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Bone tissue can adapt its properties and geometry to its physical environment. This ability is a key point in the osteointegration of
bone implants since it controls the tissue remodeling in the vicinity of the treated site. Since interstitial fluid and ionic transport
taking place in the fluid compartments of bone plays a major role in the mechanotransduction of bone remodeling, this theoretical
study presents a three-scale model of the multiphysical transport phenomena taking place within the vasculature porosity and the
lacunocanalicular network of cortical bone. These two porosity levels exchange mass and ions through the permeable outer wall
of the Haversian-Volkmann canals. Thus, coupled equations of electrochemohydraulic transport are derived from the nanoscale of
the canaliculi toward the cortical tissue, considering the intermediate scale of the intraosteonal tissue. In particular, the Onsager
reciprocity relations that govern the coupled transport are checked.

1. Introduction

Bone remodeling corresponds to a process by which bone
tissue gradually alters its morphology and properties in order
to adapt to its external environment [1, 2].This ability is a key
point of the success of different protocols in bone tissue engi-
neering. It has thus been demonstrated that bone remodeling
around implants is essential to obtain a good osteointegration
of the implant [3]. Similarly, in bone tissue engineering, when
grafting a scaffold to fill a bone loss, there is increased bone
remodelingwithin the treated site until the degradation of the
entire scaffold [4].

That is why the study of the mechanisms governing bone
remodeling process is a very important topic in bone biome-
chanical engineering. Interstitial fluid and ionic transport
taking place in the fluid compartments of bone is thought to
play amajor role in the bone ability to transmit physical stim-
uli toward bone cells and thus trigger the remodeling process
[5, 6].

Cortical bone, which corresponds to the dense tissue
located at the periphery of bones, is mostly made of cylindri-
cal structures called osteons. These cylinders are crossed by
a hierarchical porous network saturated by a fluid with both
mechanical and chemical functions. Axial Havers and radial
Volkmann canals (HVC), few tens of microns in diameter,
contain vasculature and nerves and provide a fast way to
transmit chemomechanical information between different
osteons. Local messaging takes place inside the smaller lacu-
nocanalicular porosity (LCP), a dense network of cavities
(lacunae) and pseudocylindrical canals (canaliculi, few hun-
dred nanometers in radius) crossing the osteonal matrix.The
LCP hosts the cellular network of the bone mechanosensing
cells, the osteocytes, and is connected with the HVC.

Since the experimental description of the fluid flow
within the cortical tissue is still a very challenging topic [7, 8],
theoretical approaches are often carried out to understand
the in vivo phenomena that govern bone behavior. Mathe-
matical descriptions of bone fluid flow often only consider
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Figure 1: Multiscale structure of cortical bone.

the osteonal scale to describe the transport within the LCP
[9–12] or sometimes involve a biporous treatment of this
medium [13–15], even if recent works tend to show that the
nanopores inside the collagen-apatite matrix may also par-
ticipate in the fluid movement inside bone volume [16, 17].

In geoscience, fluid and ionic transport in monoporous
media is a classical application of upscalingmethods to derive
effective transport coefficients [18–22]. Similarly, hydrochem-
ical transport phenomena in the LCP were extensively stud-
ied by our group [23, 24] highlighting their effects on bone
physiology [25, 26]. This paper stems from those results and
extends them to the osteonal scale, focusing on the fluid and
ionic transport along the osteon. An asymptotic homogeniza-
tion technique is used to upscale a coupled description of the
transport phenomena toward the tissue scale [23, 24]. The
outcome is an explicit description of the velocity and the ionic
flux along the osteon which turns out to be ruled by gener-
alized forms of the Darcy law and macroscopic convection-
diffusion equations.

To the best of our knowledge, this theoretical work is the
first attempt to describe themultiphysical transport phenom-
ena taking place within the HVC and the LCP at once. These
two fluid compartments exchange mass and ions through
the permeable outer wall of the HVC. The model developed
in this paper accounts for these exchanges by identifying
the normal fluxes of mass and ions through the outer walls
of the HVC with the longitudinal fluxes inside the canali-
culi. Furthermore, a rewriting of the macroscopic equations
when convection and diffusion mechanisms are comparable
resulted in checking the Onsager reciprocal relations linking

the fluxes and driving forces that govern the coupled trans-
port phenomena.

2. Multiscale Structure of the Cortical Tissue

In Figure 1, the multiscale structure of cortical bone is pre-
sented. From the organ to the cell, the hierarchical description
of cortical bone reads the following: (a) cortical tissue scale
(10−2m): cortical bone is made of cylinders called osteons
that are interconnected by macropores (axial Havers and
radial Volkmann canals) containing the vasculature and the
nerves; (b) osteon scale (10−3m): the osteon is made of
concentric lamellae and contains a porous network of lacunae
interconnected thanks to thin channels (canaliculi); (c) LCP
scale (10−5m): located between the lamellae, each lacuna
hosts a mechanosensitive cell called osteocyte that develops
dendritic protrusions inside the canaliculi to form a stellar
network; (d) canalicular pore scale (10−8m): the canalicular
pore space, which is roughly annular between the collagen-
apatite matrix and the cell dendrite surface, is partially
occupied by a pericellular matrix made of charged proteins
(mainly glycosaminoglycans). Interstitial fluid transport at
this scale should take into account diffusive, convective,
pericellular friction and electrochemical effects.

