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This paper investigates the problem of finite frequency (FF) 𝐻
∞

filtering for time-delayed singularly perturbed systems. Our
attention is focused on designing filters guaranteeing asymptotic stability and FF 𝐻

∞
disturbance attenuation level of the filtering

error system. By the generalized Kalman-Yakubovich-Popov (KYP) lemma, the existence conditions of FF 𝐻
∞
filters are obtained

in terms of solving an optimization problem, which is delay-independent. The main contribution of this paper is that systematic
methods are proposed for designing 𝐻

∞
filters for delayed singularly perturbed systems.

1. Introduction

Several physical processes are on one hand of high order and
on the other hand complex, what returns their analysis and
especially their control, with the aim of certain objectives,
very delicate. However, knowing that these systems possess
variables evolving in various speeds (temperature, pressure,
intensity, voltage. . .), it could be possible to model these
systems by singularly perturbed technique [1, 2]. They arise
in many physical systems such as electrical power systems
and electrical machines (e.g., an asynchronous generator,
a DC motor, and electrical converters), electronic systems
(e.g., oscillators), mechanical systems (e.g., fighter aircrafts),
biological systems (e.g., bacterial-yeast-virus cultures, heart),
and also economic systems with various competing sectors.
This class of systems has two time scales, namely, “fast” and
“slow” dynamics. This makes their analysis and control more
complicated than regular systems. Nevertheless, they have
been studied extensively [3–5].

As the dual of control problem, the filtering problems
of dynamic systems are of great theoretical and practical
meaning in the field of control and signal processing and the
filtering problem has always been a concern in the control
theory [6–8]. The state estimation of singularly perturbed
systems also has attracted considerable attention over the past
decades and a great number of results have been proposed

in various schemes, such as Kalman filtering [9, 10] and 𝐻
∞

filtering [11].
Like all kinds of systems which can contain a time-

delay in their dynamic or in their control, the singularly
perturbed systems can also contain a delay, which has been
studied in many references such as [12–15]. For example,
Fridman [12] has considered the effect of small delay on
stability of the singularly perturbed systems. In [13, 14], the
controllability problem of nonstandard singularly perturbed
systems with small state delay and stabilization problem of
nonstandard singularly perturbed systems with small delays
both in state and control have been studied, respectively.
In [15] a composite control law for singularly perturbed
bilinear systems via successive Galerkin approximation was
presented. However, there is seldom literature dealing with
the synthesis design for the delayed singularly perturbed
systems, which is the main motivation of this paper.

With the fundamental theory-generalized KYP lemma
proposed by Iwasaki and Hara [16], the applications using
the GKYP lemma have been sprung up in recent years [17–
23]. Actually, if noise belongs to a finite frequency (FF) range,
more accurately, low/middle/high frequency (LF/MF/HF)
range, design methods for the entire range will be much con-
servative due to overdesign. Consequently, the FF approach
has a wide application range. In future work, we can use this
approach to Markovain jump systems [24, 25].
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Lately, using FF approach to analyze and design control
problems becomes a new interesting in singularly perturbed
systems [19–21]. In [20] the author has studied the 𝐻

∞

control problem for singularly perturbed systems within the
finite frequency. In [21] the positive control problem for
singularly perturbed systems has been studied based on the
generalized KYP lemma. The idea is that design in the finite
frequency is critical to singularly perturbed systems since
the transfer function of singularly perturbed systems has two
different frequencies, that is, the high frequency and low
frequency, which are corresponding to the fast subsystem and
the low subsystem separately. Hence the idea based on the
generalized KYP lemma actually is constructing the design
problem in separate time scale and also separate frequency
scale. Obviously, it could be seen that the conservativeness
is much less than existing results. As far as the author’s
knowledge, there is seldom literature referring to the filtering
design problem within the separate frequencies for delayed
singularly perturbed systems, which is also the main motiva-
tion of this paper.

In this paper we are concerned with FF 𝐻
∞

filtering for
singularly perturbed systems with time-delay. The frequen-
cies of the exogenous noises are assumed to reside in a known
rectangular region, which is the most remarkable difference
of our results compared with existing ones. Based on the
generalized KYP lemma, we first obtained an FF bounded
real lemma in the parameter-independent sense. Filter design
methods will be derived by a simple procedure. The main
contribution of this paper is summarized as follows: the
standard 𝐻

∞
filtering for singularly perturbed systems has

been extended to the FF𝐻
∞
filtering for singularly perturbed

systemswith time-delay, and systematic filter designmethods
have been proposed.

