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We employ the complex method to obtain the general meromorphic solutions of the Fisher equation, which improves the
corresponding results obtained by Ablowitz and Zeppetella and other authors (Ablowitz and Zeppetella, 1979; Feng and Li, 2006;
Guo and Chen, 1991), and 𝑤

𝑔,𝑖
(𝑧) are new general meromorphic solutions of the Fisher equation for 𝑐 = ±5𝑖/√6. Our results show

that the complex method provides a powerful mathematical tool for solving great many nonlinear partial differential equations in
mathematical physics.

Dedicated to Professor Hongxun Yi 70th birthday

1. Introduction

Consider the Fisher equation

𝑢𝑡 = V𝑢𝑥𝑥 + 𝑠𝑢 (1 − 𝑢) , (1)

which is a nonlinear diffusion equation as a model for the
propagation of a mutant gene with an advantageous selection
intensity 𝑠. It was suggested by Fisher as a deterministic
version of a stochastic model for the spatial spread of a
favored gene in a population in 1936.

Set 𝑡 = 𝑠𝑡 and 𝑥

= (𝑠/V)1/2𝑥 and drop the primes; (1)

becomes

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 (1 − 𝑢) . (2)

Substituting the traveling wave transform 𝑢(𝑥, 𝑡) = 𝑤(𝑧), 𝑥 −

𝑐𝑡 = 𝑧 into (2) gives a nonlinear ordinary differential equation

𝑤

+ 𝑐𝑤

+ 𝑤 (1 − 𝑤) = 0, (3)

where 𝑐 is a constant.

Finding solutions of nonlinear models is a difficult and
challenging task. Recently, the complex method was intro-
duced by Yuan et al. [1–3].

In this paper, we employ the complex method to obtain
the general solutions of (3). The general traveling wave exact
solutions of the Fisher equation can be deduced by the
traveling wave transform 𝑢(𝑥, 𝑡) = 𝑤(𝑧), 𝑥 − 𝑐𝑡 = 𝑧. In order
to state our results, we need some concepts and notations.

Ameromorphic function𝑤(𝑧)means that𝑤(𝑧) is a holo-
morphic excepting for pole in the complex plane C except
for poles. ℘(𝑧; 𝑔2, 𝑔3) is the Weierstrass elliptic function with
invariants 𝑔2 and 𝑔3. We say that a meromorphic function 𝑓

belongs to the class𝑊 if 𝑓 is an elliptic function, or a rational
function of 𝑒𝛼𝑧, 𝛼 ∈ C, or a rational function of 𝑧.

Our main result is the following theorem.

Theorem 1. Equation (3) is integrable if and only if 𝑐 = 0,
±5/√6, ±5𝑖/√6. Furthermore, the general solutions of (3) are
of the forms below.
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(I) When 𝑐 = 0, the elliptic general solutions of (3) (see [1])

𝑤𝑑 (𝑧) = 6{−℘ (𝑧) +

1

4

[

℘

(𝑧) + 𝐹

℘ (𝑧) − 𝐸

]

2

} − 6𝐸 +

1

2

, (4)

where 𝑔2 = 1/12, 𝐹2 = 4𝐸
3
−𝑔2𝐸−𝑔3, 𝑔3 and 𝐸 are arbitrary,

in particular, which degenerates the simply periodic solutions

𝑤𝑠 (𝑧) = 6𝛼
2coth2 𝛼

2

(𝑧 − 𝑧0) +

1

2

𝛼
2
+

1

2

, (5)

where 𝛼4 = 1, 𝑧0 ∈ C.
(II) When 𝑐 = ±5/√6, the general solutions of (3) (see [4])

𝑤𝑔 (𝑧) = exp{∓

2𝑧

√6

}℘(exp{∓

𝑧

√6

} − 𝑠0; 0, 𝑔3) , (6)

where both 𝑠0 and 𝑔3 are arbitrary constants. In particular, the
degenerate one-parameter family of solutions is given by

𝑤𝑓 (𝑧) =

1

{1 − exp {± (𝑧 − 𝑧0) /
√6}}

2
, (7)

where 𝑧0 ∈ C.
(III) When 𝑐 = ±5𝑖/√6, the general solutions of (3)