In this paper, we consider the interstitial fluid transport
in two levels of these nested porous networks, namely,
the Havers-Volkmann channels and the lacunocanalicular
network. Thus, in our three-scale homogenization process,
the microscale corresponds to the canalicular pore scale
(Figure 1(d); ℓ

𝜇

∼ 10
−8m), the mesoscale corresponds to
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the intraosteonal scale of the LCP and the pores correspond
to the Haversian-Volkmann channels (Figures 1(b) and 1(c);
ℓ
𝑚

∼ 10
−5m), and the macroscale corresponds to the cortical

tissue scale (Figure 1(a); ℓ
𝑀

∼ 10
−2m). As a consequence, the

micro-to-meso and meso-to-macro characteristic lengths
ratios are comparable: ℓ

𝜇

/ℓ
𝑚

∼ ℓ
𝑚

/ℓ
𝑀

∼ 𝜂 ≡ 10
−3. Herein-

after, sub- and superscripts𝜇,𝑚, and𝑀will denote quantities
at the micro-, meso-, and macroscale, respectively.

3. From the Microscale to the Mesoscale

At the microscale, the representative volume element (RVE)
is a bone fraction surrounding the canaliculus (see Fig-
ure 1(d)). Canaliculi are seen as two concentric cylinders.The
interstitial fluid, which is assumed to be an incompressible
Newtonian monovalent electrolyte (typically Na-Cl), occu-
pies the annular space between the outer canalicular wall
and the inner osteocyte process membrane. The cationic and
anionic concentrations are noted 𝑛

+ and 𝑛
−, respectively.

Under bulk conditions, electroneutrality reads 𝑛+ = 𝑛
−

= 𝑛
𝑏

,
where 𝑛

𝑏

stands for the salinity.
Accompanying the pressure induced hydraulic flow, other

electrochemical phenomena are generated by the electrolyte
solution movement [27]. Indeed, due to the pore surface
charge, double layers develop in the pore volume to main-
tain electroneutrality. When advected by the fluid flow, the
mobile charge population of the double layer generates the
macroscopically observed streaming potentials. The spatial
variability of these potentials generates electroosmotic flow
[28].

Thus, the microscopic model combines an electrostatics
balance to describe the double layers, Nernst-Planck equa-
tions for the ionic species transport that include possible
electromigration effects, and a Stokes equation considering
the effects of the Coulombic body force. Moreover, the teth-
ering pericellular fibers can sensibly reduce the permeability
of the canalicular space. This friction effect is represented by
a Brinkman-like term involving a pericellular permeability
[29].

3.1. Statement of the Transport Model at the Microscale. This
subsection briefly recalls the main results of the two-scale
treatment of multiphysical transport within the lacunocan-
alicular system as presented in [24].

First, electrostatics is expressed thanks to the Poisson-
Boltzmann equation:

∇ ⋅ ∇ (𝜓
𝜇

+ 𝜑
𝜇

) =
1

(𝐿
𝜇

𝐷

)
2

sinh𝜑𝜇. (1)

In this equation, two reduced electric potentials appear:
the reduced streaming potential 𝜓𝜇 and the reduced double
layer potential 𝜑𝜇. Moreover the Debye length 𝐿

𝜇

𝐷

roughly
characterizes the thickness of the electrical double layer.
Electric flux continuity at the pore surfaces is the associated
boundary condition.

Then, the Coulombic force effects can be split to make
electrochemical driving effects appear in addition to the
hydraulic pressure effect. Fluid flowhas thus threefold nature:

the Poiseuille velocity k𝜇
𝑃

in response to the gradient of the
fluid pressure 𝑝

𝑏

, a chemoosmotic velocity k𝜇
𝐶

in response to
the gradient of the salinity 𝑛

𝑏

, and an electroosmotic velocity
k𝜇
𝐸

in response to the gradient of the streaming potential
𝜓
𝜇. That is why, introducing the fluid dynamic viscosity 𝜇

𝑓

and the pericellular permeability 𝑘
𝑓

, the three velocities are
governed by the following equations:

𝜇
𝑓

∇ ⋅ ∇k𝜇
𝑃

−

𝜇
𝑓

𝑘
𝑓

k𝜇
𝑃

= 𝑓
𝜇

𝑃

∇𝑝
𝑏

,

𝜇
𝑓

∇ ⋅ ∇k𝜇
𝐶

−

𝜇
𝑓

𝑘
𝑓

k𝜇
𝐶

= 𝑓
𝜇

𝐶

∇𝑛
𝑏

,

𝜇
𝑓

∇ ⋅ ∇k𝜇
𝐸

−

𝜇
𝑓

𝑘
𝑓

k𝜇
𝐸

= 𝑓
𝜇

𝐸

∇𝜓
𝜇

.

(2)

The coefficients 𝑓𝜇
∙

(with ∙ = 𝑃, 𝐶, 𝐸) on the right-hand side
of these equations read [26]

𝑓
𝜇

𝑃

= 1,

𝑓
𝜇

𝐶

= 2𝑅𝑇 (cosh𝜑𝜇 − 1) ,

𝑓
𝜇

𝐸

= −2𝑅𝑇𝑛
𝑏

sinh𝜑𝜇,

(3)

where 𝑅 is the gas constant and 𝑇 the temperature. The total
fluid velocity vector at the micropore scale is thereby the
sum of the three velocities k𝜇 = k𝜇

𝑃

+ k𝜇
𝐶

+ k𝜇
𝐸

. Moreover, at
the canalicular lateral surfaces, no-slip boundary conditions
are assumed for each elementary velocity. Note that this
assumption to consider no-slip condition for each coupled
velocity is necessary to perform the homogenization process
as explained in [29].