The paper is organized as follows. Section 2 gives the
problem formulation and preliminaries used in the next sec-
tions. The main results are given in Section 3. An illustrative
example is given in Section 4. And conclusions are given in
the last section.
Notation. For a matrix 𝑋, its transpose is denoted by 𝑋

𝑇; 𝑁
𝑋

is an arbitrary matrix whose column forms a basis of the null
space of 𝑋. Sym(𝑋) indicates 𝑋

𝑇

+ 𝑋. 𝜎max(⋅) denotes maxi-
mum singular value of transfer function. diag{⋅ ⋅ ⋅ } stands for
a block-diagonal matrix.

2. Problem Formulation and Preliminaries

The following time-delayed singularly perturbed systems will
be considered in this paper:
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(1)

where 𝑥
1
(𝑡) ∈ 𝑅

𝑛
1 is “slow” state and 𝑥

2
(𝑡) ∈ 𝑅

𝑛
2 is “fast”

state. Denote 𝑛
𝑥

= 𝑛
1
+ 𝑛
2
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1
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is the state vector; 𝑦(𝑡) ∈ 𝑅
𝑛
𝑦 is the measured output signal,

𝑧(𝑡) ∈ 𝑅
𝑛
𝑧 is the signal to be estimated, and 𝜔(𝑡) ∈ 𝑅

𝑛
𝜔 is the

noise input signal in the 𝐿
2
[0, +∞) functional space domain.

Time-delay 𝑑 is known and time-invariantΦ(𝑡) is the known
initial condition in the domain [−𝑑, 0]; let 𝐸
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1, . . . , 4), 𝐵
𝑘
, 𝐶
𝑘
, 𝐺
𝑘
, 𝑘 = 1, 2, 𝐶

𝑙
, 𝐺
𝑙
, 𝑙 = 3, 4, be appropriate

constant matrices.Then the above system can be regulated as

𝐸
𝜀
�̇� = 𝐴𝑥 (𝑡) + 𝐴

𝑑
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𝑥 (𝑡 − 𝑑) ,

(2)

𝑥 (𝑡) = Φ (𝑡) ∀𝑡 = [−𝑑, 0] . (3)

First, we give the following assumption on noise signal 𝜔(𝑡).

Assumption 1. Noise signal 𝜔(𝑡) is only defined in the low,
medium, and high frequency domains
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(4)

Remark 2. By the generalized KYP lemma in [16] and by an
appropriate choice Φ and Ψ, the set 𝑍 can be specialized to
define a certain range of the frequency variable 𝜔. For the
continuous time setting, we have Φ = [

0 1

1 0
], 𝑍 = {𝑗𝜔 : 𝜔 ∈

𝑅}, whereΩ is defined in (4); in this situation,Ψ can be chosen
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,
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(5)

where 𝜔
𝑐
:= (𝜔
1
+ 𝜔
2
)/2.
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Themain objective of this paper is to design the following
full-order linear filtering:

�̇�
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𝐹
𝑥
𝐹
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(6)

where 𝑥
𝐹
(𝑡) ∈ 𝑅

𝑛
𝑥 is the state vector, 𝑦(𝑡) ∈ 𝑅

𝑛
𝑦 is the mea-

sured output signal, 𝑧
𝐹
(𝑡) ∈ 𝑅

𝑛
𝑧 is the output for the filtering

systems, and 𝐴
𝐹
, 𝐵
𝐹
, 𝐶
𝐹
, 𝐷
𝐹
are the filtering matrices to be

solved. Combine (2) and (6) and let 𝑥(𝑡) = [𝑥(𝑡)
𝑇

𝑥
𝐹
(𝑡)
𝑇
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𝑇;

the following filtering error system is obtained:
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(9)

The transfer function of the filtering error system in (7) from
𝜔 to 𝑧 is given by

𝐺
𝑒
(𝑠) = (𝐶 + 𝑒

−𝑑𝑠

𝐶
𝑑
𝐾) (𝐸

𝜀
𝑠𝐼 − 𝐴 − 𝑒

−𝑑𝑠

𝐴
𝑑
𝐾)

−1

𝐵, (10)

where “𝑠” is the Laplace operator.
Due to the asymptotic stability of the filtering error

system (7) depends on system (2), while delayed system (2)
does not include input channel for the input signal, so the
following assumption is given.

Assumption 3. Time-delayed singularly perturbed system in
(2) is asymptotically stable.

