication: cells secrete some chemicals
(such as hormone) to the external cells, as a signal molecule
in target cells, adjust their function.

Based on the three main ways of cell communication,
three evolutionary strategies are established. In particular,
the gap junction, the cell recognition, and the chemical
communication in the mode of cell communication can be
used in the iterative and evolutionary process, respectively.

2.3. The CFOA Based on the Cell Communication Mechanism.
Although the FOA has been applied in several fields, it
still suffers with some degree of premature convergence
and poor quality of solution, especially in solving higher
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Figure 2: The implement procedure of the CFOA.

dimension multimodal objective functions. To overcome
the shortcomings, we present the CFOA by combining the
cell communication mechanisms. The CFOA applies the
modified update formula tomaintain the population diversity
and enhances the convergence velocity and precision by
incorporating the information of the global worst, mean,
and best solutions into the search strategy to improve the
exploitation. The CFOA has three major steps: (1) randomly
generate a fruit fly swarm’s initial position; (2) get the smell
concentrations at positions of each and every fruit fly; and (3)
assign each fruit fly a direction and distance for its movement
to look for food with the modified update formula. The
main steps are described as follows and their implementation
procedure is illustrated in Figure 2.

According to the food searching characteristics of fruit
flies, the CFOA can be divided into eleven steps as follows.

Step 1. Parameters initialization: the main parameters of the
CFOA are the total evolution number, the population size
pop, and the initial fruit fly swarm location.

Step 2. Population initialization: give the random flight
direction and the distance for food searching of a fruit fly by
using olfactory model (1).

Step 3. Compute the𝐷
𝑖
and the 𝑆

𝑖
from formulas (2).

Step 4. Compute the 𝑓
𝑖
by formula (3).
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Table 1: Benchmark functions definition [19–22].

Name Definition

Schaffer 𝑓
1
(𝑥) = 0.5 +

(sin√∑
𝑛

𝑖=1
𝑥2
𝑖
)
2

− 0.5

(1 + 0.001(∑
𝑛

𝑖=1
𝑥2
𝑖
))
2

Rosenbrock 𝑓
2
(𝑥) =

𝑛

∑
𝑖=1

(100 (𝑥
2

𝑖
− 𝑥
𝑖+1
)
2

+ (𝑥
𝑖
− 1)
2

)

Sphere 𝑓
3
(𝑥) =

𝑛

∑
𝑖=1

𝑥
2

𝑖

Griewank 𝑓
4
(𝑥) =

1

4000

𝑛

∑
𝑖=1

𝑥
2

𝑖
−

𝑛

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1

Rastrigin 𝑓
5
(𝑥) =

𝑛

∑
𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10]

Ackley 𝑓
6
(𝑥) = 20 + 𝑒 − 20 exp(−0.2√ 1

𝑛

𝑛

∑
𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑛

∑
𝑖=1

cos 2𝜋𝑥
𝑖
)

Table 2: Results for 5D functions.

Function C Range Comparison FOA CFOA PSO

𝑓
1

MN [−600, 600]

Best 4.35e − 004 0 0.0049
Worst 5.83e − 004 0 0.0190
Average 4.99e − 004 0 0.0119
Std.Dev 5.07e − 005 0 0.0074

𝑓
2

UN [−600, 600]

Best 3.9574 4.35e − 005 0.4423
Worst 5.3111 0.5691 4.6508
Average 4.3386 0.1271 1.9483
Std.Dev 0.5844 0.1972 1.5192

𝑓
3

US [−600, 600]

Best 4.24e − 004 0 6.49e − 007
Worst 5.34e − 004 2.57e − 142 1.76e − 004
Average 4.71e − 004 2.57e − 143 7.41e − 005
Std.Dev 3.15e − 005 8.12e − 143 5.93e − 005

𝑓
4

MN [−600, 600]

Best 9.61e − 005 0 5.12e − 007
Worst 0.0141 2.6024e − 013 2.61e − 004
Average 0.0015 2.6024e − 014 3.98e − 005
Std.Dev 0.0044 8.2294e − 014 7.93e − 005

