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This paper shows the analysis of the thin film flow of fourth-grade fluid on the outer side of a vertical cylinder. Solution of the
governing nonlinear equation is obtained by Rational Homotopy Perturbation Method (RHPM); comparison with exact solution
reflects the reliability of the method. Analysis shows that this method is reliable for even high nonlinearity. Graphs and tables
strengthen the idea.

1. Introduction

Recently, a number of new and modified techniques have
been introduced by various scientists which subsequently
proved extremely useful to tackle various nonlinear problems
of diversified physical nature. It is an established fact that
most of the physical problems in nature are nonlinear and
hence solutions of such problems are of utmost impor-
tance. In a similar context, Rational Homotopy Perturbation
Method (RHPM) [1] is a newly developed modified form of
Homotopy Perturbation Method (HPM). HPM is developed
by the coupling of Homotopy and perturbation is very useful
for solving nonlinear problems [2–16]. The literature reveals
that Jalaal et al. applied Homotopy Perturbation Method to
find the velocity profile of a spherical solid particle in plane
Couette fluid flow [2]. Liao compared Homotopy Analysis
and Homotopy Perturbation Method [3], and Ghorbani and
Nadjafi made an elegant comparison of He’s polynomials
which are obtained from Homotopy Perturbation Method
(HPM) Adomian’s Polynomials [4]. They worked on new
developments of the HPM [5]. Mohyud-Din applied HPM
on various problems like partial differential equations, higher
dimensional initial boundary value problem, and fourth-
order, nonlinear higher-order, and sixth-order boundary
value problems [6–10]. Xu solved boundary layer equation in

unbounded domain by HPM [11]. Vázquez-Leal [1] modified
the idea of Homotopy Perturbation Method. He used two
power series of Homotopy parameters in a quotient, resulting
in a series of linear differential equations.

Siddiqui appliedHomotopy PerturbationMethod on thin
film flow of fourth-grade fluid on the outer wall of vertical
cylinder. Hayat applied Homotopy Analysis Method on the
same problem and proved convergence. Afterwards, Sajid
introduced the slip effect for this problem and presented
solution using Homotopy Analysis Method [12–16].

It is worth mentioning that Hayat et al. [17, 18] made
an appropriate use of Homotopy technique and applied
the same on thin film flow of an Oldroyd 6-constant fluid
over a moving belt [17] and also on Couette and Poiseuille
flows for fourth-grade fluid [18]. It is to be highlighted
that the proposed method (RHPM) is highly suitable for
a wide range of physical problems including heat transfer
and thermodynamics. The detailed study of the literature
reconfirms the reliability of the suggestedRationalHomotopy
PerturbationMethod (see [19–23] and the references therein).
In a similar context, Ganji et al. [20, 21] solved nonlinear
equations arising in heat transfer by applying the coupling
of Homotopy and perturbation. Moreover, Chowdhury and
Hashim [22] and Islam et al. [23] extended modified version
of Homotopy Perturbation Method for problems related to
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heat transfer. Inspired andmotivated by the ongoing research
in this area, we apply a relatively new modified version of
Homotopy Perturbation Method which is called Rational
Homotopy Perturbation Method (RHPM) [24] on the thin
film flow of fourth-grade fluid coupled with slip effect. A
convergent and reliable solution is presented with the aid of
figures and tables. Analysis shows that Rational Homotopy
PerturbationMethod is adequate to present the flow behavior
of this problem. It is observed that RHPM is very efficient for
such problems. Moreover, RHPM is equally applicable on the
mathematical models derived from nature like Stiff system of
equations [24], transient of nonlinear circuits [19], and heat
transfer problems (see [19–24] and the references therein).

