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We study a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. We establish a series of
criteria under which a part of 𝑛-species of the systems is driven to extinction while the remaining part of the species is persistent.
Particularly, as a special case, a series of new sufficient conditions on the persistence for all species of system are obtained. Several
examples together with their numerical simulations show the feasibility of our main results.

1. Introduction

In this paper, we consider the following nonautonomous 𝑛-
species Lotka-Volterra competitive system with infinite delay
and feedback controls:

�̇�
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠

−𝑏
𝑖 (
𝑡) ∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑢𝑖 (

𝑡 − 𝑠) 𝑑𝑠
]

]

,

�̇�
𝑖 (
𝑡) = −𝑐

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝑑𝑖 (
𝑡) ∫

+∞

0

𝑅
𝑖 (
𝑠) 𝑥𝑖 (

𝑡 − 𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is the density of the 𝑖th species

at time 𝑡 and 𝑢
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is the indirect control

variable.

In particular, when the coefficients 𝑏
𝑖
(𝑡) ≡ 0, 𝑐

𝑖
(𝑡) ≡ 0, and

𝑑
𝑖
(𝑡) ≡ 0 for all 𝑡 ∈ 𝑅 and 𝑖 = 1, 2, . . . , 𝑛, the system (1) will

degenerate into the following pure delay type system:

�̇�
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠
]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(2)

As is well known, systems such as (2) without feed-
back controls are very important mathematical models of
multispecies populations dynamics. This is a generalization
from Ahmad [1] about two-species system without delays
to 𝑛-species system of infinite delay. Systems without delays
such as [1] have attracted the interest of many researchers
(see, e.g., [2–5]), and systems with delays have been studied
extensively in the past twenty years, and some good results
on the permanence, extinction and persistence or uniform
persistence, global stability, and almost periodic solution have
been developed (see [6–18]). In [19],Montes deOca andPérez
provided for us a very interesting work for system (2), who
showed that if the coefficients are bounded and continuous
and satisfy certain inequalities, then any solution with initial
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function of system (2) in an appropriate spacewill have 𝑛−1 of
its components tenting to zero, while the remaining one will
stabilize at a certain solution of a logistic differential equation.
And for more works about single species dynamic behaviors
of infinite delay, one could refer to [20, 21].

On the other hand, as was pointed out by Fan and Wang
[22], feedback control is the basic mechanism by which sys-
tems, whether mechanical, electrical, or biological, maintain
their equilibrium or homeostasis. Many scholars have done
works on the ecosystem with feedback controls (see, e.g.,
[23–29] and the references cited therein). In [23], Shi et
al. proposed the feedback control system (1). By using the
method of multiple Lyapunov functionals and by developing
a new analysis technique, Shi et al. established the sufficient
conditions which guarantee part species 𝑥

𝑟+1
, 𝑥
𝑟+2

, . . . , 𝑥
𝑟+𝑛

of the 𝑛-species driven to extinction. But in the paper [23],
they did not discuss the survival problems for the remaining
species.Themain aim of this paper is to study the persistence
of the remaining species 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑟
of system (1). By

the new method motivated by work [11, 27, 28], we will
establish new sufficient conditions for which surplus species
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑟
of system (1) remain persistent.

The organization of the paper is as follows. In the next
section, some assumptions and lemmas are introduced. In
Section 3, we state and prove ourmain results. Finally, several
examples with their numerical simulations are presented to
show the feasibility of the main results.

2. Preliminaries

Throughout this paper, for system (1), we introduce the
following hypotheses.

(H
1
) 𝑟
𝑖
(𝑡), 𝑎
𝑖𝑗
(𝑡), 𝑏
𝑖
(𝑡), 𝑐
𝑖
(𝑡), and 𝑑

𝑖
(𝑡) (𝑖, 𝑗 = 1, 2, . . . , 𝑛)

are bounded and continuous, defined on [0,∞).
Furthermore, 𝑎

𝑖𝑗
(𝑡) (𝑖 ̸= 𝑗), 𝑏

𝑖
(𝑡), 𝑐
𝑖
(𝑡), and 𝑑

𝑖
(𝑡) are

nonnegative on [0,∞), and 0 < 𝑎
𝑙

𝑖𝑖
≤ 𝑎
𝑖𝑖
(𝑡) ≤ 𝑎

𝑢

𝑖𝑖
< ∞.

Here, we denote 𝑓𝑙 = inf
𝑡≥0
𝑓(𝑡) and 𝑓𝑢 = sup

𝑡≥0
𝑓(𝑡).

(H
2
) 𝐾
𝑖𝑗
: [0,∞) → [0,∞), 𝐻

𝑖
: [0,∞) → [0,∞), and

𝑅
𝑖
: [0,∞) → [0,∞), 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are piecewise

continuous and satisfy

∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑑𝑠 = 1, K

𝑖𝑗
= ∫

+∞

0

𝑠𝐾
𝑖𝑗 (
𝑠) 𝑑𝑠 < ∞,

∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑑𝑠 = 1, H

𝑖
= ∫

+∞

0

𝑠𝐻
𝑖 (
𝑠) 𝑑𝑠 < ∞,

∫

+∞

0

𝑅
𝑖 (
𝑠) 𝑑𝑠 = 1, R

𝑖
= ∫

+∞

0

𝑠𝑅
𝑖 (
𝑠) 𝑑𝑠 < ∞.

(3)

(H
3
) There exists a positive constant 𝜔 such that for each
𝑖 = 1, 2, . . . , 𝑛

lim inf
𝑡→∞

∫

𝑡+𝜔

𝑡

𝑟
𝑖 (
𝑠) 𝑑𝑠 > 0. (4)

(H
4
) There exist positive constants 𝜆 and 𝛾 such that for
each 𝑖 = 1, 2, . . . , 𝑛

lim inf
𝑡→∞

∫

𝑡+𝜆

𝑡

𝑐
𝑖 (
𝑠) 𝑑𝑠 > 0,

lim inf
𝑡→∞

∫

𝑡+𝛾

𝑡

𝑑
𝑖 (
𝑠) 𝑑𝑠 > 0.