𝑓
5

MS [−600, 600]

Best 0.0873 0 1.0681
Worst 19.748 0 3.9807
Average 4.5809 0 2.7500
Std.Dev 7.4937 0 0.8968

𝑓
6

MN [−600, 600]

Best 0.0413 1.09e − 010 0.0071
Worst 1.2502 0.0047 0.1863
Average 0.1642 5.28e − 004 0.0342
Std.Dev 0.3816 0.0015 0.0539

Step 5. Compute the mean fitness function

𝑓mean =
∑
𝑛

𝑖=1
𝑓 (𝑆
𝑖
)

𝑛
. (6)

Step 6. Find out the minimum individual fruit fly with the 𝑓
𝑏

among the fruit fly swarm using formulas (4)-(5).

Step 7. Find out the maximal individual fruit fly with the
worst fitness function (𝑓max) among the fruit fly swarm:

[worst𝑋 worstindex] = max (𝑓 (𝑆
𝑖
)) ,

𝑓max = worst𝑋,

𝑋
𝑤
= 𝑋 (worstindex) ,

𝑌
𝑤
= 𝑌 (worstindex) .

(7)
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Table 3: Results for 30D functions.

Function C Range Comparison FOA CFOA PSO

𝑓
1

MN [−600, 600]

Best 0.0031 0 0.0049
Worst 0.6099 0 0.0190
Average 0.1602 0 0.0176
Std.Dev 0.2539 0 0.0045

𝑓
2

UN [−600, 600]

Best 28.707 7.90e − 05 88.072
Worst 108.70 0.4244 166.19
Average 72.133 0.0811 136.16
Std.Dev 26.257 0.1359 26.393

𝑓
3

US [−600, 600]

Best 0.0029 0 0.4305
Worst 1.5799 1.7617e − 141 1.7187
Average 5.13e − 001 1.7617e − 142 1.1396
Std.Dev 0.5270 5.5710e − 142 0.4359

𝑓
4

MN [−600, 600]

Best 1.92e − 004 0 0.0444
Worst 0.0588 7.40e − 003 0.1181
Average 0.0210 7.44e − 004 0.0703
Std.Dev 0.0236 0.0024 0.0212

𝑓
5

MS [−600, 600]

Best 0.6323 0 67.382
Worst 128.24 0 140.63
Average 91.073 0 99.362
Std.Dev 49.057 0 27.050

𝑓
6

MN [−600, 600]

Best 0.0446 −8.8818e − 016 1.6693
Worst 1.8229 0.5775 2.3261
Average 0.9374 0.1225 1.9970
Std.Dev 0.7885 0.2328 0.3511

Step 8. Update strategy: check each fruit fly’s position using
the following formulas:

If (𝑓
𝑖
≤ 𝑓mean)

Then

𝑋
𝑖
= 𝑋 − 2 ∗ 𝑋

𝑤

𝑌
𝑖
= 𝑌 − 2 ∗ 𝑌

𝑤
,

If (𝑓mean < 𝑓
𝑖
< 𝑓max)

Then

𝑋
𝑖
= 𝑋 + 2 ∗ 𝑋

𝑏

𝑌
𝑖
= 𝑌 + 2 ∗ 𝑌

𝑏
,

If (𝑓
𝑖
≥ 𝑓max)

Then

𝑋
𝑖
= 𝑋 + 𝑋

𝑤

𝑌
𝑖
= 𝑌 + 𝑌

𝑤
.

(8)

Step 9. Find out the fruit fly with best fitness function among
the fruit fly swarm:

𝑓
𝑏
= min (𝑓

𝑖
) . (9)

Step 10. Selection operation: keep 𝑋
𝑏
, 𝑌
𝑏
, and 𝑓

𝑏
; then the

fruit fly swarm flies towards the location with the best fitness
function value by using vision.

Step 11. Judge if the stopping condition is satisfied. If not, go
to enter the circulation; otherwise, get the output.

3. Experimental Results with
Benchmark Functions

Our experiments are completed on an Intel Pentium Dual,
CPU 2.4GHZ, personal computer (PC) with 3GB RAM
under Windows XP. All simulations are implemented by
using MATLAB 7.9 program.