2. Basic Idea of RHPM

Foundation of Rational Homotopy PerturbationMethod and
Homotopy Perturbation Method is the same. Consider the
nonlinear differential equation to explain both methods:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑔 (𝑟) = 0, where 𝑟 ∈ Ω, (1)

and consider the boundary condition

𝐵(𝑢,
𝜕𝑢

𝜕𝜂
) , where 𝑟 ∈ Γ, (2)

where 𝑁 and 𝐿 are nonlinear and linear operators, respec-
tively, and 𝐵 is a boundary operator. 𝑔(𝑟) is an analytic
function and domain Ω has the boundary Γ. Homotopy can
be written as

𝐻(𝜐, 𝑝) = (1 − 𝑝) [𝐿 (𝜐) − 𝐿 (𝑢
0
)]

+ 𝑝 (𝐿 (𝜐) + 𝑁 (𝜐) − 𝑔 (𝑟)) = 0,

𝑝 ∈ [0, 1] ,

(3)

where 𝑢
0
is an initial approximation for (1) which satisfies the

boundary condition andHomotopy parameter is𝑝. For𝑝 = 0

and 𝑝 = 1, (3) can be written as

𝐻(𝜐, 0) = [𝐿 (𝜐) − 𝐿 (𝑢0)] = 0,

𝐻 (𝜐, 1) = 𝐿 (𝜐) + 𝑁 (𝜐) − 𝑔 (𝑟) = 0.

(4)

For HPM, let us take the solution for (3) as

𝜐 = 𝜐
0
+ 𝑝𝜐
1
+ 𝑝
2
𝜐
2
+ ⋅ ⋅ ⋅ ; (5)

consider 𝑝 → 1 to get approximate solution

𝑢 (𝑦) = lim
𝑝→1

𝜐 = 𝜐
0
+ 𝜐
1
+ 𝜐
2
+ ⋅ ⋅ ⋅ . (6)

Let us take the solution of (3) for RHPM as

𝜐 =
𝜐
0
+ 𝑝𝜐
1
+ 𝑝
2
𝜐
2
+ ⋅ ⋅ ⋅

𝜓
0
+ 𝑝𝜓
1
+ 𝑝2𝜓

2
⋅ ⋅ ⋅

, (7)

where known analytic functions 𝜓
0
, 𝜓
1
, 𝜓
2
. . . have indepen-

dent variables and unknown functions 𝜐
0
, 𝜐
1
, 𝜐
2
. . . are to be

determined by the Rational Homotopy PerturbationMethod.
An approximate solution of (1) is obtained when limiting case
of (7) is taken as 𝑝 → 1. Hence,

𝑢 =
𝜐
0
+ 𝜐
1
+ 𝜐
2
+ ⋅ ⋅ ⋅

𝜓
0
+ 𝜓
1
+ 𝜓
2
⋅ ⋅ ⋅

. (8)

The limiting case in the above equation is associated with
existence of limits

lim
𝑝→1

(

∞

∑

𝑖=0

𝜐
𝑖
) ,

lim
𝑝→1

(

∞

∑

𝑖=0

𝜓
𝑖
) , where

∞

∑

𝑖=0

𝜓
𝑖

̸= 0.

(9)

3. Solution by RHPM

Let us consider the dimensionless equation representing thin
film flow of fourth-grade fluid which is falling on the outer
side of a vertical cylinder having an infinite length of radius
𝑅 [13]:

𝑥
𝑑
2
𝑢

𝑑𝑥2
+
𝑑𝑢

𝑑𝑥
+ 𝐾𝑥 + 2𝛽[(

𝑑𝑢

𝑑𝑥
)

3

+ 3(
𝑑𝑢

𝑑𝑥
)

2
𝑑
2
𝑢

𝑑𝑥2
]

= 0,

(10)

where 𝛽 is nondimensional fluid parameter, 𝐾 is dimension-
less constant which corresponds to gravity, and 𝑀 corre-
sponds to partial slip effect. Boundary condition is

𝑢 (𝑥) −
𝑀𝐾

2
(𝑙
2
− 1) = 0 at 𝑥 = 1,

𝑑𝑢 (𝑥)

𝑑𝑥
= 0 at 𝑥 = 𝑙.

(11)

Exact solution is

𝑢 (𝑥) = ∫

𝑥

1

𝑔 (𝑥) 𝑑𝑥 +
𝑀𝐾

2
(𝑙
2
− 1) , 1 ≤ 𝑥 ≤ 𝑙, (12)

where
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𝑔 (𝑥) =

2
5/3
3
1/3
𝛽𝑥
2
+ [− (18𝛽

2
𝐾𝑥
2
(𝑥
2
− 𝑙
2
)) + √3 {32𝛽3𝑥6 + 108𝛽4𝐾2𝑥4 (𝑥2 − 𝑙2)

2
}]