(5)

We will consider system (1) together with the initial
conditions

𝑥
𝑖 (
𝜃) = 𝜙

𝑖 (
𝜃) , 𝑢

𝑖 (
𝜃) = 𝜓

𝑖 (
𝜃) , 𝜃 ≤ 0, 𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝜙
𝑖
, 𝜓
𝑖
∈ 𝐵𝐶
+, 𝑖 = 1, 2, . . . , 𝑛, and

𝐵𝐶
+
= {𝜑 ∈ 𝐶 [(−∞, 0] , [0, +∞)] :

𝜑 (0) > 0, 𝜑 is bounded} .
(7)

It is easy to verify that solutions of (1) satisfying the initial
condition (6) are well defined for all 𝑡 ≥ 0 and satisfy

𝑥
𝑖 (
𝑡) > 0, 𝑢

𝑖 (
𝑡) > 0, ∀𝑡 ≥ 0. (8)

We now introduce several lemmas which will be useful in
the proofs of the main results.

We consider the following nonautonomous linear equa-
tion:

�̇� (𝑡) = 𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡) , (9)

where nonnegative functions 𝑎(𝑡) and 𝑏(𝑡) are bounded
and continuous, defined on [0, +∞). We have the following
results.

Lemma 1 (see [30]). Suppose that there exist positive constants
𝜂
1
and 𝜂
2
such that

lim inf
𝑡→∞

∫

𝑡+𝜂
1

𝑡

𝑎 (𝑠) 𝑑𝑠 > 0,

lim inf
𝑡→∞

∫

𝑡+𝜂
2

𝑡

𝑏 (𝑠) 𝑑𝑠 > 0.

(10)

Then, there exist positive constants𝑀 ≥ 𝑚 such that

𝑚 ≤ lim inf
𝑡→∞

𝑥 (𝑡) ≤ lim sup
𝑡→∞

𝑥 (𝑡) ≤ 𝑀, (11)

for any positive solution 𝑥(𝑡) of (9).

Lemma 2 (see [23]). Suppose that assumptions (𝐻
1
)–(𝐻
4
)

hold; then there exist constants 𝑥
𝑖
> 0 and 𝑢

𝑖
> 0 such that

lim sup
𝑡→∞

𝑥
𝑖 (
𝑡) < 𝑥

𝑖
, lim sup
𝑡→∞

𝑢
𝑖 (
𝑡) < 𝑢

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(12)

for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑢
1
(𝑡),

𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) of system (1).
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Remark 3. If all parameters 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏
𝑖
(𝑡), 𝑐
𝑖
(𝑡), and

𝑑
𝑖
(𝑡) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) of system (1) have the positive lower

bound on [0, +∞), then, from Lemma 2.2 in [23], we can
choose

𝑥
𝑖
=

𝑟
𝑢

𝑖

𝑎
𝑙

𝑖𝑖
∫

+∞

0
𝑘
𝑖𝑖 (
𝑠) exp (−𝑟𝑢

𝑖
𝑠) 𝑑𝑠

,

𝑢
𝑖
=

𝑑
𝑢

𝑖

𝑐
𝑙

𝑖

𝑥
𝑖
.

(13)

Lemma 4 (see [6]). Let 𝑥(𝑡) : 𝑅 → 𝑅 be a nonnegative
and bounded continuous function, and let 𝑘(𝑠) : [0, +∞) →

[0, +∞) be an integral function satisfying ∫+∞
0

𝑘(𝑠)𝑑𝑠 = 1.
Then

lim inf
𝑡→∞

𝑥 (𝑡) ≤ lim inf
𝑡→∞

∫

+∞

0

𝑘 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠

≤ lim sup
𝑡→∞

∫

+∞

0

𝑘 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠

≤ lim sup
𝑡→∞

𝑥 (𝑡) .

(14)

3. Main Results

In this section, we discuss the persistence of part species
𝑥
𝑖
(1 ≤ 𝑖 ≤ 𝑟) of system (1), where integer 𝑟 ∈ {1, 2, . . . , 𝑛}.

Let functions

𝐴
𝑖𝑗 (
𝑡) = ∫

+∞

0

𝑎
𝑖𝑗 (
𝑡 + 𝑠)𝐾𝑖𝑗 (

𝑠) 𝑑𝑠,

𝐵
𝑖 (
𝑡) = ∫

+∞

0

𝑏
𝑖 (
𝑡 + 𝑠)𝐻𝑖 (

𝑠) 𝑑𝑠,

𝐷
𝑖 (
𝑡) = ∫

+∞

0

𝑑
𝑖 (
𝑡 + 𝑠) 𝑅𝑖 (

𝑠) 𝑑𝑠,

𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(15)

Lemma 5. Suppose that assumptions (𝐻
1
)–(𝐻
4
) hold and

there exists an integer 1 ≤ 𝑟 < 𝑛 such that for any 𝑘 > 𝑟 there
exists an integer 𝑖

𝑘
< 𝑘 such that

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
𝑘 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
𝑖
𝑘
(𝑠) 𝑑𝑠

< lim inf
𝑡→∞

𝐴
𝑘𝑗 (

𝑡)

𝐴
𝑖
𝑘
𝑗 (
𝑡)

∀𝑗 ≤ 𝑘,

lim inf
𝑡→∞

𝐵
𝑘 (
𝑡)

𝑐
𝑘 (
𝑡)

> lim sup
𝑡→∞

(

𝐴
𝑖
𝑘
𝑘 (
𝑡)

𝐷
𝑘 (
𝑡)

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
𝑘 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
𝑖
𝑘
(𝑠) 𝑑𝑠

−

𝐴
𝑘𝑘 (

𝑡)

𝐷
𝑘 (
𝑡)

) ,

lim sup
𝑡→∞

𝐵
𝑖
𝑘
(𝑡)

𝑐
𝑖
𝑘
(𝑡)

< lim inf
𝑡→∞

(

𝐴
𝑘𝑖
𝑘
(𝑡)

𝐷
𝑖
𝑘
(𝑡)

lim inf
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
𝑖
𝑘
(𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
𝑘 (
𝑠) 𝑑𝑠

−

𝐴
𝑖
𝑘
𝑖
𝑘
(𝑡)

𝐷
𝑖
𝑘
(𝑡)

) .