3.1. Parameter Settings. In all the experiments, the values
of the common parameters are chosen to be the same for
all algorithms. The total evolution number is 100, the initial
range of 𝑋 is [−600, 600], and population size is 20 for
all functions. The PSO algorithm to be compared is given
below: social and cognitive components are both set to 2.0
[31]. Inertia weight, which influences the velocity of the
particle in the next iteration, is set to be 0.6 [22]. Each
of the experiments is repeated 10 times independently, and
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Table 4: Results for 50D functions.

Function C Range Comparison FOA CFOA PSO

𝑓
1

MN [−600, 600]

Best 0.0049 0 0.2221
Worst 0.8832 0.6784 0.3296
Average 0.2576 0.0678 0.2755
Std.Dev 0.0387 0.2145 0.0037

𝑓
2

UN [−600, 600]

Best 48.5100 48.6213 274.4630
Worst 178.0495 49.000 769.8354
Average 119.8091 48.9517 508.4547
Std.Dev 3.1920 0.1186 14.2781

𝑓
3

US [−600, 600]

Best 0.8342 0 2.6038
Worst 1.9000 0.0123 6.1062
Average 1.3174 0.0012 3.5712
Std.Dev 0.0388 0.0039 0.0949

𝑓
4

MN [−600, 600]

Best 2.2758e − 004 0 0.0984
Worst 0.0738 0 0.1868
Average 0.0307 0 0.1401
Std.Dev 0.0028 0 0.0030

𝑓
5

MS [−600, 600]

Best 58.7561 0 179.2948
Worst 248.6845 43.0351 264.6745
Average 172.1425 8.2006 225.2831
Std.Dev 6.3818 1.6426 2.6017

𝑓
6

MN [−600, 600]

Best 0.0458 −8.8818e − 016 2.3402
Worst 1.5043 1.3538 2.9950
Average 0.8789 0.1354 2.5752
Std.Dev 0.0687 0.4281 0.0209

the reported results are average, best, worst, and standard
deviations of the statistical experimental data.

3.2. Experimental Results for Benchmark Functions. In the
field of computational optimization, it is common to test
different algorithms using plenty of test functions, especially
when the test functions include various kinds of problems
such as regular, irregular, separable, nonseparable unimodal,
andmultimodal problems.Multimodal functions which have
more than one local optimal value are used to verify the ability
of algorithms escaping from local minima. If an algorithm is
poor that it cannot be efficiently completed the search process
during global searching, it gets stuck at the local optimal
value. The tested benchmark functions are numbered as𝑓

1

to𝑓
6
and tabulated in Table 1.
The experiments are tested on three groups of benchmark

functions with dimension (𝐷) of 5, 30, and 50.The increment
in the dimension of function increases the difficulty [22].
Hence, if an algorithm can find the global optimal values
for many dimensions, it will be easily copied to the practical
engineering problems. The performance of the CFOA is
compared with that of the PSO and the FOA in terms
of (1) the best result, (2) the worst result, (3) the average
result, and (4) the standard deviation (Std. Dev) result. Initial
range, formulation, dimensions, and the characteristics of
these problems are listed in Tables 2–4. In Tables 2–4, C is

characteristic; U is unimodal;M ismultimodal; S is separable;
and N is nonseparable.

3.2.1. Experiment 1. In Experiment 1, the performance of the
CFOA has been compared to other optimization algorithms:
the PSO and the FOA. Functions in the set are with low
dimension. The worst, best, mean of best, and the standard
deviations of the function values found after 10 runs are
presented in Table 2. From the results in this table, it is
clear that the CFOA is more precise on six functions. This
is because the CFOA is a new strategy by incorporating the
information of global best, worst, andmean solutions devised
for optimal exploitation of local information. None of the
three algorithmshave found the optimal value onRosenbrock
and Ackley functions, but the result of the CFOA is better
than the other two. On Schaffer, Griewank, and Rastrigin
functions the CFOA have produced the optima. For space
limitation, here we just present the convergence curves of the
PSO, the FOA, and the CFOA to show the progresses of the
mean of best function values presented in Figure 3. In order
to make this clear, the interpretations of the convergence
curves of the CFOA are described separately: Figure 3(b) is
for Figure 3(a), Figure 3(e) is for Figure 3(d), Figure 3(g) is
for Figure 3(f), and Figure 3(i) is for Figure 3(h), respectively.