2/3

24/332/3𝛽𝑥 [− (18𝛽2𝐾𝑥2 (𝑥2 − 𝑙2)) + √3 {32𝛽3𝑥6 + 108𝛽4𝐾2𝑥4 (𝑥2 − 𝑙2)
2
}]

1/3
. (13)

Integral in (12) can be calculated numerically.
Consider the following Homotopy equation:

(1 − 𝑝) (𝑥𝜐
󸀠󸀠
+ 𝜐
󸀠
− (𝑢
󸀠

0
+ 𝑥𝑢
󸀠󸀠

0
))

+ 𝑝 (𝑥𝜐
󸀠󸀠
+ 𝜐
󸀠
+ 𝑘𝑥 + 2𝛽 (𝜐

󸀠
)
3

+ 3 (𝜐
󸀠
)
2

𝜐
󸀠󸀠
) ,

(14)

where 𝑢
0
= (𝑀𝐾/2)(𝑙

2
−1)+(𝐾/4)(1−𝑥

2
+2𝑙
2Log[𝑥]) is initial

approximation. Let us consider the solution of (14) with [2, 2]
order of approximation as

𝜐 =
𝜐
0 (𝑥) + 𝑝𝜐1 (𝑥) + 𝑝

2
𝜐
2 (𝑥)

1 + 𝑎𝑝𝑥2 + 𝑏𝑝2𝑥4
, (15)

where 𝑎 and 𝑏 are the adjustment parameters. By considering
(14) and (15) and regrouping according to the 𝑝-powers, we
get the following.

Zeroth-Order Problem. The zeroth-order problem is as fol-
lows:

−
𝑘𝑙
2

𝑥
+ 𝑘𝑥 + 𝜐

󸀠

0
+ 𝑥𝜐
󸀠󸀠

0
= 0, (16)

subject to the boundary conditions

𝜐
0
(𝑥) = 1 at 𝑥 = 0,

𝑑𝜐
0
(𝑥)

𝑑𝑥
= 0 at 𝑥 = 1.

(17)

First-Order Problem.The first-order problem is as follows:

−
𝑘𝑙
2

𝑥
− 4𝑎𝑥𝜐

0
− 4𝑎𝑥

2
𝜐
󸀠

0
+ 2𝛽 (𝜐

󸀠

0
)
3

+ 𝜐
󸀠

1

+ 6𝑥𝛽 (𝜐
󸀠

0
)
2

𝜐
󸀠󸀠

0
+ 𝑥𝜐
󸀠󸀠

1
= 0,

(18)

and relevant boundary conditions are

𝜐
1 (𝑥) = 0 at 𝑥 = 0,

𝑑𝜐
1 (𝑥)

𝑑𝑥
= 0 at 𝑥 = 1.

(19)

Second-Order Problem. The second-order problem is as fol-
lows:

8𝑎
2
𝑥
3
𝜐
0
− 16𝑏𝑥

3
𝜐
0
− 4𝑎𝑥𝜐

1
− 8𝑏𝑥

4
𝜐
󸀠

0
− 24𝑎𝑥𝛽𝜐

0
𝜐
󸀠2

0

− 24𝑎𝑥
2
𝛽𝜐
󸀠3

0
− 4𝑎𝑥

2
𝜐
󸀠

1
+ 6𝛽 (𝜐

󸀠

0
)
2

𝜐
󸀠

1
+ 𝜐
󸀠

2

− 24𝑎𝑥
2
𝛽𝜐
0
𝜐
󸀠

0
𝜐
󸀠󸀠

0
+ 12𝑥𝛽𝜐

󸀠

0
𝜐
󸀠

1
𝜐
󸀠󸀠

0
+ 6𝑥𝛽 (𝜐

󸀠

0
)
2

𝜐
󸀠󸀠

1

+ 𝑥𝜐
󸀠󸀠

2
= 0,

(20)

and relevant boundary conditions are

𝜐
2 (𝑥) = 0 at 𝑥 = 0,

𝑑𝜐
2
(𝑥)

𝑑𝑥
= 0 at 𝑥 = 1.

