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By introducing a generalized memristor into a fourth-order Colpitts chaotic oscillator, a newmemristive Colpitts chaotic oscillator
is proposed in this paper. The generalized memristor is equivalent to a diode bridge cascaded with a first-order parallel RC filter.
Chaotic attractors of the oscillator are numerically revealed from the mathematical model and experimentally captured from the
physical circuit. The dynamics of the memristive Colpitts chaotic oscillator is investigated both theoretically and numerically, from
which it can be found that the oscillator has a unique equilibrium point and displays complex nonlinear phenomena.

1. Introduction

Memristor, regarded as a fourth circuit element, is a passive
two-terminal electronic element characterized by nonlinear
constitutive relation of charge and flux [1, 2]. Due to the
nonlinearity, memristor-based application circuits can easily
generate chaotic signals, which immensely inspire research
interests in the designs of variousmemristive chaotic circuits.
In recent years, memristor-based chaotic circuits, most of all
memristive Chua’s chaotic circuits, have broadly been studied
[3–10]. By substituting the nonlinear resistance elements,
Chua’s diodes, in various kinds of Chua’s chaotic circuits,
including classical Chua’s circuit [3–8], canonical Chua’s
circuit [9–11], and modified Chua’s circuit [12, 13], with
memristors of different nonlinearities [4, 7, 12], a wide class
of memristive Chua’s chaotic circuits are presented and some
novel features of initial state dependent dynamical behaviors
are reported [3, 5, 10, 11]. However, no research literature
related to memristor-based Colpitts chaotic oscillator can be
found so far.

The third-order or fourth-order Colpitts oscillator is a
single-transistor implementation of a sinusoidal oscillation
circuit widely used in electronic circuits and communication
systems [14, 15]. The operation frequency can vary from a
few hertz up to the microwave region (gigahertz), depending
on the making technology. The system possesses an intrinsic

nonlinearity given by the exponential [14] or piece-wise
linear [15] characteristic of the active device. The Colpitts
oscillator can exhibit rich dynamical behaviors like many
other oscillator configurations analyzed in the literatures.
In particular, for the Colpitts oscillator there are extensive
numerical and experimental evidences of nonlinear behav-
iors [14, 15]. Therefore, by introducing a memristor into
the fourth-order Colpitts oscillator [15], a novel memristive
Colpitts oscillator maintaining with the original advantages
can easily be constructed.

An analogue memristor model can be realized by using
a light-dependent resistor (LDR) circuit [16, 17]. In the same
way, a simple analoguememristormodel can be implemented
by utilizing a diode bridge circuit [18, 19]. In this paper, a
first-order generalizedmemristor consisting of a diode bridge
cascaded with a first-order parallel RC filter [18] is utilized
to implement the proposed memristive Colpitts oscillator,
which is simplified from a second-order generalizedmemris-
tor realized by amemristive diode bridge with LCR filter [19].
The first-order generalized memristor is composed of only
elementary electronic circuit elements and is well suitable
for experimental measurements. Based on the proposed
memristive Colpitts chaotic oscillator, dynamical modeling,
numerical simulations, and experimental observations are
performed in order.
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Figure 1: Generalized memristor realized by a diode bridge with
parallel RC filter.

2. Memristive Colpitts Chaotic Oscillator

2.1. GeneralizedMemristor. The equivalent realization circuit
of the first-order generalized memristor in [18] is shown in
Figure 1, which is realized by a diode bridge cascaded with
a first-order parallel RC filter. The key mechanisms at the
origin of its memristive behavior are the voltage constraints
involving each pair of parallel diodes [19].