Now the problems to be solved can be summarized as
follows.

Problem 4. For the continuous time-delay system in (2), find
a full-order linear filtering (6), such that the filtering error
system in (7) satisfies the following conditions.

(1) The filtering error system in (7) is asymptotically
stable.

(2) Given the appropriate positive real 𝛾, under the zero
initial condition, the following finite frequency index
is satisfied:

sup𝜎max [𝐺
𝑒
(𝑗𝜔)] < 𝛾, ∀𝜔 ∈ Ω. (11)

To conclude this section, we give the following technical
lemma that plays an instrumental role in deriving our results.

Lemma 5 ((projection lemma) [26]). Let 𝑋, 𝑍, and Σ be
given. There exists a matrix 𝑌 satisfying

Sym(𝑋
𝑇

𝑌𝑍) + Σ < 0 (12)

if and only if the following projection inequalities are satisfied:

𝑁
𝑇

𝑋
Σ𝑁
𝑋

< 0, 𝑁
𝑇

𝑍
Σ𝑁
𝑍

< 0. (13)

3. Main Results

3.1. FF 𝐻
∞

Filtering Performance Analysis. To ensure the
asymptotic stability and FF specification in (11) for the
filtering error system, we need to resort to the generalized
KYP lemma in [16]. Based on this, the following lemma can
be obtained.

Lemma 6. (i) Given system in (2) and scalars 𝛾 > 0, 𝜀 > 0,
𝑑 > 0, the filtering error system in (7) is asymptotically stable
for all 𝜔 ∈ Ω and satisfies the specifications in (11) if there exist
matrices 𝑃

𝜀
∈ 𝑅
2𝑛
𝑥
×2𝑛
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11
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𝑛
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𝑂
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∈ 𝑅
𝑛
𝑥
×𝑛
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𝑛
𝑥
×𝑛
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𝜀
𝑃
1𝜀

> 0, 𝐸
𝜀
𝑂
1𝜀

> 0, and
matrices 0 < 𝑄 ∈ 𝑅

2𝑛
𝑥
×2𝑛
𝑥 , 𝑅
1
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , and 0 ≤ 𝑅

2
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥

that satisfy

𝐹
𝑇

0
Ξ
0
𝐹
0
+ 𝐹
𝑇

1
Ξ
1
𝐹
1
+ 𝐹
𝑇

2
(Φ ⊗ 𝑃

𝜀
+ Ψ ⊗ 𝑄)𝐹

2
< 0, (14)

𝐹
𝑇

3
Ξ
2
𝐹
3
+ 𝐹
𝑇

4
(Φ ⊗ 𝑂

𝜀
) 𝐹
4
< 0, (15)

where

𝑃
𝜀
= [

𝑃
1𝜀

0

𝑃
2

𝑃
3

] , 𝑃
1𝜀

= [

𝑃
11

𝜀𝑃
𝑇

12

𝑃
12

𝑃
13

] , (16)

𝑂
𝜀
= [

𝑂
1𝜀

0

𝑂
2

𝑂
3

] , 𝑂
1𝜀

= [

𝑂
11

𝜀𝑂
𝑇

12

𝑂
12

𝑂
13

] , (17)

𝐹
0
= [

𝐶 𝐶
𝑑

0

0 0 𝐼

] , 𝐹
1
=

[

[

[

[

𝐴 𝐴
𝑑

𝐵

𝐼 0 0

0 𝐼 0

]

]

]

]

,

𝐹
2
= [

𝐴 𝐴
𝑑

𝐵

𝐼 0 0

] , 𝐹
3
=

[

[

[

[

𝐴 𝐴
𝑑

𝐼 0

0 𝐼

]

]

]

]

,

𝐹
4
= [

𝐴 𝐴
𝑑

𝐼 0

] , Ξ
0
≅ [

𝐼 0

0 −𝛾
2

𝐼

] ,

Ξ
𝑖
= diag {0 𝑅

𝑖
−𝑅
𝑖
} (𝑖 = 1, 2) .