(21)

Solving these problems with the corresponding boundary
conditions, we have

𝜐
0
=
1

4
(𝐾 − 2𝐾𝑀 + 2𝐾𝑙

2
𝑀−𝐾𝑥

2
+ 2𝐾𝑙

2Log [𝑥]

− 4𝐾𝑙
2Log [𝑙] Log [𝑥] + 2𝐾𝑙2Log [𝑥]2) ,

𝜐
1
=

1

16𝑥2
(−𝑎𝐾𝑥

2
+ 4𝑎𝐾𝑙

2
𝑥
2
+ 8𝑎𝐾𝑀𝑥

2

− 8𝑎𝐾𝑙
2
𝑀𝑥
2
+ 4𝑎𝐾𝑥

2
− 4𝑎𝐾𝑙

2
𝑥
4
− 8𝑎𝐾𝑀𝑥

4

+ 8𝑎𝐾𝑙
2
𝑀𝑥
4
− 3𝑎𝐾𝑥

6
+ 32𝐾

3
𝑙
6
𝛽 − 𝐾

3
𝑥
2
𝛽

− 32𝐾
3
𝑙
6
𝑥
2
𝛽 + 𝐾

3
𝑥
6
𝛽 − 60𝐾

3
𝑙
6
𝛽Log [𝑙]

− 12𝐾
3
𝑙
2
𝑥
2
𝛽Log [𝑙] + 60𝐾3𝑙6𝑥2𝛽Log [𝑙] + ⋅ ⋅ ⋅) ,

𝜐
2
=

1

5760𝑥4
(280𝑎

2
𝐾𝑥
4
− 160𝛽1𝐾𝑥

4
− 1440𝑎𝑙

2
𝑥
4

− 270𝑎
2
𝐾0𝑙
2
𝑥
4
+ 360𝛽𝐾𝑙

2
𝑥
4
− 2160𝑎

2
𝐾𝑀𝑥

4

+ 2880𝛽𝐾𝑀𝑥
4
+ 2160𝑎

2
𝐾𝑙
2
𝑀𝑥
4

− 2880𝛽𝐾𝑙
2
𝑀𝑥
4
− 360𝑎

2
𝐾𝑥
6
⋅ ⋅ ⋅) .

(22)

Substituting (22) into (15) and assuming 𝑝 → 1 result in

𝑢 (𝑥) = (
1

4
(𝐾 − 2𝐾𝑀 + 2𝐾𝑙

2
𝑀−𝐾𝑥

2

+ 2𝐾𝑙
2Log [𝑥] − 4𝐾𝑙2Log [𝑙] Log [𝑥]

+ 2𝐾𝑙
2Log [𝑥]2) + 1

16𝑥2
(−𝑎𝐾𝑥

2
+ 4𝑎𝐾𝑙

2
𝑥
2

+ 8𝑎𝐾𝑀𝑥
2
− 8𝑎𝐾𝑙

2
𝑀𝑥
2
+ 4𝑎𝐾𝑥

2
− 4𝑎𝐾𝑙

2
𝑥
4

− 8𝑎𝐾𝑀𝑥
4
+ 8𝑎𝐾𝑙

2
𝑀𝑥
4
− 3𝑎𝐾𝑥

6
+ 32𝐾

3
𝑙
6
𝛽

− 𝐾
3
𝑥
2
𝛽 − 32𝐾

3
𝑙
6
𝑥
2
𝛽 + 𝐾

3
𝑥
6
𝛽 − 60𝐾

3
𝑙
6
𝛽Log [𝑙]

− 12𝐾
3
𝑙
2
𝑥
2
𝛽Log [𝑙] + 60𝐾3𝑙6𝑥2𝛽Log [𝑙] + ⋅ ⋅ ⋅)

+
1

5760𝑥4
(280𝑎

2
𝐾𝑥
4
− 160𝛽1𝐾𝑥

4
− 1440𝑎𝑙

2
𝑥
4
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− 270𝑎
2
𝐾0𝑙
2
𝑥
4
+ 360𝛽𝐾𝑙

2
𝑥
4
− 2160𝑎

2
𝐾𝑀𝑥

4

+ 2880𝛽𝐾𝑀𝑥
4
+ 2160𝑎

2
𝐾𝑙
2
𝑀𝑥
4

− 2880𝛽𝐾𝑙
2
𝑀𝑥
4
− 360𝑎

2
𝐾𝑥
6
⋅ ⋅ ⋅) + ⋅ ⋅ ⋅) (1 + 𝑎𝑥

2

+ 𝑏𝑥
4
)
−1

.