Assuming that V
𝑀

and 𝑖
𝑀

represent the voltage across
and the current flowing through the input terminal of the
generalized memristor and V

0
is the voltage of the capacitor

𝐶
0
, the mathematical model can be expressed as

𝑖
𝑀
= 𝐺
𝑀
V
𝑀
= 2𝐼
𝑆1
𝑒
−𝜌
1
V
0 sinh (𝜌

1
V
𝑀
) , (1)

dV
0

d𝑡
=
2𝐼
𝑆1
𝑒
−𝜌
1
V
0 cosh (𝜌

1
V
𝑀
)

𝐶
0

−
V
0

𝑅
0
𝐶
0

−
2𝐼
𝑆1

𝐶
0

, (2)

where 𝜌
1
= 1/(2𝑛

1
𝑉
𝑇
) and 𝐼

𝑆1
, 𝑛
1
, and 𝑉

𝑇
are the reverse sat-

uration current, emission coefficient, and thermal voltage of
the diode, respectively. In this paper, four 1N4148 diodes are
utilized in Figure 1 and the diode parameters are determined
by 𝐼
𝑆1
= 5.84 nA, 𝑛

1
= 1.94, and 𝑉

𝑇
= 25mV.

Themathematical model described by (1) and (2) accords
with the defining equations for the class of generalized mem-
ristors [20]. The generalized memristor is indeed voltage-
controlled and its memductance is expressed as

𝐺
𝑀
=
2𝐼
𝑆1
𝑒
−𝜌
1
V
0 sinh (𝜌

1
V
𝑀
)

V
𝑀

. (3)

Consider that the circuit parameters in Figure 1 are 𝑅
0
=

200Ω and 𝐶
0
= 2 𝜇F and the applied voltage is a bipolar

sinusoidal voltage of V
𝑀

= 𝑉
𝑚
sin(2𝜋𝑓𝑡)V. When 𝑉

𝑚
=

2V and 𝑓 is set to 1 kHz and to 5 kHz, respectively, the
generalized memristor can display hysteresis loops pinched
at the origin, as shown in Figure 2(a). It can be seen that the
area of the pinched hysteresis lobe decreasesmonotonically as
the frequency of the periodic input voltage increases and the
pinched hysteresis loop shrinks to a nonlinear single-valued
function when the frequency tends to infinity. Therefore,
the generalized memristor can exhibit three characteristic
fingerprints for identifyingmemristors [21].When𝑓 = 1 kHz
and two voltages of V

𝑀
= 2 sin(2𝜋𝑓𝑡) + 1.2 cos(5𝜋𝑓𝑡)V

and V
𝑀

= 2.5 + 1.5 sin(2𝜋𝑓𝑡)V are applied, the loci in
the V
𝑀
− 𝑖
𝑀

plane are shown in Figure 2(b), where, for the
applied voltage with the two different frequencies, the locus
is a double-loop hysteresis pinched at the origin; however, for

the applied voltage with unipolarity, the locus is a single-loop
hysteresis and is not pinched at the origin. Thus, for different
voltage stimuli, the loci of the generalized memristor are the
hysteresis loops with different shapes.

For the generalized memristor shown in Figure 1, it is
remarkable that

(1) the pinched hysteresis loop is independent of the
initial condition of the inner state variable V

0
,

(2) the effective operating frequency range depends on
the inner circuit parameters, that is, the time constant
𝑅
0
𝐶
0
, andwill be higher for the smaller time constant,

(3) the smaller resistance 𝑅
0
can generate the bigger cur-

rent 𝑖
𝑀
flowing through the generalized memristor.

2.2. Memristive Colpitts Chaotic Oscillator. It was reported in
[15] that a fourth-order Colpitts oscillator can generate chaos.
When a generalizedmemristor is introduced into the Colpitts
oscillator, a novel memristor-based chaotic circuit is easily
designed, as shown in Figure 3, in which the generalized
memristor represents the memristive diode bridge circuit
shown in Figure 1. Considering the inner state variable V

0
in

the generalized memristor, the memristive Colpitts oscillator
is a fifth-order circuit.

An NPN bipolar junction transistor is included as a
nonlinear element in the Colpitts oscillator. When parasitic
dynamics of the transistor are neglected, an intrinsic nonlin-
earity given by the exponential characteristic is considered to
model for the active device and the common-base forward
short-circuit current gain equals 1. Two parameters 𝐼

𝑆2
and𝑉
𝑇

are used for the descriptions of the transport saturation cur-
rent and thermal voltage of the transistor Q, respectively. For
the transistor Q, the mathematical model is featured by [14]

𝑖
𝑒
= 𝐼
𝑆2
(𝑒

Vbe/𝑉𝑇 − 1) = 𝐼
𝑆2
(𝑒
𝜌
2
V
1 − 1) , (4)

where 𝜌
2
= 1/𝑉

𝑇
and 𝑖
𝑒
is the emitter current of the transistor.