Finally, noting 𝐷
±

the ionic diffusion parameters, the
ionic fluxes at the microscale J𝜇

±

= −𝐷
±

exp(∓𝜑𝜇)(∇𝑛
𝑏

±

𝑛
𝑏

∇𝜓
𝜇

) are due to diffusion and electromigration effects.
Then, the Nernst-Planck convection-electrodiffusion equa-
tions read then

𝜕

𝜕𝑡
(𝑛
𝑏

exp (∓𝜑𝜇)) + ∇ ⋅ (𝑛
𝑏

exp (∓𝜑𝜇) k𝜇) + ∇ ⋅ J𝜇
±

= 0. (4)

Ionic exchanges are possible at the pore surface and quan-
tified thanks to exchanges coefficients 𝛼𝜇

±

:

J𝜇
±

⋅ n = 𝛼
𝜇

±

𝜕𝑛
𝑏

𝜕𝑡
. (5)

3.2. Description of the Transport Phenomena at the Mesoscale
of the Lamellar Tissue. Thefirst upscaling procedure to derive
the transport phenomena at the mesoscale from the micro-
scopic description is based on the asymptotic periodic homo-
genization process as proposed in [23, 30, 31]. The two-level
homogenization procedure for the same Poisson-Boltzmann
equation (1) and Brinkman equations (2) can be found in [23,
29], whereas the upscaling of the Nernst-Planck equations is
given in [24].

In particular, it was shown in these references that the
fluid pressure 𝑝

𝑏

, the salinity 𝑛
𝑏

, and the streaming potential
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𝜓
𝜇

= 𝜓
𝑏

do not vary at the microscale whereas the double
layer potential 𝜑𝜇 is purely microscopic.

At the mesoscale, the average fluid velocity along the
canalicular network V𝑚 (the superscript 𝑚 referring to the
mesoscale) can be described by a modified Darcy law:

V𝑚 = ⟨k𝜇⟩
𝑚

= ⟨k𝜇
𝑃

⟩
𝑚

+ ⟨k𝜇
𝐶

⟩
𝑚

+ ⟨k𝜇
𝐸

⟩
𝑚

. (6)

Thus, the elementary velocities at the mesoscale are

⟨k𝜇
𝑃

⟩
𝑚

= −K𝑚
𝑃

∇
𝑚

𝑝
𝑏

,

⟨k𝜇
𝐶

⟩
𝑚

= −K𝑚
𝐶

∇
𝑚

𝑛
𝑏

,

⟨k𝜇
𝐸

⟩
𝑚

= −K𝑚
𝐸

∇
𝑚

𝜓
𝑏

,

(7)

where K𝑚
𝑃

, K𝑚
𝐶

, and K𝑚
𝐸

represent the effective permeability
tensors quantifying the Poiseuille, osmotic, and electroos-
motic effects at the mesoscale. The expressions of these ten-
sors are detailed in our previous works (see, e.g., [23]). More-
over,∇

𝑚

represents the space derivative operator with respect
to the coordinates of the mesoscopic level whereas ⟨⋆⟩

𝑚

represents the averaging operator on the microscopic RVE.
Finally, to derive the effective ionic fluxes at themesoscale

⟨J𝜇
±

⟩
𝑚

, we have to consider two cases. On the one hand, if
the diffusive and convective effects are of the same order of
magnitude, the canalicular Péclet number 𝑃𝑒𝜇 ≡ 𝑂(1) and
we obtain

⟨J𝜇
±

⟩
𝑚

= −D𝑚
±

(∇
𝑚

𝑛
𝑏

± 𝑛
𝑏

∇
𝑚

𝜓
𝑏

)

+ 𝑛
𝑏

⟨exp (∓𝜑𝜇) k𝜇⟩
𝑚

.

(8)

The complete expression of the effective diffusion tensor at
the mesoscaleD𝑚

±

is detailed in [24]. This quantity combines
textural and electrical effects. These ionic fluxes along the
canalicular system can then be separated into convective and
electrodiffusive parts J𝑐

±

and J𝑑
±

:

⟨J𝜇
±

⟩
𝑚

= J𝑐
±

+ J𝑑
±

, (9)

where J𝑐
±

= 𝑛
𝑏

⟨exp(∓𝜑𝜇)k𝜇⟩
𝑚

and J𝑑
±

= −D𝑚
±

(∇
𝑚

𝑛
𝑏

±𝑛
𝑏

∇
𝑚

𝜓
𝑏

).
On the other hand, if diffusion is the main transport

process at the canalicular scale, the Péclet number is small
and the convective term J𝑐

±

vanishes so that

⟨J𝜇
±

⟩
𝑚

= J𝑑
±

. (10)

4. From the Lamellar Tissue to
the Cortical Tissue

The purpose of this section is now to describe the flow phe-
nomena and chemical transport at the macroscale of the cor-
tical tissue. At this scale, the porous network corresponds to
the Havers-Volkmann canals (named Haversian pores here-
after), whereas the effective solid phase of the porousmedium
corresponds to the collagen-apatite tissue and the micro-
porosity of the lacunocanalicular system.Hydroelectrochem-
ical phenomena occurring across the canalicular network
are nevertheless integrated in the description of transport
phenomena across Haversian porosity.

4.1. Statement of the Transport Model at the Haversian Pore
Scale. Since capillaries and nerves are present in the central
part of Haversian pores [32], the interstitial fluid flows in
the pseudo-annular space between the outer wall of the
Haversian canal and the walls of the capillaries and nerves.
Again, the pore geometry can be roughly represented by two
concentric cylinders representing the Haversian wall (outer
cylinder) and capillary and nerves (inner cylinder).

The walls of the Haversian pores are permeable [33],
allowing exchanges of matter and ions with the blood vessels
(inner wall, indexed vas) and with the lacunocanalicular
network (outer wall, indexed LCP). To use again periodic
homogenization, we assume that a 3D periodic representative
cell can be defined. Note that the possibility to obtain a
reliable elementary volume at the scale of cortical tissue is
a tricky point in bone biomechanics due to the high spatial
heterogeneity of this tissue.

Similarly to the multiphysical approach proposed at the
canalicular scale, the description of the transport phenomena
at the scale of theHaversian porosity should take into account
both hydraulic and electrochemical effects.

4.1.1. Electrostatics. At themesoscale, the electrical potentials
are governed by a similar equation as obtained at the micro-
scale:

∇ ⋅ ∇ (𝜓
𝑚

+ 𝜑
𝑚

) =
1

(𝐿
𝑚

𝐷

)
2

sinh𝜑𝑚. (11)

The electric flux continuity at the walls completes the
electrostatics problem.