𝑤𝑔,𝑖 (𝑧) = exp{∓

2𝑖𝑧

√6

}℘(𝑖 exp{∓

𝑖𝑧

√6

} − 𝑠0; 0, 𝑔3) + 1,

(8)

where both 𝑠0 and 𝑔3 are arbitrary constants. In particular, the
degenerate one-parameter family of solutions is given by

𝑤𝑓,𝑖 (𝑧) = −

1

{1 − exp {±𝑖 (𝑧 − 𝑧0) /
√6}}

2
+ 1, (9)

where 𝑧0 ∈ C.

Remark 2. The Fisher equation is classic and simplest case
of the nonlinear reaction-diffusion equation, but there are
many applications about it and many authors researched it
[5]. The first explicit form of a traveling wave solution for
the Fisher equation was obtained by Ablowitz and Zeppetella
[4] using the Painlevé analysis. Many authors obtained only
𝑤𝑓,𝑖(𝑧) by using other methods [5–7];𝑤𝑔,𝑖(𝑧) are new general
meromorphic solutions of the Fisher equation for 𝑐 =

±5𝑖/√6.

This paper is organized as follows. In the next section,
the preliminary lemmas and the complex method are given.
Theproof ofTheorem 1 is given and the generalmeromorphic
solutions of (3) are derived by complex method in Section 3.
Some conclusions and discussions are given in the final
section.

2. Preliminary Lemmas and
the Complex Method

In order to give complex method and the proof ofTheorem 1,
we need some notations and results.

Set 𝑚 ∈ N := {1, 2, 3, . . .}, 𝑟𝑗 ∈ N0 = N ∪ {0}, 𝑟 =

(𝑟0, 𝑟1, . . . , 𝑟𝑚), and 𝑗 = 0, 1, . . . , 𝑚. We define a differential
monomial denoted by

𝑀𝑟 [𝑤] (𝑧) := [𝑤 (𝑧)]
𝑟0
[𝑤

(𝑧)]

𝑟1
[𝑤

(𝑧)]

𝑟2
⋅ ⋅ ⋅ [𝑤

(𝑚)
(𝑧)]

𝑟𝑚
.

(10)

𝑝(𝑟) := 𝑟0 + 𝑟1 + ⋅ ⋅ ⋅ + 𝑟𝑚 is called the degree of 𝑀𝑟[𝑤].
A differential polynomial 𝑃(𝑤,𝑤


, . . . , 𝑤

(𝑚)
) is defined as

follows

𝑃 (𝑤,𝑤

, . . . , 𝑤

(𝑚)
) := ∑

𝑟∈𝐼

𝑎𝑟𝑀𝑟 [𝑤] , (11)

where 𝑎𝑟 are constants, and 𝐼 is a finite index set. The total
degree of 𝑃(𝑤,𝑤


, . . . , 𝑤

(𝑚)
) is defined by deg𝑃(𝑤,𝑤


, . . . ,

𝑤
(𝑚)

) := max𝑟∈𝐼{𝑝(𝑟)}.
We will consider the following complex ordinary differ-

ential equations

𝑃 (𝑤,𝑤

, . . . , 𝑤

(𝑚)
) = 𝑏𝑤

𝑛
+ 𝑐, (12)

where 𝑏 ̸= 0, 𝑐 are constants, 𝑛 ∈ N.
Let 𝑝, 𝑞 ∈ N. Suppose that (12) has a meromorphic

solution𝑤with at least one pole, we say that (12) satisfiesweak
⟨𝑝, 𝑞⟩ condition if substituting Laurent series

𝑤 (𝑧) =

∞

∑

𝑘=−𝑞

𝑐𝑘𝑧
𝑘
, 𝑞 > 0, 𝑐−𝑞 ̸= 0 (13)

into (12) we can determine 𝑝 distinct Laurent singular parts
below

−1

∑

𝑘=−𝑞

𝑐𝑘𝑧
𝑘
. (14)

In order to give the representations of elliptic solutions,
we need some notations and results concerning elliptic
function [8].