When the type of 2N2222 is considered in Figure 2, the
transistor parameters are determined by 𝐼

𝑆2
= 3.0484 nA and

𝑉
𝑇
= 25mV.
There are four state variables of the capacitor 𝐶

1
voltage

V
1
, the capacitor 𝐶

2
voltage V

2
, the capacitor 𝐶

3
voltage V

3
,

and the inductor 𝐿 current 𝑖
𝐿
in the fourth-order Colpitts

oscillator and one state variable of the capacitor 𝐶
0
voltage

V
0
in the generalized memristor. Applying Kirchhoff ’s circuit

laws and the constitutive relations of circuit elements, a state
equation set can be obtained as

𝐶
1

dV
1

d𝑡
= 𝑖
𝑀
− 𝑖
𝑅
−
𝑉
𝐸𝐸
+ V
1

𝑅
2

,

𝐶
2

dV
2

d𝑡
= 𝑖
𝑅
− 𝑖
𝑀
− 𝑖
𝑒
,

𝐶
3

dV
3

d𝑡
= 𝑖
𝑅
− 𝑖
𝑀
− 𝑖
𝐿
,

𝐿
d𝑖
𝐿

d𝑡
= V
3
,

𝐶
0

dV
0

d𝑡
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𝑒
−𝜌
1
V
0 cosh (𝜌

1
V
𝑀
) − 2𝐼
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−

V
0

𝑅
0

,

(5)
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Figure 2: Loci in the V
𝑀
− 𝑖
𝑀
plane of the generalized memristor driven by different input voltages: (a) bipolar sinusoidal voltage stimuli; (b)

other periodic voltage stimuli.

where 𝑖
𝑏
= 0 and 𝑖

𝑐
= 𝑖
𝑒
are considered, and

V
𝑀
= −V
1
+ V
2
+ V
3
,

𝑖
𝑀
= 2𝐼
𝑆1
𝑒
−𝜌
1
V
0 sinh (𝜌

1
V
𝑀
) ,

𝑖
𝑅
=
(𝑉
𝐶𝐶
− V
𝑀
)

𝑅
1

.

(6)

Substituting (4) and (6) into (5) yields

dV
1

d𝑡
=
2𝐼
𝑆1
𝑒
−𝜌
1
V
0 sinh (𝜌

1
V
𝑀
)

𝐶
1

−
𝑉
𝐶𝐶
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𝑀

𝑅
1
𝐶
1

−
𝑉
𝐸𝐸
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1

𝑅
2
𝐶
1

,
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2

d𝑡
=
𝑉
𝐶𝐶
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𝑀

𝑅
1
𝐶
2

−
2𝐼
𝑆1
𝑒
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1
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𝑀
)
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𝐼
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𝜌
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𝐶
2

,
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𝑉
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𝑀

𝑅
1
𝐶
3

−
2𝐼
𝑆1
𝑒
−𝜌
1
V
0 sinh (𝜌

1
V
𝑀
)

𝐶
3

−
𝑖
𝐿

𝐶
3

,

d𝑖
𝐿

d𝑡
=
V
3

𝐿
,

dV
0

d𝑡
=
2𝐼
𝑆1
𝑒
−𝜌
1
V
0 cosh (𝜌

1
V
𝑀
)

𝐶
0

−
V
0

𝑅
0
𝐶
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−
2𝐼
𝑆1

𝐶
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(7)

Equation (7) is a five-dimensional nonlinear system, upon
which dynamical analysis of the memristive Colpitts oscilla-
tor can be performed numerically.