4.1.2. Fluid Movement with Coulombic Force. Since the fric-
tion effect of the pericellular matrix is no more present at the
mesoscale of the Haversian porosity, the coupled fluid flow is
now represented by the following Stokes equations:

𝜇
𝑓

∇ ⋅ ∇k𝑚
𝑃

= 𝑓
𝑚

𝑃

∇𝑝
𝑏

,

𝜇
𝑓

∇ ⋅ ∇k𝑚
𝐶

= 𝑓
𝑚

𝐶

∇𝑛
𝑏

,

𝜇
𝑓

∇ ⋅ ∇k𝑚
𝐸

= 𝑓
𝑚

𝐸

∇𝜓
𝑚

,

(12)

where the coefficients 𝑓𝑚
∙

are the same as before when trans-
posed at the mesoscale:

𝑓
𝑚

𝑃

= 1,

𝑓
𝑚

𝐶

= 2𝑅𝑇 (cosh𝜑𝑚 − 1) ,

𝑓
𝑚

𝐸

= −2𝑅𝑇𝑛
𝑏

sinh𝜑𝑚.

(13)

Note that these equations correspond to (2) considering
an infinite fiber permeability (𝑘

𝑓

→ ∞). Again, the velocity
in theHaversian porosity k𝑚 is the sumof three contributions:

k𝑚 = k𝑚
𝑃

+ k𝑚
𝐶

+ k𝑚
𝐸

. (14)

Noting n and t the outer normal and longitudinal tangent
unit vectors, the boundary conditions at the walls of the
Haversian porosity are given hereafter.
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(i) Tangent no-slip condition:

k𝑚
∙

⋅ t = 0 (15)

(ii) Exchanges with the vasculature or the LCP:

k𝑚
∙

⋅ n = V⋆
∙

⋅ n, (16)

where ∙ = 𝑃, 𝐶, 𝐸 and ⋆ = vas, LCP depending on the
location of the wall. The filtration velocities across the blood
vessels membranes Vvas

∙

have to be given. The filtration
velocities at the outer wall of the pore VLCP

∙

are equal to
the velocities ⟨k𝜇

∙

⟩
𝑚

determined from the previous upscaling
procedure in (7).

Note finally that pressure continuity between the Haver-
sian and canalicular pores should be considered [34] and that
the incompressibility of the fluid should also be assumed for
each elementary velocity:

∇ ⋅ k𝑚
∙

= 0. (17)

4.1.3. Ionic Transport. As at the microscale, the ionic flux
vector at the mesoscale of the vascular porosity J𝑚

±

=

−𝐷
±

exp(∓𝜑𝑚)(∇𝑛
𝑏

±𝑛
𝑏

∇𝜓
𝑚

) follows theNernst-Planck equa-
tions:

𝜕

𝜕𝑡
(𝑛
𝑏

exp (∓𝜑𝑚)) + ∇ ⋅ (𝑛
𝑏

exp (∓𝜑𝑚) k𝑚) + ∇ ⋅ J𝑚
±

= 0.

(18)

At the inner porewalls, the normal fluxes J𝑚
±

⋅n are equal to
the ionic fluxes through the blood vessels walls Jvas

±

⋅n (which
has to be provided):

J𝑚
±

⋅ n = Jvas
±

⋅ n. (19)

At the outer pore walls, the normal fluxes J𝑚
±

⋅ n are
equal to the fluxes derived from the canalicular network
analysis ⟨J𝜇

±

⟩
𝑚

⋅ n (see (9) or (10) according to the value of
the canalicular Péclet number):

J𝑚
±

⋅ n = ⟨J𝜇
±

⟩
𝑚

⋅ n. (20)

4.2. Homogenization to Reach the Macroscale. The homoge-
nization procedure consists in the nondimensional writing of
the problems, the asymptotic expansion, the collection of the
slow variables, and the proposition of the closure problems
(see, e.g., [23]). Here, this meso- to macroscale upscaling
stage is often similar to the one performed to get to the
mesoscopic description from the microscale. Thus, we will
briefly present the similarities and be more specific about the
differences.

4.2.1. Electrostatics. The homogenization process of the
Poisson-Boltzmann equation (11) is the same as the one
proposed to perform the passage between the micro- and
mesoscale.

4.2.2. Treatment of the Fluid Flow. Again, the homogeniza-
tion procedure of the fluid transport equation and the mass
conservation are similar as previously done considering
𝑘
𝑓

→ ∞. Only the boundary conditions should be treated in
a different way. Indeed, the effects of the hydraulic exchanges
between canalicular and Haversian pores may vary depend-
ing on the scale ratios ℓ

𝜇

/ℓ
𝑚

and ℓ
𝑚

/ℓ
𝑀

[34, 35]. Here, if
the no-slip condition of (15) remains the same, according
to the arguments of [36], the canalicular permeability has
to be scaled by 𝜂

2, giving the following scaling rules of the
nondimensional exchange conditions of (16):

k𝑚 ⋅ n = 𝜂
2V⋆ ⋅ n, (21)

with ⋆ = vas, LCP depending on the considered pore surface.

4.2.3. Treatment of the Ionic Transport. First, we consider that
the convective and diffusive driving effects can be compared;
that is to say that 𝑃𝑒𝑚 ≡ 𝑂(1). Analogously to the results of
the previous paragraph, if the upscaling of the Nernst-Planck
equations (18) is very close to the one performed previously
(see (8)), only the specificity of the nondimensional writing
of the boundary conditions (19) and (20) should be here
discussed.