(23)

Now, let us discuss the solution for different parameters.

Case 1 (𝑘 = 1, 𝑀 = 0.1, 𝛽 = 0.1, and 𝑙 = 1.5). Choosing
the adjustment parameters for (23) as 𝑎 = 0.00487593 and
𝑏 = −0.0013628, we have

𝑢 (𝑥) = (
1

4
(𝐾 − 2𝐾𝑀 + 2𝐾𝑙

2
𝑀−𝐾𝑥

2

+ 2𝐾𝑙
2Log [𝑥] − 4𝐾𝑙2Log [𝑙] Log [𝑥]

+ 2𝐾𝑙
2Log [𝑥]2) + 1

16𝑥2
(−𝑎𝐾𝑥

2
+ 4𝑎𝐾𝑙

2
𝑥
2

+ 8𝑎𝐾𝑀𝑥
2
− 8𝑎𝐾𝑙

2
𝑀𝑥
2
+ 4𝑎𝐾𝑥

2
− 4𝑎𝐾𝑙

2
𝑥
4

− 8𝑎𝐾𝑀𝑥
4
+ 8𝑎𝐾𝑙

2
𝑀𝑥
4
− 3𝑎𝐾𝑥

6
+ 32𝐾

3
𝑙
6
𝛽

− 𝐾
3
𝑥
2
𝛽 − 32𝐾

3
𝑙
6
𝑥
2
𝛽 + 𝐾

3
𝑥
6
𝛽 − 60𝐾

3
𝑙
6
𝛽Log [𝑙]

− 12𝐾
3
𝑙
2
𝑥
2
𝛽Log [𝑙] + 60𝐾3𝑙6𝑥2𝛽Log [𝑙] + ⋅ ⋅ ⋅)

+
1

5760𝑥4
(280𝑎

2
𝐾𝑥
4
− 160𝛽1𝐾𝑥

4
− 1440𝑎𝑙

2
𝑥
4

− 270𝑎
2
𝐾0𝑙
2
𝑥
4
+ 360𝛽𝐾𝑙

2
𝑥
4
− 2160𝑎

2
𝐾𝑀𝑥

4

+ 2880𝛽𝐾𝑀𝑥
4
+ 2160𝑎

2
𝐾𝑙
2
𝑀𝑥
4

− 2880𝛽𝐾𝑙
2
𝑀𝑥
4
− 360𝑎

2
𝐾𝑥
6
⋅ ⋅ ⋅) + ⋅ ⋅ ⋅) (1

+ 0.00487593𝑥
2
− 0.0013628𝑥

4
)
−1

.

(24)

Case 2 (𝑘 = 1,𝑀 = 0.3, 𝛽 = 0.5, and 𝑙 = 1.5]). Choosing the
adjustment parameters for (23) as 𝑎 = −0.0011041205 and
𝑏 = 0.001978206018, we have

𝑢 (𝑥) = (
1

4
(𝐾 − 2𝐾𝑀 + 2𝐾𝑙

2
𝑀−𝐾𝑥

2

+ 2𝐾𝑙
2Log [𝑥] − 4𝐾𝑙2Log [𝑙] Log [𝑥]

+ 2𝐾𝑙
2Log [𝑥]2) + 1

16𝑥2
(−𝑎𝐾𝑥

2
+ 4𝑎𝐾𝑙

2
𝑥
2

+ 8𝑎𝐾𝑀𝑥
2
− 8𝑎𝐾𝑙

2
𝑀𝑥
2
+ 4𝑎𝐾𝑥

2
− 4𝑎𝐾𝑙

2
𝑥
4

− 8𝑎𝐾𝑀𝑥
4
+ 8𝑎𝐾𝑙

2
𝑀𝑥
4
− 3𝑎𝐾𝑥

6
+ 32𝐾

3
𝑙
6
𝛽

− 𝐾
3
𝑥
2
𝛽 − 32𝐾

3
𝑙
6
𝑥
2
𝛽 + 𝐾

3
𝑥
6
𝛽 − 60𝐾

3
𝑙
6
𝛽Log [𝑙]

− 12𝐾
3
𝑙
2
𝑥
2
𝛽Log [𝑙] + 60𝐾3𝑙6𝑥2𝛽Log [𝑙] + ⋅ ⋅ ⋅)