3. Dissipativity and Stability Analysis

3.1. Dissipativity. The memristive Colpitts oscillator in
Figure 3 is dissipative. The dissipativity can be derived from

∇𝑉 =
𝜕V̇
1

𝜕V
1

+
𝜕V̇
2

𝜕V
2

+
𝜕V̇
3

𝜕V
3

+
𝜕 ̇𝑖
𝐿

𝜕𝑖
𝐿

+
𝜕V̇
0

𝜕V
0
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1
𝐼
𝑆1
𝑒
−𝜌
1
V
0 cosh (𝜌

1
V
𝑀
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1

𝐶
1

+
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𝐶
2

+
1

𝐶
3

+
1

𝐶
0

)

−
1

𝑅
1

(
1

𝐶
1

+
1

𝐶
2

+
1

𝐶
3

) −
1

𝑅
2
𝐶
1

−
1

𝑅
0
𝐶
0

.

(8)

Considering that the hyperbolic cosine function is positive,
(8) can be simplified as

∇𝑉 < −
1

𝑅
1

(
1

𝐶
1

+
1

𝐶
2

+
1

𝐶
3

) −
1

𝑅
2
𝐶
1

−
1

𝑅
0
𝐶
0

< 0. (9)

Therefore, the dissipativity is always negative, implying that
all orbits are ultimately confined to a specific subset of zero
volume, and the asymptotic motion settles onto an attractor.

3.2. EquilibriumPoint and Its Stability. Theequilibriumpoint
of (7) is yielded by solving the following equations:

𝑅
1
𝑅
2
𝑖
𝑀
− 𝑅
2
(𝑉
𝐶𝐶
− V
𝑀
) − 𝑅
1
(𝑉
𝐸𝐸
+ V
1
) = 0, (10a)

𝑉
𝐶𝐶
− V
𝑀
− 𝑅
1
𝑖
𝑀
− 𝑅
1
𝐼
𝑆2
(𝑒
𝜌
2
V
1 − 1) = 0, (10b)

𝑉
𝐶𝐶
− V
𝑀
− 𝑅
1
𝑖
𝑀
− 𝑅
1
𝑖
𝐿
= 0, (10c)

V
3
= 0, (10d)

2𝑅
0
𝐼
𝑆1
𝑒
−𝜌
1
V
0 cosh (𝜌

1
V
𝑀
) − V
0
− 2𝑅
0
𝐼
𝑆1
= 0. (10e)

From (10b) and (10e), we obtain

V
1
=
1

𝜌
2

ln(
𝑉
𝐶𝐶
− V
𝑀
− 𝑅
1
𝑖
𝑀

𝑅
1
𝐼
𝑆2

+ 1) , (11a)

V
𝑀
=
1

𝜌
1

arccosh [(
V
0

2𝑅
0
𝐼
𝑆1

+ 1) 𝑒
𝜌
1
V
0] . (11b)
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Figure 3: Memristive Colpitts chaotic oscillator based on the gen-
eralized memristor.

According to (10a), let

ℎ
1
= 𝑅
1
𝑅
2
𝑖
𝑀
− 𝑅
2
(𝑉
𝐶𝐶
− V
𝑀
) , (12a)

ℎ
2
= 𝑅
1
(𝑉
𝐸𝐸
+ V
1
)

= 𝑅
1
𝑉
𝐸𝐸
+
𝑅
1

𝜌
2

ln(
𝑉
𝐶𝐶
− V
𝑀
− 𝑅
1
𝑖
𝑀

𝑅
1
𝐼
𝑆2

+ 1) .

(12b)

Substituting (11a) and (11b) into (12a) and (12b) and consid-
ering the voltage-current relationship of (1), it can be found
that ℎ

1
and ℎ

2
are two functions related to V

0
. Letting ℎ

1
=

ℎ
2
, the intersection point of two function curves described

by (12a) and (12b) corresponds to the value of V
0
, which

represents the location of the equilibrium point on the V
0
-

axis and can be obtained through graphic analytic method.
Then, the corresponding values of other variables can easily
be calculated. For the circuit parameters listed in Table 1, the
unique equilibrium point is expressed as

𝑆 = (0.3458, 4.7217, 0, 0.0031, 2.9460) . (13)

Observed from (10a)–(10e) it can be known that the value of
the equilibrium point is mainly determined by the specified
circuit parameters of𝑅

0
,𝑅
1
, and𝑅

2
.This feature is completely

different from the conventional memristive chaotic circuits
[3, 5, 10], whose equilibrium points are an equilibrium point
set located on the axis corresponding to the inner state
variable of the memristor.