(16)

Then for each 𝑖 = 𝑟 + 1, . . . , 𝑛 we have

lim
𝑡→∞

𝑥
𝑖 (
𝑡) = 0, lim

𝑡→∞
𝑢
𝑖 (
𝑡) = 0, ∫

∞

0

𝑥
𝑖 (
𝑡) 𝑑𝑡 < ∞,

(17)

for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑢
1
(𝑡),

𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) of system (1).

The proof of the extinction of part species
𝑥
𝑟+1

, 𝑥
𝑟+2

, . . . , 𝑥
𝑟+𝑛

of system (1) could be found in [23]
and we hence omit it here.

On the persistence of part species 𝑥
𝑖
(1 ≤ 𝑖 ≤ 𝑟) of system

(1), we state and prove the following results.

Theorem 6. Suppose that all assumptions of Lemma 5 hold
and there exists a positive constant 𝜂 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜂

𝑡

[

[

𝑟
𝑖 (
𝑠) −

𝑟

∑

𝑗 ̸= 𝑖

𝐴
𝑖𝑗 (
𝑠) 𝑥𝑗

− 𝐵
𝑖 (
𝑠) 𝑢𝑖

]

]

𝑑𝑠 > 0,

∀𝑖 ≤ 𝑟.

(18)

Then, for each 𝑖 = 1, 2, . . . , 𝑟, there exist positive constants 𝑚
and𝑀, with𝑚 < 𝑀, such that

𝑚 ≤ lim inf
𝑡→∞

𝑥
𝑖 (
𝑡) ≤ lim sup

𝑡→∞

𝑥
𝑖 (
𝑡) ≤ 𝑀,

𝑚 ≤ lim inf
𝑡→∞

𝑢
𝑖 (
𝑡) ≤ lim sup

𝑡→∞

𝑢
𝑖 (
𝑡) ≤ 𝑀,

(19)

for any positive solution (𝑥(𝑡), 𝑢(𝑡)) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡),

𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) of system (1).

Proof. Let (𝑥(𝑡), 𝑢(𝑡)) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑢

1
(𝑡),

𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) be any positive solution of system (1). By

Lemma 2, let 𝑀 = max
1≤𝑖≤𝑟

{𝑥
𝑖
, 𝑢
𝑖
}; for each 𝑖 = 1, 2, . . . , 𝑟,

we have lim sup
𝑡→∞

𝑥
𝑖
(𝑡) ≤ 𝑀 and lim sup

𝑡→∞
𝑢
𝑖
(𝑡) ≤ 𝑀.

So, we only need to prove that there exists a positive constant
𝑚 such that lim inf

𝑡→∞
𝑥
𝑖
(𝑡) ≥ 𝑚 and lim inf

𝑡→∞
𝑢
𝑖
(𝑡) ≥ 𝑚

for all 𝑖 ≤ 𝑟.
First of all, assumption (18) implies that there are positive

constants 𝛼
0
and 𝑇

0
such that

∫

𝑡+𝜂

𝑡

[

[

𝑟
𝑖 (
𝑠) −

𝑟

∑

𝑗 ̸= 𝑖

𝐴
𝑖𝑗 (
𝑠) 𝑥𝑗

− 𝐵
𝑖 (
𝑠) 𝑢𝑖

]

]

𝑑𝑠 ≥ 𝛼
0
, (20)

for all 𝑡 ≥ 𝑇
0
and 𝑖 ≤ 𝑟.

By Lemmas 2 and 5, we obtain that, for any constant 𝜀 > 0,
there is a 𝑇(𝜀) > 𝑇

0
such that, for all 𝑡 ≥ 𝑇(𝜀),

𝑥
𝑖 (
𝑡) ≤ 𝑥

𝑖
+ 𝜀, 𝑢

𝑖 (
𝑡) ≤ 𝑢

𝑖
+ 𝜀, ∀𝑖 ≤ 𝑟,

𝑥
𝑖 (
𝑡) ≤ 𝜀, 𝑢

𝑖 (
𝑡) ≤ 𝜀, ∀𝑖 > 𝑟.

(21)
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Now, for any 𝑖 ≤ 𝑟, we define the Lyapunov function as
follows:

𝑊
𝑖 (
𝑡)

= 𝑥
𝑖 (
𝑡) exp[

[

−

𝑛

∑

𝑗=1

∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗 (
𝜃 + 𝑠) 𝑥𝑗 (

𝜃) 𝑑𝜃 𝑑𝑠

−∫

+∞

0

𝐻
𝑖 (
𝑠) ∫

𝑡

𝑡−𝑠

𝑏
𝑖 (
𝜃 + 𝑠) 𝑢𝑖 (

𝜃) 𝑑𝜃 𝑑𝑠
]

]

.

(22)

By assumptions (H
1
) and (H

2
) and Lemma 2, we have

𝑛

∑

𝑗=1

∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗 (
𝜃 + 𝑠) 𝑥𝑗 (

𝜃) 𝑑𝜃 𝑑𝑠

≤

𝑛

∑

𝑗=1

𝑎
𝑢

𝑖𝑗
∫

+∞

0

𝑠𝐾
𝑖𝑗 (
𝑠) 𝑑𝑠 sup
𝑡∈𝑅

𝑥
𝑗 (
𝑡) < ∞,

∫

+∞

0

𝐻
𝑖 (
𝑠) ∫

𝑡

𝑡−𝑠

𝑏
𝑖 (
𝜃 + 𝑠) 𝑢𝑖 (

𝜃) 𝑑𝜃 𝑑𝑠

≤ 𝑏
𝑢

𝑖
∫

+∞

0

𝑠𝐻
𝑖 (
𝑠) 𝑑𝑠 sup
𝑡∈𝑅

𝑢
𝑖 (
𝑡) < ∞.