(18)
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(ii) Given 𝑑 > 0, if there exist matrices 𝑃
0
∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 with

the form of (16) when 𝜀 = 0, 0 < 𝑃
11

∈ 𝑅
𝑛
1
×𝑛
1 , 0 < 𝑃

13
∈

𝑅
𝑛
2
×𝑛
2 , 𝑃
2
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , 𝑃
3
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , 𝑂
0
∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 with the form

of (17) when 𝜀 = 0, 0 < 𝑂
11

∈ 𝑅
𝑛
1
×𝑛
1 , 0 < 𝑂

13
∈ 𝑅
𝑛
2
×𝑛
2 ,

𝑂
2
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , 𝑂
3
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , 0 < 𝑄 ∈ 𝑅

2𝑛
𝑥
×2𝑛
𝑥 , 𝑅
1
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , and

0 ≤ 𝑅
2
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 such that (14), (15) are feasible for 𝜀 = 0 then

filtering error system (7) is asymptotic stable and satisfies the
specifications in (11) for all small enough 𝜀 > 0 and 0 ≤ 𝑑 ≤ 𝑑.

Proof. (i) Let 𝜉(𝑡) =̂ [

𝑥(𝑡)

𝑥(𝑡−𝑑)

𝜔(𝑡)

].
Give the following Lyapunov-Krasovskii functional

𝑉
1
(𝑡) =̂ 𝑉

1,1
(𝑡) + 𝑉

1,2
(𝑡) , (19)

where

𝑉
1,1

(𝑡) = 𝑥
𝑇

(𝑡) 𝐸
𝜀
𝑃
𝜀
𝑥 (𝑡) ,

𝑉
1,2

(𝑡) = ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝜂) 𝑅
1
𝑥 (𝜂) 𝑑𝜂,

�̇�
1,1

=
̇

𝑥

𝑇

𝐸
𝜀
𝑃
𝜀
𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝑃
𝑇

𝜀
𝐸
𝜀

̇
𝑥 (𝑡)

= (𝐴𝑥 (𝑡) + 𝐴
𝑑
𝐾𝑥 (𝑡 − 𝑑) + 𝐵𝜔 (𝑡))

𝑇

⋅ 𝑃
𝜀
𝑥 (𝑡) + 𝑥

𝑇

(𝑡)

⋅ 𝑃
𝑇

𝜀
(𝐴𝑥 (𝑡) + 𝐴

𝑑
𝐾𝑥 (𝑡 − 𝑑) + 𝐵𝜔 (𝑡)) ,

�̇�
1,2

= 𝑥
𝑇

(𝑡) 𝑅
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝑑) 𝑅
1
𝑥 (𝑡 − 𝑑) .

(20)

Then

�̇�
1
= �̇�
1,1

(𝑡) + �̇�
1,2

(𝑡)

= 𝜉 (𝑡)
𝑇

[𝐹
𝑇

2
(Φ ⊗ 𝑃

𝜀
) 𝐹
2
+ 𝐹
𝑇

1
Ξ
1
𝐹
1
] 𝜉 (𝑡) .

(21)

Define the following performance index:

𝐽 = ∫

∞

0

[𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡. (22)

Using the zero initial conditions, we could get

𝐽 ≤ ∫

∞

0

[𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡 + 𝑉
1
(∞) − 𝑉

1
(0)

= ∫

∞

0

𝜉
𝑇

(𝑡) [𝐹
𝑇

0
Ξ
0
𝐹
0
+ 𝐹
𝑇

1
Ξ
1
𝐹
1
+ 𝐹
𝑇

2
(Φ ⊗ 𝑃

𝜀
) 𝐹
2
] 𝜉 (𝑡) .

(23)

LetΘ = 𝐹
𝑇

0
Ξ
0
𝐹
0
+𝐹
𝑇

1
Ξ
1
𝐹
1
+𝐹
𝑇

2
(Φ⊗𝑃

𝜀
)𝐹
2
and use the Parseval

equality to get

∫

∞

0

𝜉
𝑇

(𝑡) Θ𝜉 (𝑡) 𝑑𝑡 =

1

2𝜋

∫

∞

−∞

𝜉
𝑇

𝑠
Θ𝜉
𝑠
𝑑𝜔. (24)

Considering frequency 𝜔 ∈ Ω and combining (23) and (24),
we know that 𝜉𝑇

𝑠
Θ𝜉
𝑠
< 0 is a sufficient condition of 𝐽 < 0, for

all 𝜔 ∈ Ω. Additionally, due to Γ
𝜆
𝐹
2
𝜉
𝑠
= 0, we know that 𝜉

𝑠
is

a zero space of Γ
𝜆
𝐹
2
.