On the one hand, remembering the decomposition of
⟨J𝜇
±

⟩
𝑚

in (9), the nondimensional writing of the boundary
equations (20) at the outer wall of the Haversian pores reads

J𝑚
±

⋅ n = (𝐽
𝑐

±

𝑛

J𝑐
±

+ 𝐽
𝑑

±

𝑛

J𝑑
±

) ⋅ n, (22)

where the nondimensional convective flux numbers 𝐽𝑐
±

𝑛

and
diffusive flux numbers 𝐽𝑑

±

𝑛

resulting from the LCP transport
are introduced. To propose scaling rules of these parameters,
we have to estimate their order of magnitude. A reference
value of the convective flux could be obtained from the lacu-
nocanalicular porosity 𝜙

𝜇, the reference fluid velocity in the
LCP V𝑚ref , the reference length of the mesoscale 𝐿𝑚ref , and the
reference ionic diffusion coefficients𝐷ref as follows:

𝐽
𝑐

±

𝑛

≡
V𝑚ref𝜙
𝜇

𝐿
𝑚

ref
𝐷ref

. (23)

Since we have V𝑚ref ≡ 10
−7m⋅s−1 [7], 𝜙𝜇 ≡ 10

−3 [37], 𝐿𝑚ref ≡

10
−5 (see Figure 1(c)), and 𝐷ref ≡ 10

−9m2⋅s−1 (sodium bulk
diffusivity in water), we obtain 𝐽

𝑐

±

𝑛

≡ 𝜂
2. Furthermore, a

reference value of the diffusive flux reads immediately

𝐽
𝑑

±

𝑛

≡
𝜙
𝜇

𝐷ref
𝐷ref

≡ 𝜙
𝜇

≡ 𝜂. (24)

Then, at the outer wall of the Haversian pores, the exchanges
conditions of (22) read

J𝑚
±

⋅ n = (𝜂
2J𝑐
±

+ 𝜂J𝑑
±

) ⋅ n. (25)

On the other hand, at the vasculature wall, if we consider
that the ionic exchange term with vasculature is mainly due
to convective terms, we have no dimensional conditions
involving 𝜂2:

J𝑚
±

⋅ n = 𝜂
2Jvas
±

⋅ n. (26)
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4.2.4. Slow Variables. Through the homogenization process,
we recover that the fluid pressure 𝑝

𝑏

, the salinity 𝑛
𝑏

, and the
streaming potential 𝜓𝑚 = 𝜓

𝑏

are macroscopic fields.

4.3. Macroscopic Model at the Scale of Cortical Tissue. In this
subsection, themacroscopic equations of themodel are given.
We note ⟨⋆⟩

𝑀

the volume average on the representative cell
used to pass from the meso- to the macroscale and ⟨⋆⟩

𝑆

𝑀

the
solid-fluid interface average (integral over the surface per unit
of volume) of a given flux.

At the macroscale, the Poisson-Boltzmann problem is no
more visible. However, it still has to be solved inside the
representative volume since the double layer potential conse-
quences do exist in the transport phenomena. Moreover, the
Darcy fluid velocity k𝑀 is expressed through a coupled law as
obtained before:

k𝑀 = ⟨k𝑚⟩
𝑀

= −K𝑀
𝑃

∇
𝑀

𝑝
𝑏

− K𝑀
𝐶

∇
𝑀

𝑛
𝑏

− K𝑀
𝐸

∇
𝑀

𝜓
𝑏

, (27)

where ∇
𝑀

is the macroscopic space derivation operator and
K𝑀
∙

are the effective coupled permeability tensors (with ∙ =

𝑃, 𝐶, 𝐸). Their expressions can be derived from cell problems
similar to those presented in [23].

Finally, the ionic transport at the macroscopic scale
involves submacroscopic exchange terms Γ

±

= ⟨J𝑑
±

⋅ n⟩𝑆
𝑀

:

𝜕

𝜕𝑡
[𝑛
𝑏

⟨exp (∓𝜑𝑚)⟩
𝑀

] + Γ
±

+ ∇
𝑀

⋅ [𝑛
𝑏

⟨exp (∓𝜑𝑚) k∗⟩
𝑀

]

= ∇
𝑀

⋅ [DM
±

(∇
𝑀

𝑛
𝑏

± 𝑛
𝑏

∇
𝑀

𝜓
𝑏

)] ,

(28)

where the effective velocity k∗ = k𝑚 − 𝑉
𝜇, which is

the difference between the fluid velocity in the mesopores
k𝑚 and a chemical accumulation velocity term 𝑉

𝜇. This
chemical accumulation velocity represents the effects due
to the downer scale. Furthermore, the complete expressions
of the effective diffusion tensors at the macroscale DM

±

are
similar to those proposed in [24].

5. Discussion on the Onsager
Reciprocal Relations

TheOnsager reciprocal relations allow highlighting the inter-
actions between transport phenomena occurring simultane-
ously in a thermodynamic system. In this section, the ques-
tion of the validity of the Onsager reciprocal relationships is
examined for the above problems. This analysis is based on a
study of transport phenomena in coupled clayey media [38].

5.1. Discussion on the Fluid Flow in the Haversian Porosity.
The coupled Darcy law (27) is the average expression of a
generalizedHagen-Poiseuille law expressing the fluid velocity
at the Haversian pore scale k𝑚:

k𝑚 = −𝜅
𝑚

𝑃

∇
𝑀

𝑝
𝑏

− 𝜅
𝑚

𝐶

∇
𝑀

𝑛
𝑏

− 𝜅
𝑚

𝐸

∇
𝑀

𝜓
𝑏

, (29)

where 𝜅𝑚
∙

are conductivity parameters quantifying the cou-
pled contributions in the Haversian porosity.These transport
parameters at the Haversian pore scale are obtained from the
cellular problem appearing in the meso-to-macro homoge-
nization process. Indeed, the classical closure statements for
coupled flow are (see [23])

k𝑚
𝑃

= −𝜅
𝑚

𝑃

∇
𝑀

𝑝
𝑏

,

k𝑚
𝐶

= −𝜅
𝑚

𝐶

∇
𝑀

𝑛
𝑏

,

k𝑚
𝐸

= −𝜅
𝑚

𝐸

∇
𝑀

𝜓
𝑏

.