(23)

So we see that 𝑊
𝑖
(𝑡) has definition for all 𝑡 ≥ 0. From (23),

we can obtain that for any 𝑖 ≤ 𝑟 there is a positive constant
𝑑
𝑖
< 1, and 𝑑

𝑖
may be dependent on the positive solution of

system (1) such that

𝑑
𝑖
𝑥
𝑖 (
𝑡) ≤ 𝑊

𝑖 (
𝑡) ≤ 𝑥

𝑖 (
𝑡) , ∀𝑡 ≥ 0. (24)

Calculating the derivative of𝑊
𝑖
(𝑡) with respect to 𝑡, we have

�̇�
𝑖 (
𝑡)

= 𝑊
𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠

− 𝑏
𝑖 (
𝑡) ∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑢𝑖 (

𝑡 − 𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑎𝑖𝑗 (

𝑡 + 𝑠) 𝑑𝑠𝑥𝑗 (
𝑡)

+

𝑛

∑

𝑗=1

∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑎𝑖𝑗 (

𝑡) 𝑥𝑗 (
𝑡 − 𝑠) 𝑑𝑠

− ∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑏𝑖 (

𝑡 + 𝑠) 𝑑𝑠𝑢𝑖 (
𝑡)

+∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑏𝑖 (

𝑡) 𝑢𝑖 (
𝑡 − 𝑠) 𝑑𝑠

]

]

= 𝑊
𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑎𝑖𝑗 (

𝑡 + 𝑠) 𝑑𝑠𝑥𝑗 (
𝑡)

−∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑏𝑖 (

𝑡 + 𝑠) 𝑑𝑠𝑢𝑖 (
𝑡)
]

]

= 𝑊
𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝐴
𝑖𝑗 (
𝑡) 𝑥𝑗 (

𝑡) − 𝐵𝑖 (
𝑡) 𝑢𝑖 (

𝑡)
]

]

,

∀𝑖 ≤ 𝑟, 𝑡 ≥ 0.

(25)

Let 𝛽
𝑖
(𝑡, 𝜀) = 𝑟

𝑖
(𝑡)−∑

𝑛

𝑗 ̸= 𝑖
𝐴
𝑖𝑗
(𝑡)𝜀−∑

𝑟

𝑗 ̸= 𝑖
𝐴
𝑖𝑗
(𝑡)𝑥
𝑗
−𝐵
𝑖
(𝑡)(𝑢
𝑖
+𝜀).

From (21), for all 𝑡 ≥ 𝑇(𝜀) > 0, we have

�̇�
𝑖 (
𝑡) ≥ 𝑊

𝑖 (
𝑡) [𝛽𝑖 (

𝑡, 𝜀) − 𝐴 𝑖𝑖 (
𝑡) 𝑥𝑖 (

𝑡)]

≥ 𝑊
𝑖 (
𝑡) [𝛽𝑖 (

𝑡, 𝜀) − 𝐴 𝑖𝑖 (
𝑡) 𝑑
−1

𝑖
𝑊
𝑖 (
𝑡)] .

(26)

Obviously, from inequality (20), we can find enough small
positive constants 𝛿

𝑖
and 𝜀
0
such that

∫

𝑡+𝜂

𝑡

[𝛽
𝑖
(𝑠, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑠) 𝑑
−1

𝑖
𝛿
𝑖
] 𝑑𝑠 >

1

2

𝛼
0
, (27)

for all 𝑡 ≥ 𝑇
1
= 𝑇(𝜀

0
). So for the above 𝜀

0
, when 𝑡 ≥ 𝑇

1
=

𝑇(𝜀
0
),

�̇�
𝑖 (
𝑡) ≥ 𝑊

𝑖 (
𝑡) [𝛽𝑖

(𝑡, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑡) 𝑑
−1

𝑖
𝑊
𝑖 (
𝑡)] . (28)

Consider the auxiliary equation

�̇�
𝑖 (
𝑡) = 𝑊

𝑖 (
𝑡) [𝛽𝑖

(𝑡, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑡) 𝑑
−1

𝑖
𝑊
𝑖 (
𝑡)] ; (29)

then by (28), we obtain that

𝑊
𝑖 (
𝑡) ≥ 𝑊

∗

𝑖
(𝑡) , ∀𝑡 ≥ 𝑇

1
, (30)

where𝑊∗
𝑖
(𝑡) is the solution of (29) with the initial condition

𝑊
𝑖
(𝑇
1
) = 𝑊

∗

𝑖
(𝑇
1
). If𝑊∗

𝑖
(𝑡) < 𝛿

𝑖
for all 𝑡 ≥ 𝑇

1
, then𝑊∗

𝑖
(𝑡) is

defined on [𝑇
1
, +∞). Integrating inequality (29) from 𝑇

1
to 𝑡,

we obtain

𝑊
∗

𝑖
(𝑡) = 𝑊

∗

𝑖
(𝑇
1
) exp∫

𝑡

𝑇
1

[𝛽
𝑖
(𝑠, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑠) 𝑑
−1

𝑖
𝑊
∗

𝑖
(𝑠)] 𝑑𝑠

≥ 𝑊
∗

𝑖
(𝑇
1
) exp∫

𝑡

𝑇
1

[𝛽
𝑖
(𝑠, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑠) 𝑑
−1

𝑖
𝛿
𝑖
] 𝑑𝑠,

(31)
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for all 𝑡 ≥ 𝑇
1
. Putting 𝑡 = 𝑇

1
+ 𝑚𝜂, 𝑚 = 1, 2, . . ., then, from

(27) and (31), we have

𝑊
∗

𝑖
(𝑇
1
+ 𝑚𝜂) ≥ 𝑊

∗

𝑖
(𝑇
1
) exp(1

2

𝑚𝛼
0
) , 𝑚 = 1, 2, . . . .