The Jacobian matrix of (7), evaluated at the equilibrium
point 𝑆 = (V

1
, V
2
, V
3
, 𝑖
𝐿
, V
0
), is given by

J =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
𝑎
1

𝐶
1

−
1

𝑅
2
𝐶
1

𝑎
1

𝐶
1

𝑎
1

𝐶
1

0 −
𝑎
2

𝐶
1

𝑎
1

𝐶
2

−
𝑎
3

𝐶
2

−
𝑎
1

𝐶
2

−
𝑎
1

𝐶
2

0
𝑎
2

𝐶
2

𝑎
1

𝐶
3

−
𝑎
1

𝐶
3

−
𝑎
1

𝐶
3

−
1

𝐶
3

𝑎
2

𝐶
3

0 0
1

𝐿
0 0

−
𝑎
2

𝐶
0

𝑎
2

𝐶
0

𝑎
2

𝐶
0

0
1

𝐶
0

(
1

𝑅
1

−
1

𝑅
0

− 𝑎
1
)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(14)

Table 1: Circuit parameters for simulations and experiments.

Parameters Significations Values
𝐶
0
, 𝐶
1
, 𝐶
2

Capacitance 2𝜇F
𝐶
3

Capacitance 33 nF
𝐿 Inductance 10mH
𝑅
0

Resistance 200Ω
𝑅
1

Resistance 35Ω
𝑅
2

Resistance 1.5 kΩ
𝑉
𝐶𝐶

Direct voltage 5V
𝑉
𝐸𝐸

Direct voltage −5V

where

𝑎
1
= 2𝜌
1
𝐼
𝑆1
𝑒
−𝜌
1
V
0 cosh [𝜌

1
(−V
1
+ V
2
+ V
3
)] +

1

𝑅
1

,

𝑎
2
= 2𝜌
1
𝐼
𝑆1
𝑒
−𝜌
1
V
0 sinh [𝜌

1
(−V
1
+ V
2
+ V
3
)] ,

𝑎
3
= 𝜌
2
𝐼
𝑆2
𝑒
𝜌
2
V
1 .

(15)

Thus, the corresponding characteristic equation can be writ-
ten as

det (1𝜆 − J) = 0. (16)

For the circuit parameters listed in Table 1, the five eigenval-
ues at the equilibrium point are calculated as

𝜆
1,2
= 5036 ± 𝑗14554,

𝜆
3,4
= −13124 ± 𝑗3264,

𝜆
5
= −5710503.

(17)

It is found that the memristive Colpitts oscillator in Figure 3
has two complex conjugate roots with positive real parts, two
complex conjugate roots with negative real parts, and one
negative real root; the equilibrium point consequently is an
unstable saddle-focus, resulting in the generation of the spiral
chaotic attractor.

4. Typical Chaotic Attractor

In Figures 1 and 3, the circuit element parameters are listed in
Table 1; the four 1N4148 diodes and the 2N2222 transistor are
utilized.

4.1. Numerical Simulations. When the initial values of five
state variables are selected as V

1
(0) = 0.01V, V

2
(0) =

0.01V, V
3
(0) = 0V, 𝑖

𝐿
(0) = 0A, and V

0
(0) = 0V,

the memristive Colpitts oscillator in Figure 3 is chaotic and
displays a spiral chaotic attractor, as plotted in Figure 4.
The five Lyapunov exponents are LE

1
= 769.9443, LE

2
=

−0.147, LE
3
= −3291.8, LE

4
= −13589, and LE

5
= −184610,
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Figure 4: Phase portraits of the memristive Colpitts oscillator by numerical simulations: (a) −V
1
+ V
2
versus −V

1
; (b) V
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versus −V

1
; (c) −V

1

versus 𝑖
𝐿
; (d) V
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.

respectively. Note that Figure 4(d) displays the fingerprint of
the generalizedmemristor, which illustrates that there exists a
single-loop hysteresis behavior in the generalized memristor
due to the applied positive offset voltage with unipolarity.