(30)

Introducing these equations in the Stokes equations (12),
we obtain the cell problems:

−𝜇
𝑓

∇ ⋅ ∇𝜅
𝑚

∙

= 𝑓
𝑚

∙

, (31)

where the 𝑓𝑚
∙

are those defined by (13). These cell problems
are completed by introducing the closure statements in the
previous boundary conditions (21).The coupled permeability
parameters at the macroscale are then determined by an
averaging procedure: ⟨𝜅𝑚

∙

⟩
𝑀

= K𝑀
∙

.
Equation (29) can thus be rewritten remembering that

the definition of the reduced streaming potential involves the
Faraday constant 𝐹, the gas constant 𝑅, and the temperature
𝑇, so that 𝜓

𝑏

= 𝐹𝜓
𝑏

/𝑅𝑇, and noticing that ∇𝑛
𝑏

=

(𝑛
𝑏

/𝑅𝑇)𝑅𝑇∇ ln 𝑛
𝑏

:

k𝑚 = −𝜅
𝑚

𝑃

∇
𝑀

𝑝
𝑏

− 𝜅
𝑚

𝐶

𝑛
𝑏

𝑅𝑇
𝑅𝑇∇
𝑀

ln 𝑛
𝑏

− 𝜅
𝑚

𝐸

𝐹

𝑅𝑇
∇
𝑀

𝜓
𝑏

. (32)

The averaged version of this equation provides thus an
alternative expression of the Darcy law (27):

k𝑀 = ⟨k𝑚⟩
𝑀

= − ⟨𝜅
𝑚

𝑃

⟩
𝑀

∇
𝑀

𝑝
𝑏

− ⟨𝜅
𝑚

𝐶

⟩
𝑀

𝑛
𝑏

𝑅𝑇
𝑅𝑇∇
𝑀

ln 𝑛
𝑏

− ⟨𝜅
𝑚

𝐸

⟩
𝑀

𝐹

𝑅𝑇
∇
𝑀

𝜓
𝑏

.

(33)

5.2. Macroscopic Ionic Flux and Electric Current. After hav-
ing reformulated the fluid flow at the macroscale, we then
intend to derive the macroscopic chemical flux and electric
current. First, the sum of the cationic and anionic transport
(28) reads

𝜕

𝜕𝑡
[2𝑛
𝑏

⟨cosh (𝜑𝑚)⟩
𝑀

] + (Γ
+

+ Γ
−

) + ∇
𝑀

⋅ [2𝑛
𝑏

⟨cosh (𝜑𝑚) k∗⟩
𝑀

] − ∇
𝑀

⋅ [(DM
+

+DM
−

) ∇
𝑀

𝑛
𝑏

+ (DM
+

−DM
−

) 𝑛
𝑏

∇
𝑀

𝜓
𝑏

]

= 0.

(34)



Mathematical Problems in Engineering 7

This equation can be reformulated to obtain the conservation
of the chemical flux:

𝜕

𝜕𝑡
[2𝑛
𝑏

⟨cosh (𝜑𝑚)⟩
𝑀

] + (Γ
+

+ Γ
−

) + ∇
𝑀

⋅ [2𝑛
𝑏

⟨k∗⟩
𝑀

] + ∇
𝑀

⋅ JM = 0,

(35)

where the chemical flux JM is defined by

JM = 𝑛
𝑏

⟨2 (cosh (𝜑𝑚) − 1) k∗⟩
𝑀

−
𝑛
𝑏

𝑅𝑇
(DM
+

+DM
−

) 𝑅𝑇∇
𝑀

ln 𝑛
𝑏

−
𝐹

𝑅𝑇
(DM
+

−DM
−

) 𝑛
𝑏

∇
𝑀

𝜓
𝑏

.

(36)

Similarly, the difference of the cationic and anionic trans-
port equations (28) gives the conservation of the electric cur-
rent:

𝜕

𝜕𝑡
[𝐹𝑛
𝑏

⟨−2 sinh (𝜑𝑚)⟩
𝑀

] + 𝐹 (Γ
+

− Γ
−

) + ∇
𝑀

⋅ IM

= 0,

(37)

where the electric flux IM is

IM = 𝐹𝑛
𝑏

− ⟨2 sinh (𝜑𝑚) k∗⟩
𝑀

−
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) 𝑅𝑇∇
𝑀

ln 𝑛
𝑏

−
𝐹
2

𝑅𝑇
(DM
+

+DM
−

) 𝑛
𝑏

∇
𝑀

𝜓
𝑏

.

(38)

5.3. Matrix Form of theMultiphysics Transport within Cortical
Tissue. If we assume that the chemical accumulation effects
can be neglected, the effective velocity appearing in (28) is
equal to the local fluid velocity in theHaversian porosity k∗ =
k𝑚 and the use of (32) in (36) and (38) gives

JM = 𝑛
𝑏

⟨2 (cosh (𝜑𝑚) − 1) (−𝜅
𝑚

𝑃

∇
𝑀

𝑝
𝑏

− 𝜅
𝑚

𝐶

𝑛
𝑏

𝑅𝑇

⋅ 𝑅𝑇∇
𝑀

ln 𝑛
𝑏

− 𝜅
𝑚

𝐸

𝐹

𝑅𝑇
∇
𝑀

𝜓
𝑏

)⟩
𝑀

−
𝑛
𝑏

𝑅𝑇
(DM
+

+DM
−

) 𝑅𝑇∇
𝑀

ln 𝑛
𝑏

−
𝐹

𝑅𝑇
(DM
+

−DM
−

) 𝑛
𝑏

∇
𝑀

𝜓
𝑏

,

(39)

IM = 𝐹𝑛
𝑏

⟨−2 sinh (𝜑𝑚) (−𝜅𝑚
𝑃

∇
𝑀

𝑝
𝑏

− 𝜅
𝑚

𝐶

𝑛
𝑏

𝑅𝑇
𝑅𝑇∇
𝑀

ln 𝑛
𝑏

− 𝜅
𝑚

𝐸

𝐹

𝑅𝑇
∇
𝑀

𝜓
𝑏

)⟩
𝑀

−
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) 𝑅𝑇∇
𝑀

ln 𝑛
𝑏

−
𝐹
2

𝑅𝑇
(DM
+

+DM
−

)

⋅ 𝑛
𝑏

∇
𝑀

𝜓
𝑏

.