(32)

Letting 𝑚 → +∞, we have 𝑊
∗

𝑖
(𝑇
1
+ 𝑚𝜂) → +∞, a

contradiction. Hence, there is a 𝑡
𝑖
≥ 𝑇
1
such that𝑊∗

𝑖
(𝑡
𝑖
) > 𝛿
𝑖
.

Now, we prove that

𝑊
∗

𝑖
(𝑡) ≥ 𝛿

𝑖
exp (−𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
) 𝜂) , ∀𝑡 ≥ 𝑡

𝑖
, (33)

where 𝛽
𝑖
(𝛿
𝑖
, 𝜀
0
) = sup

𝑡≥0
{|𝛽
𝑖
(𝑡, 𝜀
0
)| + 𝐴

𝑖𝑖
(𝑡)𝑑
−1

𝑖
𝛿
𝑖
}, and the

definition of 𝛽
𝑖
(𝑡, 𝜀
0
) implies 0 < 𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
) < ∞. In fact, if

(33) is not true, then there are 𝑡
1
and 𝑡
2
, 𝑡
1
< 𝑡
2
, such that

𝑊
∗

𝑖
(𝑡
2
) < 𝛿
𝑖
exp (−𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
) 𝜂) ,

𝑊
∗

𝑖
(𝑡
1
) = 𝛿
𝑖
, 𝑊

∗

𝑖
(𝑡) < 𝛿

𝑖
,

∀𝑡 ∈ (𝑡
1
, 𝑡
2
] .

(34)

Choosing the integer𝑚 ≥ 0 such that 𝑡
2
∈ (𝑡
1
+𝑚𝜂, 𝑡

1
+ (𝑚+

1)𝜂], then, by (27) and (29), it follows that

𝛿
𝑖
exp (−𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
) 𝜂)

> 𝑊
∗

𝑖
(𝑡
2
)

= 𝑊
∗

𝑖
(𝑡
1
) exp∫

𝑡
2

𝑡
1

[𝛽
𝑖
(𝑡, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑡) 𝑑
−1

𝑖
𝑊
∗

𝑖
(𝑡)] 𝑑𝑡

≥ 𝛿
𝑖
exp{∫

𝑡
1
+𝑚𝜂

𝑡
1

+∫

𝑡
2

𝑡
1
+𝑚𝜂

[𝛽
𝑖
(𝑡, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑡) 𝑑
−1

𝑖
𝛿
𝑖
] 𝑑𝑡}

≥ 𝛿
𝑖
exp{∫

𝑡
2

𝑡
1
+𝑚𝜂

[𝛽
𝑖
(𝑡, 𝜀
0
) − 𝐴
𝑖𝑖 (
𝑡) 𝑑
−1

𝑖
𝛿
𝑖
] 𝑑𝑡}

≥ 𝛿
𝑖
exp (−𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
) 𝜂) ,

(35)

which is a contradiction.
From (24), (30), and (33), we can obtain that

𝑥
𝑖 (
𝑡) ≥ 𝛿

𝑖
exp (−𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
) 𝜂) ∀𝑡 ≥ 𝑡

𝑖
. (36)

Finally, we define the constants𝑚
𝑖
= 𝛿
𝑖
exp(−𝛽

𝑖
(𝛿
𝑖
, 𝜀
0
)𝜂) and

𝑇 = max
𝑖≤𝑟
{𝑡
𝑖
}; then we have

𝑥
𝑖 (
𝑡) ≥ 𝑚

𝑖
∀𝑡 ≥ 𝑇, 𝑖 ≤ 𝑟. (37)

Letting 𝑚
∗

𝑖
= {inf

𝑡∈[0,𝑇]
𝑥
𝑖
(𝑡) > 0} and 𝑚

∗
=

min
1≤𝑖≤𝑟

{𝑚
𝑖
, 𝑚
∗

𝑖
}, we have

lim inf
𝑡→∞

𝑥
𝑖 (
𝑡) ≥ 𝑚

∗
, (38)

for all 𝑖 ≤ 𝑟.
Further, by Lemma 4 and (38), we can choose constants

𝜖 > 0 and 𝑇∗ > 0 such that for all 𝑖 ≤ 𝑟 and 𝑡 ≥ 𝑇
∗

∫

+∞

0

𝑅
𝑖 (
𝑠) 𝑥𝑖 (

𝑡 − 𝑠) 𝑑𝑠 ≥ 𝑚
∗
− 𝜖 > 0. (39)

Considering the second equation of system (1), from (39), for
any 𝑡 ≥ 𝑇

∗, we obtain

�̇�
𝑖 (
𝑡) = −𝑐

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝑑𝑖 (
𝑡) ∫

+∞

0

𝑅
𝑖 (
𝑠) 𝑥𝑖 (

𝑡 − 𝑠) 𝑑𝑠

≥ −𝑐
𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝑑𝑖 (
𝑡) (𝑚
∗
− 𝜖) .

(40)

We consider the following auxiliary equation:

V̇
𝑖 (
𝑡) = −𝑐

𝑖 (
𝑡) V𝑖 (𝑡) + 𝑑𝑖 (𝑡) (𝑚

∗
− 𝜖) . (41)

Then by assumption (H
4
) and applying Lemma 1 there exists

a constant 𝑢
𝑖
> 0 such that

lim inf
𝑡→∞

V
𝑖 (
𝑡) > 𝑢

𝑖
, (42)

for any positive solution V
𝑖
(𝑡) of (41). Let V∗

𝑖
(𝑡) be the solution

of (41) with the initial condition V∗
𝑖
(𝑇
∗
) = 𝑢
𝑖
(𝑇
∗
); then by the

comparison theorem we have

𝑢
𝑖 (
𝑡) ≥ V∗

𝑖
(𝑡) ∀𝑡 ≥ 𝑇

∗
. (43)

Thus, we finally obtain

lim inf
𝑡→∞

𝑢
𝑖 (
𝑡) ≥ 𝑢

𝑖
. (44)

Let 𝑚 = min
1≤𝑖≤𝑟

{𝑚
∗
, 𝑢
𝑖
}; from (38) and (44), we obtain

that lim inf
𝑡→∞

𝑥
𝑖
(𝑡) ≥ 𝑚 and lim inf

𝑡→∞
𝑢
𝑖
(𝑡) ≥ 𝑚. This

completes the proof of Theorem 6.