3.2.2. Experiment 2. In Experiment 2, the performance of
the CFOA has been compared with other optimization
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Figure 3: Continued.
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Figure 3: Convergence graphs of the mean of best function values.

algorithms: the PSO and the FOA. From Table 3, for three
algorithms, on Rosenbrock and Ackley functions none of
the algorithms have found the optimal value, but the result
of the CFOA is better than the other two. On Schaffer,
Sphere, Griewank, and Rastrigin functions the CFOA have
produced the optima. The CFOA shows better robustness on
Schaffer and Rastrigin functions. For space limitation, here
we just present the convergence curves of the PSO, the FOA,
and the CFOA to show the progresses of the mean of best
function values presented in Figure 4. In order to make this
clear, the interpretations of the convergence curves of the
CFOA are described separately: Figure 4(b) is for Figure 4(a),
Figure 4(d) is for Figure 4(c), Figure 4(f) is for Figure 4(e),
and Figure 4(h) is for Figure 4(g), respectively.

3.2.3. Experiment 3. In Experiment 3, the performance of
the CFOA has been compared with that of the PSO and
the FOA. Functions in the set are not low dimensional;
therefore, nonseparable functions are more difficult than the
separable functions. The dimensionality of the search space
is an important problem [32]. In some functions, the global
minimumvalue is very small when compared towhole search
space or is very close to the local ones (Schaffer). As for mul-
timodal functions, if the algorithm cannot explore the search
space effectively and cannot keep up the direction changes
in the functions having narrow curving valley (Rosenbrock),
it fails in these kinds of problems. From Table 4, for three
algorithms, on Rosenbrock and Ackley functions none of the
algorithms have produced the optimal value but the result of
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(b) Convergence curves of the CFOA for the Schaffer function
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(c) Convergence curves for the Rosenbrock function
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(e) Convergence curves for the Sphere function
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Figure 4: Continued.
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(g) Convergence curves for the Griewank function
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(h) Convergence curves of the CFOA for the Griewank function
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(i) Convergence curves for the Rastrigin function
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(j) Convergence curves for the Ackley function

Figure 4: Convergence graphs of the mean of the best function values.

the CFOA is better than the other two. On Schaffer, Sphere,
Griewank, and Rastrigin functions the CFOA has produced
the optima. In order to make this clear, the interpretations of
the convergence curves of theCFOAare described separately:
Figure 5(c) is for Figure 5(b) and Figure 5(e) is for Figure 5(d),
respectively.

4. The CFOA Applied to Optimize the
Controller in Carbon Fibers Production

4.1. Model of Preoxidation Furnace for Producing PAN-Based
Carbon Fibers. Preoxidation is to pass the precursor tow
through a furnace divided into several zones with increasing
temperature gradient at 190–300∘C in air [33], followed by a

precarbonization and a carbonization [34]. A precarboniza-
tion treatment usually between 300 to 700∘C is performed
prior to carbonization. To avoid thermal shock of fibers,
low temperature heat treatment is applied. Carbonization is
carried out in an inert atmosphere at the highest temperature
of 1400–1600∘C and a total residence for a few minutes in
oxygen-free atmosphere is applied, during which noncarbon
elements are driven off and the high-strength inorganic
carbonaceous fibrous materials are produced at last [35].