Exact
RHPM
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0.125u
(
x
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Figure 1: Comparison of RHPM with exact solution.
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4. Conclusion

In this section, we will give analysis of the present attempt.
Figure 1 shows that solution found by Rational Homotopy
Perturbation Method overlaps with exact solution. Figure 2
represents the notion that there exists a gradual shift of
velocity with varying slip effect. By increasing the slip effect,
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velocity also increases. Figure 3 shows that, by increasing the
nonlinearity and slip effect, Rational Homotopy Perturbation
Method and exact solutions are in good agreement. Figure 4
represents the effect of 𝛽 on the velocity. Tables 1-2 show
that error is negligible. Table 3 shows that, for different values
of slip effects, Rational Homotopy Perturbation Method
efficiently represents the flow behavior. Table 4 reflects the
reliability of the method for different values of 𝛽. Tables 3-
4 demand that 𝑎 and 𝑏 be determined individually by the
method described in Cases 1 and 2. Mathematica 5.2 is used
in all calculations.
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Table 1: Flow behavior and error estimation of fluid for𝐾 = 1,𝑀 =

0.1, 𝛽 = 0.1, and 𝑙 = 1.5.

𝑥 RHPM Numerical RHPM
1.0 0.0622812 2.18802𝐸 − 4

1.1 0.114139 2.46544𝐸 − 4

1.2 0.153569 −2.6404𝐸 − 5

1.3 0.180729 −5.56143𝐸 − 5

1.4 0.196448 8.225052𝐸 − 6

1.5 0.201573 −4.88900𝐸 − 6

Table 2: Flow behavior and error estimation for 𝐾 = 1, 𝑀 = 0.3,
𝛽 = 0.5, and 𝑙 = 1.5.

𝑥 RHPM Numerical RHPM
1.0 0.187336 1.63748𝐸 − 4

1.1 0.230755 2.06236𝐸 − 3

1.2 0.268424 1.31266𝐸 − 4

1.3 0.295047 −7.2133𝐸 − 4

1.0 0.310211 −4.2611𝐸 − 4

1.5 0.314603 2.72582𝐸 − 4

Table 3: Error table for 𝑘 = 1, 𝛽 = 0.1, and 𝑙 = 1.5

𝑥

𝑀 = 0.4 𝑀 = 0.8 𝑀 = 1.0

𝑎 = 0.0016161 𝑎 = 0.000470222 𝑎 = 0.0002958

𝑏 = 0.0000202 𝑏 = 0.000244044 𝑏 = 0.0002376

1.0 4.08412𝐸 − 4 3.56878𝐸 − 4 3.33297𝐸 − 4

1.1 1.35926𝐸 − 4 6.35029𝐸 − 5 4.41049𝐸 − 5

1.2 −2.85247𝐸 − 4 −3.51118𝐸 − 4 −3.65604𝐸 − 4

1.3 −3.1902𝐸 − 4 −3.49445𝐸 − 4 −3.57517𝐸 − 4

1.4 −1.30714𝐸 − 4 −9.74395𝐸 − 5 −9.70654𝐸 − 5

1.5 8.70222𝐸 − 5 2.09943𝐸 − 4 2.21282𝐸 − 4

Table 4: Error table for 𝑘 = 1,𝑀 = 0.1, and 𝑙 = 1.5.

𝑥

𝛽 = 0.2 𝛽 = 0.6 𝛽 = 0.8

𝑎 = 0.006301675 𝑎 = −0.002555156 𝑎 = −0.01257134

𝑏 = −0.00121253 𝑏 = 0.0042851561 𝑏 = 0.009340074

1.0 3.1646𝐸 − 4 1.07938𝐸 − 4 2.02609𝐸 − 4

1.1 6.06636𝐸 − 4 2.68093𝐸 − 3 3.84367𝐸 − 3

1.2 −3.04017𝐸 − 5 3.02243𝐸 − 4 5.24388𝐸 − 4

1.3 −1.72439𝐸 − 4 −8.45452𝐸 − 4 −1.24596𝐸 − 3

1.4 −1.32375𝐸 − 5 −5.49597𝐸 − 4 −8.79013𝐸 − 4

1.5 1.11499𝐸 − 4 3.11275𝐸 − 4 5.13033𝐸 − 4
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