As consequences of Theorem 6 we have the following
corollaries.

Corollary 7. If, in system (1), 𝑏
𝑖
(𝑡) = 𝑐

𝑖
(𝑡) = 𝑑

𝑖
(𝑡) = 0 (𝑖 =

1, 2, . . . , 𝑛) for all 𝑡 ≥ 0, then system (1) will be reduced to the
following 𝑛-species competitive system with infinite delay:

�̇�
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡)

×∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠
]

]

, 𝑖 = 1, 2, . . . , 𝑛.

(45)

Suppose that assumptions (H
1
)–(H
3
) hold and there exists an

integer 1 ≤ 𝑟 < 𝑛 such that for any 𝑘 > 𝑟 there exists an integer
𝑖
𝑘
< 𝑘 such that

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
𝑘 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
𝑖
𝑘
(𝑠) 𝑑𝑠

< lim inf
𝑡→∞

𝐴
𝑘𝑗 (

𝑡)

𝐴
𝑖
𝑘
𝑗 (
𝑡)

, ∀𝑗 ≤ 𝑘. (46)

Furthermore, there exists a positive constant 𝜂 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜂

𝑡

[

[

𝑟
𝑖 (
𝑠) −

𝑟

∑

𝑗 ̸= 𝑖

𝐴
𝑖𝑗 (
𝑠) 𝑥𝑗

]

]

𝑑𝑠 > 0, ∀𝑖 ≤ 𝑟. (47)
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Then, for each 𝑖 = 1, 2, . . . , 𝑟, there exist positive constants𝑚 ≤

𝑀 such that

𝑚 ≤ lim inf
𝑡→∞

𝑥
𝑖 (
𝑡) ≤ lim sup

𝑡→∞

𝑥
𝑖 (
𝑡) ≤ 𝑀, (48)

and for each 𝑖 = 𝑟 + 1, . . . , 𝑛 we have

lim
𝑡→∞

𝑥
𝑖 (
𝑡) = 0, ∫

∞

0

𝑥
𝑖 (
𝑡) 𝑑𝑡 < ∞, (49)

for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)) of system (45).

Proof. From the condition,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
𝑘 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
𝑖
𝑘
(𝑠) 𝑑𝑠

< lim inf
𝑡→∞

𝐴
𝑘𝑗 (

𝑡)

𝐴
𝑖
𝑘
𝑗 (
𝑡)

, ∀𝑗 ≤ 𝑘. (50)

And the assumptions (H
1
)–(H
3
) hold; from Corollary 7 in

[23], for each 𝑖 = 𝑟 + 1, . . . , 𝑛 we have

lim
𝑡→∞

𝑥
𝑖 (
𝑡) = 0, ∫

∞

0

𝑥
𝑖 (
𝑡) 𝑑𝑡 < ∞. (51)

Further condition

lim inf
𝑡→∞

∫

𝑡+𝜂

𝑡

[

[

𝑟
𝑖 (
𝑠) −

𝑟

∑

𝑗 ̸= 𝑖

𝐴
𝑖𝑗 (
𝑠) 𝑥𝑗

]

]

𝑑𝑠 > 0, ∀𝑖 ≤ 𝑟 (52)

holds, so we see, fromTheorem 6, for each 𝑖 = 1, 2, . . . , 𝑟, that
there exist positive constants𝑚 ≤ 𝑀 such that

𝑚 ≤ lim inf
𝑡→∞

𝑥
𝑖 (
𝑡) ≤ lim sup

𝑡→∞

𝑥
𝑖 (
𝑡) ≤ 𝑀. (53)

Remark 8. When 𝑟 = 1, the conditions of Corollary 7 will
reduce to the assumptions that (H

1
)–(H
3
) hold and for any

𝑘 > 1 such that

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
𝑘 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
1 (
𝑠) 𝑑𝑠

< lim inf
𝑡→∞

𝐴
𝑘𝑗 (

𝑡)

𝐴
1𝑗 (

𝑡)

, ∀𝑗 ≤ 𝑘. (54)

We have that there exist positive constants𝑚 ≤ 𝑀 such that

𝑚 ≤ lim inf
𝑡→∞

𝑥
1 (
𝑡) ≤ lim sup

𝑡→∞

𝑥
1 (
𝑡) ≤ 𝑀, (55)

and for each 𝑖 = 2, . . . , 𝑛 we have

lim
𝑡→∞

𝑥
𝑖 (
𝑡) = 0, ∫

∞

0

𝑥
𝑖 (
𝑡) 𝑑𝑡 < ∞. (56)

In comparison with the assumptions (1.5) together with
Proposition 2.2 given by Montes de Oca and Pérez [19], we
can see that our assumptions in Corollary 7 are weaker.

Remark 9. When 𝑟 = 𝑛, from Corollary 7 we can
easily obtain a criterion on the persistence of all species
(𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)) of system (45).

Remark 10. The conclusion of Corollary 7 improves that of
Proposition 2.2 given by Montes de Oca and Pérez [19].

Corollary 11. Suppose that (H
1
)–(H
4
) hold and there exists a

positive constant 𝜂 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜂

𝑡

[

[

𝑟
𝑖 (
𝑠) −

𝑛

∑

𝑗 ̸= 𝑖

𝐴
𝑖𝑗 (
𝑠) 𝑥𝑗

− 𝐵
𝑖 (
𝑠) 𝑢𝑖

]

]

𝑑𝑠 > 0,

∀ 𝑖 = 1, 2, . . . , 𝑛.