(40)

Finally, from the macroscopic Darcy law (33) and the
expressions of the chemical flux (39) and of the electric cur-
rent (40) we can derive the matrix form of the multiphysics
transport phenomena at the cortical scale:

(

k𝑀

JM

IM
)

= (

−L𝑃𝑃 −L𝑃𝐶 −L𝑃𝐸

−L𝐶𝑃 −L𝐶𝐶 −L𝐶𝐸

−L𝐸𝑃 −L𝐸𝐶 −L𝐸𝐸
)(

∇
𝑀

𝑝
𝑏

𝑅𝑇∇
𝑀

ln 𝑛
𝑏

∇
𝑀

𝜓
𝑏

).

(41)

The diagonal terms of the matrix represent the direct
parameters whereas the off-diagonal terms quantify the cou-
pling phenomena. Their expressions are then

L𝑃𝑃 = ⟨𝜅
𝑚

𝑃

⟩
𝑀

,

L𝑃𝐶 = 𝑛
𝑏

𝑅𝑇
⟨𝜅
𝑚

𝐶

⟩
𝑀

,

L𝑃𝐸 = 𝐹

𝑅𝑇
⟨𝜅
𝑚

𝐸

⟩
𝑀

,

L𝑃𝐶 = 𝑛
𝑏

⟨2 (cosh (𝜑𝑚) − 1) 𝜅
𝑚

𝑃

⟩
𝑀

,

L𝐶𝐶 =
𝑛
2

𝑏

𝑅𝑇
⟨2 (cosh (𝜑𝑚) − 1) 𝜅

𝑚

𝐶

⟩
𝑀

+
𝑛
𝑏

𝑅𝑇
(DM
+

+DM
−

) ,

L𝐶𝐸 = 𝐹𝑛
𝑏

𝑅𝑇
⟨2 (cosh (𝜑𝑚) − 1) 𝜅

𝑚

𝐸

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) ,

L𝐸𝑃 = −𝐹 ⟨2𝑛
𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝑃

⟩
𝑀

,

L𝐸𝐶 = −
𝐹𝑛
𝑏

𝑅𝑇
⟨2𝑛
𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝐶

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) ,

L𝐸𝐸 = −
𝐹
2

𝑅𝑇
⟨2𝑛
𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝐸

⟩
𝑀

+
𝐹
2

𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) .

(42)

The Onsager reciprocal relations would require this
matrix to be symmetric. This point is checked in Appendix
by showing that L𝑃𝐶 = L𝐶𝑃, L𝑃𝐸 = L𝐸𝑃, and L𝐶𝐸 = L𝐸𝐶.
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6. Concluding Remarks

The use of modeling approaches to mimic the in vivo behav-
ior of bone tissue is a common alternative to the difficulty
to perform convenient in vivo experiments. When adopting
a theoretical approach, it is necessary to find a way to
validate the model results. In bone poromechanics, this
validation is often performed through a method correlating
the macroscopic streaming potentials induced by the stress-
generated fluid flow within the lacunocanalicular pores. This
idea was first proposed by [39] and was later used by several
other groups [10, 23, 40]. However, all these studies are
based on strong assumptions. First, they involve a two-scale
approach connecting phenomena occurring in the canali-
culi to phenomena at the intermediate scale of osteons or
osteonal tissue whereas experimental in vivo measurements
are performed at the organ scale (see, e.g., [41]). Further-
more, these studies consider homeostasis to neglect chemical
gradient effects and put forward the Onsager reciprocity
relations to obtain the streaming potential distribution from
the upper scale fluid velocity. When steady state is reached,
there is no net charge transfer, implying that the electric
current is zero. This is equivalent to setting the Ohmic and
convective currents equal and opposite. Thus, the streaming
potential can be linearly connected to the macroscopic
pressure field.

The present study makes it possible to reach the macro-
scopic scale of bone tissue and shows the validity of the
Onsager reciprocity relations.

A multiscale model of the transport phenomena occur-
ring at different scales of cortical tissue was developed adopt-
ing two successive upscaling procedures. It takes into account
the existing hydroelectrochemical phenomena occurring at
the different scales of pores (Haversian porosity and canali-
culi).

Furthermore, a rewriting of the macroscopic equations
when convection and diffusion mechanisms are compa-
rable resulted in checking Onsager reciprocal relations
linking the coupled quantities that govern the coupled
transport phenomena. This approach thus reinforces the
seminal idea of [39] to use macroscopic streaming poten-
tials measurements to validate poromechanical models of
bone that are extensively used in bone biomechanical engi-
neering.