By the zero space theory, we know that

𝑁
𝑇

Γ
𝜆
𝐹
2

Θ𝑁
Γ
𝜆
𝐹
2

< 0 ⇒ 𝜉
𝑇

𝑠
Θ𝜉
𝑠
< 0. (25)

Then by generalized KYP lemma in [16], the sufficient
condition for 𝑁

𝑇

Γ
𝜆
𝐹
2

Θ𝑁
Γ
𝜆
𝐹
2

< 0 is existing 𝑃 ∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 , 0 <

𝑄 ∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 , such that the following inequality is satisfied:

Θ + 𝐹
𝑇

2
(Φ ⊗ 𝑃 + Ψ ⊗ 𝑄)𝐹

2
< 0. (26)

By redefining 𝑃
𝜀
+ 𝑃 as 𝑃

𝜀
, we obtain inequality (14) that

completes the first part of (i).
As for the asymptotic stability, the Lyapunov-Krasovskii

functional can be reselected as follows:

𝑉
2
(𝑡) =̂ 𝑉

2,1
(𝑡) + 𝑉

2,2
(𝑡) , (27)

where 𝑉
2,1

(𝑡) = 𝑥
𝑇

(𝑡)𝐸
𝜀
𝑂
𝜀
𝑥(𝑡) and 𝑉

2,2
(𝑡) =

∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝜂)𝑅
2
𝑥(𝜂)𝑑𝜂.

Then similar to the proof of the first part of (i), it could
be shown that inequality (15) can guarantee the asymptotic
stability of (7).

(ii) If (14), (15) are feasible for 𝜀 = 0, then they are
feasible for all small enough 𝜀 > 0 and thus, due to (i),
filtering error system in (7) is asymptotic stable and satisfies
the specifications in (11) for these values 𝜀 > 0. Furthermore,
linear matrix inequalities (14), (15) are convex with respect to
𝑑; hence they are feasible for some 𝑑; then they are feasible
for all 0 ≤ 𝑑 ≤ 𝑑.

Remark 7. Though the essence of the proof of Lemma 6
follows from that of Theorem 1 in [6], there are also some
differences in Lemma 6. First, in Lemma 6, time-delayed
singularly perturbed systems are considered,which are totally
different from the regular systems. Since the singularly
perturbed systems have perturbed parameter 𝜀, the existence
of 𝜀 can lead to the ill-conditioned numerical problems, so
here comes part (ii) of Lemma 6. Furthermore, considering
the special structure of singularly perturbed systems, note
that, in the proof of part (i), the selected Lyapunov-Krasovskii
functionals are different from the regular systems.

To facilitate and reduce the conservatism of the filter
design using the projection lemma, we present an alternative
of Lemma 6.

Lemma 8. Given delayed systems in (2) and scalars 𝛾 > 0,
𝑑 > 0, filter in (6) exists such that the filtering error system in
(7) is asymptotically stable and satisfies the specifications in (11)
if there exist matrices 𝑃

0
∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 with the form of (16), 𝑂

0
∈

𝑅
2𝑛
𝑥
×2𝑛
𝑥 with the form of (17), 0 < 𝑄 ∈ 𝑅

2𝑛
𝑥
×2𝑛
𝑥 , 𝑅
1
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 ,

and 0 ≤ 𝑅
2
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 and 𝑌

𝑖
∈ 𝑅
4𝑛
𝑥
×2𝑛
𝑥
(𝑖 = 1, 2) satisfying

[

[

−𝐼
𝑛𝑧

[0
𝑛𝑧×2𝑛𝑥

𝐶 𝐶
𝑑

0]

∗ diag {Ξ
1
+ Ξ (𝑃

0
) + Ξ (𝑄) , −𝛾

2

𝐼
𝑛𝜔

} + Sym(𝑋
𝑇

𝑌
1
𝑍
1
)

]

]

< 0,

(28)

Ξ
2
+ Ξ (𝑂

0
) + Sym(𝑋

𝑇

2
𝑌
2
𝑍
2
) < 0, (29)
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with

Ξ (𝑃
0
) = [

Φ
𝑐
⊗ 𝑃
0

0
4𝑛
𝑥
×𝑛
𝑥

0
𝑛
𝑥
×4𝑛
𝑥

0
𝑛
𝑥
×𝑛
𝑥

] ,

Ξ (𝑂
0
) = [

Φ
𝑐
⊗ 𝑂
0

0
4𝑛
𝑥
×𝑛
𝑥

0
𝑛
𝑥
×4𝑛
𝑥

0
𝑛
𝑥
×𝑛
𝑥

] ,

Ξ (𝑄) = [

Ψ
𝑐
⊗ 𝑄 0

4𝑛
𝑥
×𝑛
𝑥

0
𝑛
𝑥
×4𝑛
𝑥

0
𝑛
𝑥
×𝑛
𝑥

] ,

𝑋
1
= ⌊𝐼
4𝑛
𝑥

0
4𝑛
𝑥
×(𝑛
𝑥
+𝑛
𝜔
)
⌋ , 𝑍

1
= [−𝐼
2𝑛
𝑥

𝐴 𝐴
𝑑

𝐵] ,

𝑋
2
= ⌊𝐼
4𝑛
𝑥

0
4𝑛
𝑥
×𝑛
𝑥
⌋ , 𝑍

2
= [−𝐼
2𝑛
𝑥

𝐴 𝐴
𝑑
] ;