(57)

Then, for each 𝑖 = 1, 2, . . . , 𝑛, there exist positive constants 𝑚
and𝑀, with𝑚 < 𝑀, such that

𝑚 ≤ lim inf
𝑡→∞

𝑥
𝑖 (
𝑡) ≤ lim sup

𝑡→∞

𝑥
𝑖 (
𝑡) < 𝑀,

𝑚 ≤ lim inf
𝑡→∞

𝑢
𝑖 (
𝑡) ≤ lim sup

𝑡→∞

𝑢
𝑖 (
𝑡) < 𝑀,

(58)

for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑢
1
(𝑡),

𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) of system (1).

Remark 12. From Corollary 11 we can easily obtain
a criterion on the persistence of all species (𝑥

1
(𝑡),

𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)) of system (1).

4. Examples

In this section, we will give several examples to illustrate the
conclusions of Corollary 7, Theorem 6, and Corollary 11. In
the first part we will illustrate the conclusions of Corollary 7,
in the second we will illustrate the conclusions ofTheorem 6,
and in the last we will illustrate the conclusions of Corol-
lary 11.

Example 1. Consider the system

�̇�
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

3

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠
]

]

,

𝑖 = 1, 2, 3,

(59)

where

𝑟
1 (
𝑡) = 5 + 3 sin 𝑡, 𝑟

2 (
𝑡) = 3 + 3 cos 𝑡,

𝑟
3 (
𝑡) = 2 + 2 sin 𝑡,

𝑎
11 (

𝑡) = 4, 𝑎
12 (

𝑡) = 5, 𝑎
13 (

𝑡) = 6,

𝑎
21 (

𝑡) = 3, 𝑎
22 (

𝑡) = 4, 𝑎
23 (

𝑡) = 5,

𝑎
31 (

𝑡) = 2, 𝑎
32 (

𝑡) = 3, 𝑎
33 (

𝑡) = 4,

𝐾
11 (

𝑡) = 𝑒
−𝑡
, 𝐾

12 (
𝑡) = 2𝑒

−2𝑡
, 𝐾

13 (
𝑡) = 3𝑒

−3𝑡
,

𝐾
21 (

𝑡) = 𝑒
−𝑡
, 𝐾

22 (
𝑡) = 2𝑒

−2𝑡
, 𝐾

23 (
𝑡) = 3𝑒

−3𝑡
,

𝐾
31 (

𝑡) = 𝑒
−𝑡
, 𝐾

32 (
𝑡) = 2𝑒

−2𝑡
, 𝐾

33 (
𝑡) = 3𝑒

−3𝑡
.

(60)
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Figure 1: Dynamic behaviors of system (59).Here, we take the initial
conditions 𝑥

1
(𝜃) ≡ 𝑥

2
(𝜃) ≡ 𝑥

3
(𝜃) = 0.3 for all 𝜃 ∈ (−∞, 0].

Obviously, we have that the period of system (59) is 𝜔 = 2𝜋.
By calculating, we obtain

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
1 (
𝑠) 𝑑𝑠

=

3

5

< lim inf
𝑡→∞

𝐴
21 (

𝑡)

𝐴
11 (

𝑡)

=

3

4

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
1 (
𝑠) 𝑑𝑠

=

3

5

< lim inf
𝑡→∞

𝐴
22 (

𝑡)

𝐴
12 (

𝑡)

=

4

5

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

=

2

5

< lim inf
𝑡→∞

𝐴
31 (

𝑡)

𝐴
21 (

𝑡)

=

2

3

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

=

2

5

< lim inf
𝑡→∞

𝐴
32 (

𝑡)

𝐴
22 (

𝑡)

=

3

4

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

=

2

5

< lim inf
𝑡→∞

𝐴
33 (

𝑡)

𝐴
23 (

𝑡)

=

4

5

.

(61)

We can choose 𝑟 = 1, since all conditions of Corollary 7
hold; therefore, species 𝑥

2
and 𝑥

3
in system (59) are extinct,

and only species 𝑥
1
is persistent (see Figure 1). However,

conditions (1.5) of Proposition 2.2 given by Montes de Oca
and Pérez [19] do not apply in this example.

Example 2. Consider the system

�̇�
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

3

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠

−𝑏
𝑖 (
𝑡) ∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑢𝑖 (

𝑡 − 𝑠) 𝑑𝑠
]

]

,

�̇�
𝑖 (
𝑡) = −𝑐

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝑑𝑖 (
𝑡) ∫

+∞

0

𝑅
𝑖 (
𝑠) 𝑥𝑖 (

𝑡 − 𝑠) 𝑑𝑠,

𝑖 = 1, 2, 3,

(62)
where

𝑟
1 (
𝑡) = 2 + sin 𝑡, 𝑎

11 (
𝑡) = 4 + cos 𝑡,

𝑎
12 (

𝑡) =

1

5

, 𝑎
13 (

𝑡) =

1

6

,

𝑏
1 (
𝑡) =

1

10

, 𝑟
2 (
𝑡) = 3 + cos 𝑡,

𝑎
21 (

𝑡) =

1

4

, 𝑎
22 (

𝑡) = 6 + sin 𝑡,

𝑎
23 (

𝑡) =

2

7

, 𝑏
2 (
𝑡) =

1

3

,

𝑟
3 (
𝑡) = 1 +

1

4

cos 𝑡, 𝑎
31 (

𝑡) =

5

2

,

𝑎
32 (

𝑡) =

5

2

, 𝑎
33 (

𝑡) = 2 + sin 𝑡,

𝑏
3 (
𝑡) =

2

5

, 𝑐
1 (
𝑡) = 4 + 2 sin 𝑡,

𝑐
2 (
𝑡) = 6 + 2 sin 𝑡, 𝑐

3 (
𝑡) = 5 + 2 sin 𝑡,

𝑑
1 (
𝑡) = 1 +

1

2

cos 𝑡, 𝑑
2 (
𝑡) = 1 +

1

3

cos 𝑡,

𝑑
3 (
𝑡) = 1 +

1

4

cos 𝑡,

𝐾
𝑖𝑗 (
𝑡) = 𝐻

𝑖 (
𝑡) = 𝑅

𝑖 (
𝑡) = 𝑒

−𝑡
, 𝑖, 𝑗 = 1, 2, 3.