Appendix

Recovery of the Onsager Reciprocity Property

If u is a quantity, the divergence theorem gives a link between
the volume and surface average values. Moreover, due to the
no-slip boundary condition which infers that 𝜅𝑚

∙

= 0 on the
pore surface, a strong simplification is obtained:

⟨∇ ⋅ (𝜅
𝑚

∙

u)⟩
𝑀

= ⟨𝜅
𝑚

∙

u ⋅ n⟩𝑆
𝑀

= 0. (A.1)

The use of this result and (31) for ∙ = 𝑃, 𝐶 gives L𝐶𝑃 = L𝑃𝐶:

L𝐶𝑃 = 𝑛
𝑏

⟨2 (cosh (𝜑𝑚) − 1) 𝜅
𝑚

𝑃

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
⟨2𝑅𝑇 (cosh (𝜑𝑚) − 1) 𝜅

𝑚

𝑃

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
⟨𝑓
𝑚

𝐶

𝜅
𝑚

𝑃

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
⟨−𝜇
𝑓

(∇ ⋅ ∇𝜅
𝑚

𝐶

) 𝜅
𝑚

𝑃

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
⟨−𝜇
𝑓

𝜅
𝑚

𝑃

∇ ⋅ ∇𝜅
𝑚

𝐶

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
(−𝜇
𝑓

⟨𝜅
𝑚

𝑃

∇ ⋅ ∇𝜅
𝑚

𝐶

⟩
𝑀

)

=
𝑛
𝑏

𝑅𝑇
(−𝜇
𝑓

⟨∇ ⋅ (𝜅
𝑚

𝑃

∇𝜅
𝑚

𝐶

) + ∇𝜅
𝑚

𝑃

⋅ ∇𝜅
𝑚

𝐶

⟩
𝑀

)

=
𝑛
𝑏

𝑅𝑇
(−𝜇
𝑓

⟨∇ ⋅ (𝜅
𝑚

𝑃

∇𝜅
𝑚

𝐶

)⟩
𝑀

+ ⟨∇𝜅
𝑚

𝑃

⋅ ∇𝜅
𝑚

𝐶

⟩
𝑀

)

=
𝑛
𝑏

𝑅𝑇
(−𝜇
𝑓

⟨∇𝜅
𝑚

𝑃

⋅ ∇𝜅
𝑚

𝐶

⟩
𝑀

)

=
𝑛
𝑏

𝑅𝑇
(−𝜇
𝑓

⟨∇ ⋅ (𝜅
𝑚

𝐶

∇𝜅
𝑚

𝑃

)⟩
𝑀

+ ⟨∇𝜅
𝑚

𝑃

⋅ ∇𝜅
𝑚

𝐶

⟩
𝑀

)

=
𝑛
𝑏

𝑅𝑇
(−𝜇
𝑓

⟨𝜅
𝑚

𝐶

∇ ⋅ ∇𝜅
𝑚

𝑃

⟩
𝑀

)

=
𝑛
𝑏

𝑅𝑇
⟨−𝜇
𝑓

(∇ ⋅ ∇𝜅
𝑚

𝑃

) 𝜅
𝑚

𝐶

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
⟨𝑓
𝑚

𝑃

𝜅
𝑚

𝐶

⟩
𝑀

=
𝑛
𝑏

𝑅𝑇
⟨𝜅
𝑚

𝐶

⟩
𝑀

= L𝑃𝐶.

(A.2)

Similarly, from (31) for ∙ = 𝑃, 𝐸, we obtain L𝐸𝑃 = L𝑃𝐸:

L𝐸𝑃 = −𝐹 ⟨2𝑛
𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝑃

⟩
𝑀

=
𝐹

𝑅𝑇
⟨−2𝑅𝑇𝑛

𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝑃

⟩
𝑀

=
𝐹

𝑅𝑇
⟨𝑓
𝑚

𝐸

𝜅
𝑚

𝑃

⟩
𝑀

=
𝐹

𝑅𝑇
⟨(−𝜇
𝑓

∇ ⋅ ∇𝜅
𝑚

𝐸

) 𝜅
𝑚

𝑃

⟩
𝑀

= ⋅ ⋅ ⋅ =
𝐹

𝑅𝑇
⟨(−𝜇
𝑓

∇ ⋅ ∇𝜅
𝑚

𝑃

) 𝜅
𝑚

𝐸

⟩
𝑀

=
𝐹

𝑅𝑇
⟨𝑓
𝑚

𝑃

𝜅
𝑚

𝐸

⟩
𝑀

=
𝐹

𝑅𝑇
⟨𝜅
𝑚

𝐸

⟩
𝑀

= L𝑃𝐸.

(A.3)

The last equality L𝐶𝐸 = L𝐸𝐶 is obtained from (31) for ∙ =

𝐶, 𝐸:

L𝐶𝐸 = 𝐹𝑛
𝑏

𝑅𝑇
⟨2 (cosh (𝜑𝑚) − 1) 𝜅

𝑚

𝐸

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

)
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=
𝐹𝑛
𝑏

𝑅2𝑇2
⟨2𝑅𝑇 (cosh (𝜑𝑚) − 1) 𝜅

𝑚

𝐸

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

)

=
𝐹𝑛
𝑏

𝑅2𝑇2
⟨𝑓
𝑚

𝐶

𝜅
𝑚

𝐸

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

)

=
𝐹𝑛
𝑏

𝑅2𝑇2
⟨(−𝜇
𝑓

∇ ⋅ ∇𝜅
𝑚

𝐶

) 𝜅
𝑚

𝐸

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) = ⋅ ⋅ ⋅

=
𝐹𝑛
𝑏

𝑅2𝑇2
⟨(−𝜇
𝑓

∇ ⋅ ∇𝜅
𝑚

𝐸

) 𝜅
𝑚

𝐶

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

)

=
𝐹𝑛
𝑏

𝑅2𝑇2
⟨𝑓
𝑚

𝐸

𝜅
𝑚

𝐶

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

)

=
𝐹𝑛
𝑏

𝑅2𝑇2
⟨−2𝑅𝑇𝑛

𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝐶

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

)

= −
𝐹𝑛
𝑏

𝑅𝑇
⟨2𝑛
𝑏

sinh (𝜑𝑚) 𝜅𝑚
𝐶

⟩
𝑀

+
𝐹𝑛
𝑏

𝑅𝑇
(DM
+

−DM
−

) = L𝐸𝐶.

(A.4)
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