(30)

the other notations are defined in (14) and (15).

Proof. Define𝑀 = [0
𝑛
𝑥
×2𝑛
𝑥

𝐶 𝐶
𝑑

0]. By the Schur comple-
ment, (28) is equivalent to

diag {Ξ
1
+ Ξ (𝑃

0
) + Ξ (𝑄) , −𝛾

2

𝐼
𝑛
𝜔

}

+ 𝑀
𝑇

𝑀 + Sym (𝑋
𝑇

1
𝑌
1
𝑍
1
) < 0.

(31)

By the definition of matrices 𝑋
1
and 𝑍

1
, one can choose

𝑁
𝑋
1

= 0 and 𝑁
𝑍
1

=
[

[

𝐴 𝐴
𝑑
𝐵

𝐼
2𝑛𝑥
0 0

0 𝐼
𝑛𝑥
0

0 0 𝐼
𝑛𝜔

]

]

; thus the first inequality

in (13) vanishes and then by Lemma 5, (31) is equivalent to

𝑁
∗

𝑍
1

(diag {Ξ
1
+ Ξ (𝑃

0
) + Ξ (𝑄) , −𝛾

2

𝐼
𝑛
𝜔

} + 𝑀
∗

𝑀)𝑁
𝑍
1

< 0.

(32)

By calculation, we can obtain (32) is equivalent to (14) when
𝜀 = 0.

Similarly, by introducing the following null space,

𝑁
𝑋
2

= 0, 𝑁
𝑍
2

=

[

[

[

[

𝐴 𝐴
𝑑

𝐼
2𝑛
𝑥

0

0 𝐼
𝑛
𝑥

]

]

]

]

. (33)

Using projection lemma, (29) is equivalent to the following
inequality:

𝑁
𝑇

𝑍
2

{Ξ
2
+ Ξ (𝑂

0
) + Sym (𝑋

𝑇

2
𝑌
2
𝑍
2
)}𝑁
𝑍
2

< 0. (34)

By calculation, (34) is equivalent to (15) when 𝜀 = 0.
Thus, Lemma 8 is equivalent to Lemma 6.

3.2. Design of FF 𝐻
∞

Filters. Lemma 8 does not give a
solution to filter realization explicitly. Based on the result in
the following section we focus on developing methods for
designing FF 𝐻

∞
filters. The following result can be derived

via specifying the structure of the slack matrices 𝑌
1
and 𝑌

2
in

Lemma 8.
Theorem9. Given time-delayed systems in (2) and scalars 𝛾 >

0, 𝑑 > 0, filter in (6) exists such that the filtering error system
in (7) is asymptotically stable and satisfies the specifications in
(11) if there exist matrices 𝑃

0
∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 with the form of (16),

𝑂
0

∈ 𝑅
2𝑛
𝑥
×2𝑛
𝑥 with the form of (17), 0 < 𝑄 ∈ 𝑅

2𝑛
𝑥
×2𝑛
𝑥 , 𝑅
1

∈

𝑅
𝑛
𝑥
×𝑛
𝑥 , 0 ≤ 𝑅

2
∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , Γ
𝑖,𝑗

∈ 𝑅
𝑛
𝑥
×𝑛
𝑥
(𝑖 = 1, 2, 𝑗 = 1, . . . , 4),

Γ
5

∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , Δ
1

∈ 𝑅
𝑛
𝑥
×𝑛
𝑥 , Δ
2

∈ 𝑅
𝑛
𝑥
×𝑛
𝑦 , Δ
3

∈ 𝑅
𝑛
𝑧
×𝑛
𝑥 , Δ
4

∈

𝑅
𝑛
𝑧
×𝑛
𝑦 such that the followingmatrices are satisfied for the given

scalars 𝜅
𝑖
(𝑖 = 1, . . . , 4):