Let 𝜔1, 𝜔2 be two given complex numbers such that
Im(𝜔1/𝜔2) > 0, 𝐿 = 𝐿[2𝜔1, 2𝜔2] be discrete subset
𝐿[2𝜔1, 2𝜔2] = {𝜔 | 𝜔 = 2𝑛𝜔1 + 2𝑚𝜔2, 𝑛, 𝑚 ∈ Z}, which
is isomorphic to Z × Z. The discriminant Δ = Δ(𝑐1, 𝑐2) :=

𝑐
3

1
− 27𝑐
2

2
and

𝑠𝑛 = 𝑠𝑛 (𝐿) := ∑

𝜔∈𝐿\{0}

1

𝜔
𝑛
. (15)

Weierstrass elliptic function ℘(𝑧) := ℘(𝑧, 𝑔2, 𝑔3) is a
meromorphic function with double periods 2𝜔1, 2𝜔2 and
satisfying the equation

(℘

(𝑧))

2

= 4℘(𝑧)
3
− 𝑔2℘ (𝑧) − 𝑔3,

(16)

where 𝑔2 = 60𝑠4, 𝑔3 = 140𝑠6, and Δ(𝑔2, 𝑔3) ̸= 0.
By changing (16) to the form

(℘

(𝑧))

2

= 4 (℘ (𝑧) − 𝑒1) (℘ (𝑧) − 𝑒2) (℘ (𝑧) − 𝑒2) ,
(17)

we have 𝑒1 = ℘(𝜔1), 𝑒2 = ℘(𝜔2), 𝑒3 = ℘(𝜔1 + 𝜔2).
Inversely, given two complex numbers 𝑔2 and 𝑔3 such

that Δ(𝑔2, 𝑔3) ̸= 0, then there exists double periods 2𝜔1, 2𝜔2
Weierstrass elliptic function℘(𝑧) such that above results hold.
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Lemma 3 (see [8, 9]). Weierstrass elliptic functions ℘(𝑧) :=

℘(𝑧, 𝑔2, 𝑔3) have two successive degeneracies and addition
formula:

(I) degeneracy to simply periodic functions (i.e., rational
functions of one exponential 𝑒𝑘𝑧) according to

℘ (𝑧, 3𝑑
2
, −𝑑
3
) = 2𝑑 −

3𝑑

2

coth2√3𝑑

2

𝑧, (18)

if one root 𝑒𝑗 is double (Δ(𝑔2, 𝑔3) = 0),
(II) degeneracy to rational functions of 𝑧 according to

℘ (𝑧, 0, 0) =

1

𝑧
2
, (19)

if one root 𝑒𝑗 is triple (𝑔2 = 𝑔3 = 0),
(III) addition formula

℘ (𝑧 − 𝑧0) = −℘ (𝑧) − ℘ (𝑧0) +

1

4

[

℘

(𝑧) + ℘


(𝑧0)

℘ (𝑧) − ℘ (𝑧0)

]

2

.

(20)

By above lemma and results, we can give a new method
below, say complex method, to find exact solutions of some
PDEs.

Step 1. Substituting the transform 𝑇 : 𝑢(𝑥, 𝑡) → 𝑤(𝑧),
(𝑥, 𝑡) → 𝑧 into a given PDE gives a nonlinear ordinary diffe-
rential equations (12).

Step 2. Substitute (13) into (12) to determine that weak ⟨𝑝, 𝑞⟩

condition holds, and pass the Painlevé test for (12).

Step 3. Find the meromorphic solutions 𝑤(𝑧) of (12) with
pole at 𝑧 = 0, which have𝑚 − 1 integral constants.

Step 4. By Lemma 3, we obtain the general meromorphic
solutions 𝑤(𝑧 − 𝑧0).

Step 5. Substituting the inverse transform 𝑇
−1 into these

meromorphic solutions 𝑤(𝑧 − 𝑧0), then we get all exact
solutions 𝑢(𝑥, 𝑡) of the original given PDE.