(63)

Obviously, we have that the period of system (62) is 𝜔 = 2𝜋.
By calculating, we obtain

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
1 (
𝑠) 𝑑𝑠

=

1

2

< lim inf
𝑡→∞

𝐴
31 (

𝑡)

𝐴
11 (

𝑡)

=

5

8 + √2

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
1 (
𝑠) 𝑑𝑠

=

1

2

< lim inf
𝑡→∞

𝐴
32 (

𝑡)

𝐴
12 (

𝑡)

=

25

2

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
1 (
𝑠) 𝑑𝑠

=

1

2

< lim inf
𝑡→∞

𝐴
33 (

𝑡)

𝐴
13 (

𝑡)

= 12 − 3√2,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

=

1

3

< lim inf
𝑡→∞

𝐴
31 (

𝑡)

𝐴
21 (

𝑡)

= 10,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

=

1

3

< lim inf
𝑡→∞

𝐴
32 (

𝑡)

𝐴
22 (

𝑡)

=

5

12 + √2

,

lim sup
𝑡→∞

∫

𝑡+𝑤

𝑡
𝑟
3 (
𝑠) 𝑑𝑠

∫

𝑡+𝑤

𝑡
𝑟
2 (
𝑠) 𝑑𝑠

=

1

3

< lim inf
𝑡→∞

𝐴
33 (

𝑡)

𝐴
23 (

𝑡)

= 7 −

7

4

√2.

(64)
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Figure 2: Dynamic behaviors of system (62). Here, we take the
initial conditions 𝑥

1
(𝜃) ≡ 𝑥

2
(𝜃) ≡ 𝑥

3
(𝜃) ≡ 𝑢

1
(𝜃) ≡ 𝑢

2
(𝜃) ≡ 𝑢

2
(𝜃) =

0.3 for all 𝜃 ∈ (−∞, 0].

From Remark 3, we can choose 𝑟 = 2, 𝑥
1
= 4, 𝑥

2
= 4, 𝑥

3
=

45/16, 𝑢
1
= 3, 𝑢

2
= 4/3, 𝑢

3
= 75/64, and 𝜂 = 2𝜋 such that

lim inf
𝑡→∞

∫

𝑡+2𝜋

𝑡

[𝑟
1 (
𝑠) − 𝐴12 (

𝑠) 𝑥2
− 𝐴
13 (

𝑠) 𝑥3
− 𝐵
1 (
𝑠) 𝑢1

] 𝑑𝑠

= 0.8625𝜋 > 0,

lim inf
𝑡→∞

∫

𝑡+2𝜋

𝑡

[𝑟
2 (
𝑠) − 𝐴21 (

𝑠) 𝑥1
− 𝐴
23 (

𝑠) 𝑥3
− 𝐵
2 (
𝑠) 𝑢2

] 𝑑𝑠

≈ 1.504𝜋 > 0.

(65)

All the conditions of Theorem 6 hold; therefore, species 𝑥
1

and 𝑥
2
coexist, and species 𝑥

3
in system (62) is extinct (see

Figure 2).

Example 3. Consider the system

�̇�
𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)
[

[

𝑟
𝑖 (
𝑡) −

3

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) 𝑥𝑗 (

𝑡 − 𝑠) 𝑑𝑠

−𝑏
𝑖 (
𝑡) ∫

+∞

0

𝐻
𝑖 (
𝑠) 𝑢𝑖 (

𝑡 − 𝑠) 𝑑𝑠
]

]

,

�̇�
𝑖 (
𝑡) = −𝑐

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝑑𝑖 (
𝑡) ∫

+∞

0

𝑅
𝑖 (
𝑠) 𝑥𝑖 (

𝑡 − 𝑠) 𝑑𝑠,

𝑖 = 1, 2, 3,

(66)
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Figure 3: Dynamic behaviors of system (66). Here, we take the
initial conditions 𝑥

1
(𝜃) ≡ 𝑥

2
(𝜃) ≡ 𝑥

3
(𝜃) ≡ 𝑢

1
(𝜃) ≡ 𝑢

2
(𝜃) ≡ 𝑢

3
(𝜃) =

0.3 for all 𝜃 ∈ (−∞, 0].

where

𝑟
3 (
𝑡) = 4 + cos 𝑡, 𝑎

31 (
𝑡) =

1

2

,

𝑎
32 (

𝑡) =

2

7

, 𝑎
33 (

𝑡) = 7 + sin 𝑡,
(67)

and the coefficients and the other kernels are as Example 2.
In this case, we can choose 𝑥

1
= 4, 𝑥

2
= 4, 𝑥

3
= 5, 𝑢

1
= 3,

𝑢
2
= 4/3, 𝑢

3
= 25/12, and 𝜂 = 2𝜋 such that

lim inf
𝑡→∞

∫

𝑡+2𝜋

𝑡

[𝑟
1 (
𝑠) − 𝐴12 (

𝑠) 𝑥2
− 𝐴
13 (

𝑠) 𝑥3
− 𝐵
1 (
𝑠) 𝑢1

] 𝑑𝑠

=

2

15

𝜋 >,

lim inf
𝑡→∞

∫

𝑡+2𝜋

𝑡

[𝑟
2 (
𝑠) − 𝐴21 (

𝑠) 𝑥1
− 𝐴
23 (

𝑠) 𝑥3
− 𝐵
2 (
𝑠) 𝑢2

] 𝑑𝑠

=

16

63

𝜋 > 0,

lim inf
𝑡→∞

∫

𝑡+2𝜋

𝑡

[𝑟
3 (
𝑠) − 𝐴31 (

𝑠) 𝑥1
− 𝐴
32 (

𝑠) 𝑥2
− 𝐵
3 (
𝑠) 𝑢3

] 𝑑𝑠

=

1

21

𝜋 > 0.

(68)

All conditions of Corollary 11 hold, so all the species 𝑥
1
, 𝑥
2
,

and 𝑥
3
are persistent (see Figure 3).
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