[

−𝐼
𝑛
𝑧

Σ

∗ diag {Ξ
1
+ Ξ (𝑃

0
) + Ξ (𝑄) , −𝛾

2

𝐼
𝑛
𝜔

} + Sym(Λ
1
)

]

< 0,

Ξ
2
+ Ξ (𝑂

0
) + Sym(Λ

2
) < 0,

(35)

where

Σ =̂ ⌊0
𝑛
𝑧
×2𝑛
𝑥

𝐺 − Δ
4
𝐶 −Δ

3
𝐺
𝑑
− Δ
4
𝐶
𝑑

0⌋ ,

Λ
1
=̂

[

[

[

[

[

[

[

[

[

−Γ
1,1

−Γ
5

Γ
1,1

𝐴 + Δ
2
𝐶 Δ

1
Γ
1,1

𝐴
𝑑
+ Δ
2
𝐶
𝑑

Γ
1,1

𝐵

−Γ
1,2

−Γ
5

Γ
1,2

𝐴 + Δ
2
𝐶 Δ

1
Γ
1,2

𝐴
𝑑
+ Δ
2
𝐶
𝑑

Γ
1,2

𝐵

−Γ
1,3

−𝜅
1
Γ
5

Γ
1,3

𝐴 + 𝜅
1
Δ
2
𝐶 𝜅
1
Δ
1

Γ
1,3

𝐴
𝑑
+ 𝜅
1
Δ
2
𝐶
𝑑

Γ
1,3

𝐵

−Γ
1,4

−𝜅
2
Γ
5

Γ
1,4

𝐴 + 𝜅
2
Δ
2
𝐶 𝜅
2
Δ
1

Γ
1,4

𝐴
𝑑
+ 𝜅
2
Δ
2
𝐶
𝑑

Γ
1,4

𝐵

0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

,

Λ
2
=̂

[

[

[

[

[

[

[

[

[

−Γ
2,1

−Γ
5

Γ
2,1

𝐴 + Δ
2
𝐶 Δ

1
Γ
2,1

𝐴
𝑑
+ Δ
2
𝐶
𝑑

−Γ
2,2

−Γ
5

Γ
2,2

𝐴 + Δ
2
𝐶 Δ

1
Γ
2,2

𝐴
𝑑
+ Δ
2
𝐶
𝑑

−Γ
2,3

−𝜅
3
Γ
5

Γ
2,3

𝐴 + 𝜅
3
Δ
2
𝐶 𝜅
3
Δ
1

Γ
2,3

𝐴
𝑑
+ 𝜅
3
Δ
2
𝐶
𝑑

−Γ
2,4

−𝜅
4
Γ
5

Γ
2,4

𝐴 + 𝜅
4
Δ
2
𝐶 𝜅
4
Δ
1

Γ
2,4

𝐴
𝑑
+ 𝜅
4
Δ
2
𝐶
𝑑

0 0 0 0 0

]

]

]

]

]

]

]

]

]

.

(36)
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Ξ
𝑖
, Ξ(𝑃
0
), Ξ(𝑄), and Ξ(𝑂

0
) are defined in (28) and (29).

Moreover, if the previous conditions are satisfied, an acceptable
state-space realization of the filter in (6) is given by

[

𝐴
𝐹

𝐵
𝐹

𝐶
𝐹

𝐷
𝐹

] = [

Γ
−1

5
0

0 𝐼

] [

Δ
1

Δ
2

Δ
3

Δ
4

] . (37)

Proof. First, in order to prove Theorem 9, we just need to
prove that (28) and (29) in Lemma 8 can be deduced from
(35) inTheorem 9. It is noted that the slack matrix 𝑌

2
has the

following form:

𝑌
2
=

[

[

[

[

[

[

Γ
2,1

Γ
5

Γ
2,2

Γ
6

Γ
2,3

Γ
7

Γ
2,4

Γ
8

]

]

]

]

]

]

. (38)

Here, Γ
2,𝑖

(𝑖 = 1, . . . , 4), Γ
𝑗
(𝑗 = 5, . . . , 8) are complexmatrices

with dimension 𝑛
𝑥
× 𝑛
𝑥
. In fact, Γ

6
is nonsingular and can be

implied from (24); then by multiplying 𝑌
2
from the left side

and the right side, respectively, with 𝐼
1
= diag {𝐼 Γ

5
Γ
−1

6
𝐼 𝐼}

and 𝐼
2
= diag {𝐼 (Γ

5
Γ
−1

6
)
𝑇

}, we could get

𝐼
1
𝑌
2
𝐼
2
=

[

[

[

[

[

[

[

[

[

Γ
2,1

Γ
5
(Γ
5
Γ
−1

6
)