3. Proof of Theorem 1

Substituting (13) into (3), we have 𝑞 = 2, 𝑝 = 1, 𝑐−2 = 6,
𝑐−1 = −6𝑐/5, 𝑐0 = −𝑐

2
/50 + 1/2, 𝑐1 = −𝑐

3
/250, 𝑐2 = 1/40 −

189𝑐
4
/135000, 𝑐3 = 891𝑐/48600 − 6399𝑐

5
/6075000, and

0 × 𝑐4 +

5

2

(

𝑐

5

)

2

− 90(

𝑐

5

)

6

= 0. (21)

For the Laurent expansion (13) to be valid 𝑐 satisfies this
equation and 𝑐4 is an arbitrary constant. Therefore, 𝑐 = 0 or
𝑐 = ±5/√6 or 𝑐 = ±5𝑖/√6, where 𝑖2 = −1. For other 𝑐 it would
be necessary to add logarithmic terms to the expansion, thus
giving a branch point rather than a pole. For 𝑐 = 0, the
solution of (3) has been given in Theorem 1 and can be also
found by direct integration.

For 𝑐 = ±5/√6, (3) is integrable by Ablowitz and
Zeppetella [4] using the Painlevé analysis and the general
solutions were given. That is, when 𝑐 = ±5/√6, the general
solutions of (3)

𝑤𝑔 (𝑧) = exp{∓

2𝑧

√6

}℘(exp{∓

𝑧

√6

} − 𝑠0; 0, 𝑔3) , (22)

where both 𝑠0 and 𝑔3 are arbitrary constants, in particular,
which degenerates the one-parameter family of solutions

𝑤𝑓 (𝑧) =

1

{1 − exp {± (𝑧 − 𝑧0) /
√6}}

2
, (23)

where 𝑧0 ∈ C.
Thus we consider only for cases 𝑐 = ±5𝑖/√6, where 𝑖

2
=

−1. By the same arguments of Ablowitz and Zeppetella, we
transform (3) with 𝑐 = ±5𝑖/√6 into the first Painlevé type
equation. In this way we find the general solutions.

Setting 𝑤(𝑧) = 𝑓(𝑧)𝑢(𝑠) + 1, 𝑠 = 𝑔(𝑧), and substituting in
Fisher’s equation (3), we obtain that the equation for 𝑢(𝑠) is

𝑢

= 6𝑢
2
, (24)

where

𝑓 (𝑧) = exp{∓

2𝑖𝑧

√6

} , 𝑔 (𝑧) = 𝑖 exp{∓

𝑖𝑧

√6

} . (25)

The general solutions of (24) are the Weierstrass elliptic
functions 𝑢(𝑠) = ℘(𝑠 − 𝑠0; 0, 𝑔3), where 𝑠0 and 𝑔3 are two
arbitrary constants.

Therefore, when 𝑐 = ±5𝑖/√6, the general solutions of (3)

𝑤𝑔,𝑖 (𝑧) = exp{∓

2𝑖𝑧

√6

}℘(𝑖 exp{∓

𝑖𝑧

√6

} − 𝑠0; 0, 𝑔3) + 1,

(26)

where both 𝑠0 and 𝑔3 are arbitrary constants. In particular, by
Lemma 3 and 𝑔3 = 0, 𝑤𝑔,𝑖(𝑧) degenerate the one-parameter
family of solutions

𝑤𝑓,𝑖 (𝑧) = −

1

{1 − exp {±𝑖 (𝑧 − 𝑧0) /
√6}}

2
+ 1, (27)

where 𝑧0 ∈ C.

4. Conclusions

Complexmethod is a very important tool in finding the exact
solutions of nonlinear evolution equations, and the Fisher
equation is classic and simplest case of the nonlinear reaction-
diffusion equation. In this paper, we employ the complex
method to obtain the general meromorphic solutions of the
Fisher equation, which improves the corresponding result
obtained by Ablowitz and Zeppetella and other authors [4–
6], and𝑤𝑔,𝑖(𝑧) are new general meromorphic solutions of the
Fisher equation for 𝑐 = ±5𝑖/√6. Our results show that the
complex method provides a powerful mathematical tool for
solving great many nonlinear partial differential equations in
mathematical physics.
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