PAN precursor fibers are conducted continuously
through preoxidation furnaces with 10 temperature zones
in air at an initial feeding speed of 0.4m/min, and then the
preoxidized fibers are conducted through one low tempera-
ture carbonization furnace and one high temperature carbon-
ization furnace. Through such a two-step process, carbon
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(b) Convergence curves for the Rosenbrock function
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(d) Convergence curves for the Sphere function
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(e) Convergence curves of the CFOA for the Sphere function
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(f) Convergence curves for the Griewank function

Figure 5: Continued.
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(g) Convergence curves for the Rastrigin function

0 20 40 60 80 100
0

1

2

3

4

5

Generation

Av
er

ag
e fi

tn
es

s 

FOA
CFOA
PSO

(h) Convergence curves for the Ackley function

Figure 5: Convergence graphs of the mean of best function values.
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Figure 6: Schematic of continuous preoxidation and carbonization.

fibers can be obtained finally, and the detailed process is
shown in Figure 6. The detailed temperatures of the 10 zones
are programmed as 190-200-210-220-230-240-250-260-260-
270∘C, as shown in Table 5.

4.2. Optimal Control Model of Preoxidation Furnace. The
diagram of the Smith-predictor control system by combining
with the CFOA is shown in Figure 7, where 𝑟 is the desired
input, 𝑒 is the system error between the desired output and
the actual output, 𝑢 is the control force, and 𝑦 is the actual
output. We wish to properly design a set of PI gains such that
the system output response satisfies certain specifications. In
the CFOA-based Smith-predictor control system, let Θ =

[𝜃
1
, 𝜃
2
] = [𝐾

𝑝
, 𝐾
𝑖
] be a parameter vector or a fruit fly.

The convergence of the CFOA toward the global optimal
solution is guided by the objective function. Hence it should
be properly defined before the CFOA is executed. The

objective function is defined by the integral of the error (IE)
as

IE = ∫
𝑇𝑖

0

𝑡 (
󵄨󵄨󵄨󵄨𝑟 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨) 𝑑𝑡 = ∫
𝑇𝑖

0

𝑡 |𝑒 (𝑡)| 𝑑𝑡, (10)

where 𝑇
𝑖
is the time of integration. This function will be

minimized by using the CFOA to obtain the optimal PI gains.
Preoxidization furnace is approximately a first-order

system with time lag given as

𝐺 (𝑠) =
𝐾

𝑇𝑠 + 1
𝑒
−𝜏𝑠

, (11)

where 𝐾 is the process gain, 𝜏 is time delay, 𝑇 is time con-
stant. The control model for preoxidization furnace with
substituting the actual system parameters can be written as

𝐺 (𝑠) =
50

60𝑠 + 1
𝑒
−30𝑠

. (12)
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(1) Begin
(2) Initialize fruit fly swarm with random position𝑋

0
, 𝑌
0
∈ [0, 300]

(3) Give the random direction and distance for search of food, set 𝐺 = 0
𝑋
𝑖
= 𝑋
0
+ rand, 𝑌

𝑖
= 𝑌
0
+ rand

(4) The smell concentration judgment value (𝑆
𝑖
) is the reciprocal of the distance of the food location to the origin (𝐷

𝑖
)

𝐷
𝑖
= √𝑋2

𝑖
+ 𝑌2
𝑖
, 𝑆
𝑖
= 1/𝐷

𝑖
, 𝑆
𝑖
= [𝐾
𝑝
, 𝐾
𝑖
]

(5) Evaluate the corresponding objective function 𝐼𝐸
𝑖
of every fruit fly and record each fruit fly’s best previous position (𝑋

𝑏
, 𝑌
𝑏
),

worst position (𝑋
𝑤
, 𝑌
𝑤
), the mean of objective function (𝐼𝐸mean), and the worst of objective function (𝐼𝐸max).