𝑇

Γ
5
Γ
−1

6
Γ
2,2

Γ
6
(Γ
5
Γ
−1

6
)

𝑇

Γ
2,3

Γ
7
(Γ
5
Γ
−1

6
)

𝑇

Γ
2,4

Γ
8
(Γ
5
Γ
−1

6
)

𝑇

]

]

]

]

]

]

]

]

]

. (39)

Without loss of generality, we could restrict Γ
5
≡ Γ
6
.

On the other hand, to overcome the difficulty of filtering
design, more work should be done. Next, we will consider Γ

7

and Γ
8
to be linearly Γ

5
-dependent; that is, Γ

7
= 𝜅
3
Γ
5
, Γ
8

=

𝜅
4
Γ
5
, 𝜅
3
and 𝜅

4
are scalars, respectively. Similarly, the slack

matrix 𝑌
1
has the same structure restriction; that is,

𝑌
1
=

[

[

[

[

[

[

Γ
1,1

Γ
5

Γ
1,2

Γ
5

Γ
1,3

𝜅
1
Γ
5

Γ
1,4

𝜅
2
Γ
5

]

]

]

]

]

]

, 𝑌
2
=

[

[

[

[

[

[

Γ
2,1

Γ
5

Γ
2,2

Γ
5

Γ
2,3

𝜅
3
Γ
5

Γ
2,4

𝜅
4
Γ
5

]

]

]

]

]

]

. (40)

Define

[

Δ
1

Δ
2

Δ
3

Δ
4

] = [

Γ
5

0

0 𝐼

][

𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

] . (41)

By substituting 𝑋
𝑖
, 𝑍
𝑖
in (28) and (29) and 𝑌

𝑖
of (40) into

𝑋
𝑇

𝑖
𝑌
𝑖
𝑍
𝑖
, one can obtain Λ

𝑖
= 𝑋
𝑇

𝑖
𝑌
𝑖
𝑍
𝑖
(𝑖 = 1, 2). Moreover,

by using (41), one can also obtain Σ ≡ 𝑀. The proof is
complete.

4. Numerical Example

In this section, we use an example to illustrate the effective-
ness and advantages of the design methods developed in this

paper. Consider the singularly perturbed system with time-
invariant delay in (2) with matrices given by

𝐴 = [

−1 0

0 −1

] , 𝐴
𝑑
= [

−1 0

1 −1

] , 𝐵 = [

−0.5

2

] ,

𝐶 = [0 1] , 𝐶
𝑑
= [1 2] , 𝐺 = [2 1] ,

𝐺
𝑑
= [0 0] , 𝜀 = 0.1, 𝑑 = 0.1.

(42)

Suppose the frequencies 𝜔
𝑙
= 1, 𝜔

ℎ
= 100, we calculate

the achieved minimum performance 𝛾
∗ by using Theorem 9

in this paper. For brevity, the scalar parameters inTheorem 9
are given by 𝜅

1
= 𝜅
2
= 5, 𝜅
3
= 𝜅
4
= 1.The obtainedminimum

performance is 𝛾
∗

= 0.9976, when 𝑄 = 0; the problem
becomes a standard 𝐻

∞
filtering problem and the minimum

performance of the nominal 𝐻
∞

filtering is 𝛾
∗

= 1.4533.
And the obtained state-space matrices of𝐻

∞
filtering are

[

𝐴
𝐹

𝐵
𝐹

𝐶
𝐹

𝐷
𝐹

] =
[

[

[

−1.5861 −0.0552 0

−0.2522 −1.1106 0

0 0 0

]

]

]

. (43)

5. Conclusions

This paper has studied the problem of FF 𝐻
∞

filtering for
time-delayed singularly perturbed systems. The frequencies
of the exogenous noise are assumed to reside in a known rect-
angular region and the standard 𝐻

∞
filtering for singularly

perturbed systems has been extended to the FF𝐻
∞
case.The

generalized KYP lemma for singularly perturbed systems has
been further developed to derive conditions that are more
suitable for FF 𝐻

∞
performance synthesis with time-delay.

Via structural restriction for the slack matrices, systematic
methods have been proposed for the design of the filters that
guarantee the asymptotic stability and FF 𝐻

∞
disturbance

attenuation level of the filtering error system.
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