For the corresponding parameters, the Poincaré map-
pings on V

3
(𝑡) = 0V section are shown in Figures 5(a) and

5(b) and the partial time-domain waveforms of the variables
V
1
(𝑡), V
2
(𝑡), 𝑖
𝑀
(𝑡), and V

𝑀
(𝑡) are plotted in Figures 5(c) and

5(d). Observed from Figure 5, some folded sheets of the
chaotic attractor are visualized and the aperiodic waveforms
of the variables are captured. Therefore, the memristive
Colpitts oscillator is chaotic, in which complex nonlinear
phenomena can easily be observed.

4.2. Experimental Verifications. An experimental setup of the
memristive Colpitts oscillator is designed to investigate the
dynamical behaviors with the same circuit parameters as for
numerical simulations.The chaotic behaviors of the memris-
tive Colpitts oscillator in different phase planes can be exper-
imentally captured in Figure 6. The experimental results
in Figure 6 are consistent with the numerical simulations

and illustrate that the physical circuit can indeed generate
chaos.

5. Dynamics Depending on Circuit Parameters

When the resistance𝑅
2
is a varying parameter, the bifurcation

diagram of the state variable V
1
(𝑡) and the corresponding

Lyapunov exponent spectra of the memristive Colpitts
chaotic oscillator are depicted in Figures 7(a) and 7(b),
respectively. For clarity, the first three Lyapunov exponents
are presented.

As 𝑅
2
increases gradually within the parameter variation

range, the dynamics of the memristive Colpitts chaotic
oscillator starts from periodic behaviors and then enters
into chaotic behaviors via forward period-doubling bifur-
cation route and finally settles down periodic behaviors via
reverse period-doubling bifurcation route. Correspondingly,
the maximum Lyapunov exponent begins with negative
region and then reaches positive region and finally returns
to negative region. Clearly, several windows of periodicities
exist in the band of chaotic behaviors.
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Figure 5: Poincaré mappings and time-domain waveforms: (a) Poincaré mapping in the −V
1
+ V
2
and −V

1
plane; (b) Poincaré mapping in the

−V
1
and 𝑖
𝐿
plane; (c) waveforms of V

1
(𝑡) and V

2
(𝑡); (d) waveforms of 𝑖

𝑀
(𝑡) and V

𝑀
(𝑡).

By numerical simulations, some typical chaotic and peri-
odic orbits of the memristive Colpitts chaotic oscillator are
obtained as shown in Figure 8. Figures 8(a) and 8(c) display
two typical portrait phases in different chaotic regions,
Figure 8(b) illustrates a typical limit cycle within periodic
window, and Figure 8(d) demonstrates a normal orbit of
period-2.

When the inner parameter 𝑅
0
of the generalized mem-

ristor is regarded as a bifurcation parameter, the bifurcation
diagram of the state variable V

1
(𝑡) and the corresponding

Lyapunov exponent spectra of the memristive Colpitts oscil-
lator are plotted in Figures 9(a) and 9(b), respectively. From
Figure 9, it can be observed that, except for two periodic
windows, chaotic behavior appearing in the memristive
Colpitts oscillator has good robustness. Correspondingly, two
typical portrait phases in the V

𝑀
− 𝑖
𝑀

plane are shown in
Figure 10, which demonstrate that the generalized memristor

only exhibits positive right part of pinched hysteresis loops
due to the applied positive stimuli.

6. Conclusions

In this paper, a novel memristive Colpitts chaotic oscillator
is presented, which is derived from a fourth-order Colpitts
chaotic oscillator coupling with a generalized memristor.
The generalized memristor is equivalently realized by a
diode bridge cascaded with a first-order parallel RC filter
and its fingerprints of the pinched hysteresis loops are fur-
ther elaborated. Theoretical analyses, numerical simulations,
and experimental measurements of the memristive Colpitts
chaotic oscillator are performed in order. The dynamical
investigations indicate that the oscillator only has an unstable
equilibrium point and displays complex nonlinear phenom-
ena. The memristive Colpitts chaotic oscillator is simple and
easy to implement physically, which can be used to generate
chaotic signals for various engineering applications.
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increasing: (a) bifurcation behavior of V
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(𝑡); (b) Lyapunov exponent spectra.
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