(6) While 𝐺 ≤ 𝐺max do
(7)𝑋

𝑖
= 𝑋
0
+ rand, 𝑌

𝑖
= 𝑌
0
+ rand

(8)𝐷
𝑖
= √𝑋2

𝑖
+ 𝑌2
𝑖
, 𝑆
𝑖
= 1/𝐷

𝑖
, 𝑆
𝑖
= [𝐾
𝑝
, 𝐾
𝑖
]

(9) Update each fruit fly’s position using the following formulas:
If (IE
𝑖
≤ IEmean)

𝑋
𝑖
= 𝑋 − 2 ∗ 𝑋

𝑤

𝑌
𝑖
= 𝑌 − 2 ∗ 𝑌

𝑤

end
If (IEmean < IE

𝑖
< IEmax)

𝑋
𝑖
= 𝑋 + 2 ∗ 𝑋

𝑏

𝑌
𝑖
= 𝑌 + 2 ∗ 𝑌

𝑏

end
If (IE
𝑖
≥ IEmax)

𝑋
𝑖
= 𝑋 + 𝑋

𝑤

𝑌
𝑖
= 𝑌 + 𝑌

𝑤

end
(10) Update𝑋

𝑏
, 𝑌
𝑏
, IE
𝑏

(11) End

Algorithm 1

Preoxidization
furnace

Smith-predictor
controller

CFOA

u

e

r y

−

Figure 7: Smith-predictor control system combined with the
CFOA.

The Smith-predictor controller can eliminate the effect
of time delay, which is extensively used in process industry.
So, the Smith-predictor controller is used in preoxidization
furnace. Parameter search interval [𝜃min, 𝜃max] = [0, 300],
the population size is 20, and the number of iterations
(generations) is 50. Search for a set of optimal PI control gains
for a class of preoxidization furnaces of (12) via the CFOA
such that the objective function IE of (10) is minimized.
The complete steps for designing the CFOA-based Smith-
predictor controller system are summarized in Algorithm 1.

4.3. Simulation Results. Usually, we use the same transfer
function model for all of the 10 zones. So, taking Zone 1 as
an example, we can obtain satisfactory control performance
of system (12) by the Smith-predictor controller, as shown
in Figure 8. We compare the control effectiveness of the
FOA, the PSO, and the CFOA to obtain the optimal PI gains.
Figure 9 is the contrast effectiveness of the influence on
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Figure 8: Comparison of control effectiveness among the FOA, the
PSO, and the CFOA.

Zone 1 temperature of preoxidization furnace with the level
changing.

We compare the control effectiveness of the CFOA with
that of the FOA and the PSO optimal control schemes.
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Table 5: Treatment temperature and time of PAN fibers in each furnace zone.

Temperature zone 1 2 3 4 5 6 7 8 9 10
Temperature (∘C) 190 200 210 220 230 240 250 260 260 270
Time (min) 4.12 4.12 4.04 4.04 3.74 3.74 3.68 3.68 3.68 3.68

Table 6: Control parameters.

Control algorithm 𝐾
𝑝

𝐾
𝑖

PSO 0.0162 0.0024
FOA 0.04 0.008
CFOA 0.0786 0.0026
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Figure 9: Responses with temperature set point changing.

Figure 8 shows the performance of the three types of opti-
mization algorithms; the simulation results show that the
CFOA-based Smith-predictor controller is very sensitive
toward the set points. Figure 9 is the contrast effectiveness
of the influence on the preoxidization furnace temperature
with the sudden changing. The goal is to test whether the
optimization control algorithm has the ability to quickly
return to its normalworking status after the sudden changing.
We change the set point of the temperature at the 400th
sampling period. From Figure 9, we can see that the Smith-
predictor controller is based on the CFOA to optimize PI
gains, and we get the system response curve with faster rise
time, small overshoot, reduced settling time. The detailed
parameters are as shown in Table 6.

5. Conclusions

In this paper, an improved CFOA has been proposed and its
performance was compared with the standard version of the
FOAand the PSO. In experimental functions, we use the same
maximum iteration number and the population number for

all problems. The reason is that we assume the algorithms of
other methods do not know much about the recommended
values of these parameters for their problems to be optimized.
The results from a set of numerical benchmark functions
show that the CFOA outperforms the FOA in most of the
experiments. Meanwhile, the CFOA is applied to optimize
the controller for preoxidation furnaces in carbon fibers
production. Simulation results demonstrate the CFOA can
achieve the optimal PI gains of the Smith-predictor controller
and thus overcome the shortcomings of poor adaptability of
the FOA.

In the future, we will further improve the CFOA and
hope that more researchers can participate in the test and
promotion.
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