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We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure.
The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients
and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian
estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix
is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs
in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure.
The posterior moments of all relevant parameters of interest are calculated based upon numerical results via aMarkov chainMonte
Carlo procedure.TheMetropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density
that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a
multiple regression based upon the 1980 High School and Beyond Survey.

1. Introduction

Themultivariatemultiple regressionmodel is a natural exten-
sion of the univariate multiple regression model. The key
difference, as the name implies, is that the univariate response
variable is instead a multivariate response vector. By utilizing
the multivariate multiple regression model the covariance
of the response vector can be modeled. From an estima-
tion standpoint van der Merwe and Zidek [1] suggest an
intrinsic role to be played by the covariance structure,
whereas, in the case of separate univariatemultiple regression
models, the covariance of the distinct response variables
cannot be modeled. Although optimal point estimates of any
linear combination of the means of the various response
variables can still be obtained, an appropriate estimate of
the variance of said estimator cannot be obtained without
fully incorporating the covariance amongst the multivariate
response vector. Under this framework multivariate analysis
is required to most appropriately produce an estimate of the
standard error.

As a particular example, in educational testing data
when multiple subject area exams are administered it is

common practice to simply report the sum of the individual
exam scores as a total score. For instance, the metric most
commonly associatedwith the Scholastic Aptitude Test (SAT)
is simply the sum of the student’s verbal score and the mathe-
matical score. Other exams, such as the ACT exam, have even
more than two subject areas and report a composite score
which is the arithmetic average of the individual subject area
scores. In these instances, multivariate analysis, by capturing
the covariance amongst the various subject exams, is required
to properly estimate the standard error of the final score.

Formal Bayesian analysis has long been used for multi-
variate multiple regression models [2]. The inverse Wishart
is widely used in this respect, since it is a conjugate prior
distribution for the multivariate normal covariance matrix
[3–5]. Also see Dawid [6] for a general discussion of the
inverse Wishart and Wishart distributions. However, in
contrast to traditional Bayesian methods we will not make
use of the standard inverse Wishart conjugate prior for the
covariance matrix. The reason is that the inverse Wishart
is a rather restrictive distribution in its ability to capture
prior information that may be available to the practitioner.
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See Leonard and Hsu [7], Hsu et al. [8], and Sinay et al.
[9] for a more detailed explanation of the disadvantages of
the inverse Wishart as a prior distribution for the covariance
matrix.

Leonard and Hsu [7] presented an alternative approach
that remedies the shortcomings of the inverse Wishart and
allows for greater flexibility in the prior specification. In
a univariate normal model setting, the normal distribution
has been used as a prior for the logarithm of the variance
parameter. In this same vein, Leonard and Hsu [7] consider
thematrix logarithm transformation of the covariancematrix
for the multivariate case. Making use of a result from
Bellman [10, page 171], it can be demonstrated that the expo-
nential terms of a multivariate normal likelihood function
can be expressed in the form of a Volterra linear integral
equation. An approximation to a function, that is, propor-
tional to the likelihood, can then be obtained via Bellman’s
iterative solution to the Volterra integral equation. The
resulting approximation has amultivariate normal form, with
respect to the unique elements of the matrix logarithm of
the covariance matrix. This allows a normal prior spec-
ification to act as a conjugate prior distribution, thereby
yielding an approximate normal posterior for the covariance
structure.

One of the primary benefits of such a technique is the
ability to specify varying degrees of confidence in each
element of the normal prior hyperparameter mean vector via
the variance terms of the prior hyperparameter covariance
matrix. Obviously, larger variance terms in the prior hyper-
parameter covariance matrix indicate a lack of confidence in
the corresponding prior location hyperparameter. Another
chief advantage of this method is the ability to model beliefs
about any possible interdependency between the covariance
parameters. This can be accomplished by specifying the
covariance terms of the prior hyperparameter covariance
matrix. Note that in this way both the interrelationships and
the strength of prior beliefs with respect to the covariance
parameters can be modeled.

Bayesian estimates of all relevant parameters of interest
are calculated using Markov chain Monte Carlo (MCMC)
techniques. With respect to the covariance structure, since
an approximate posterior distribution is used as a proposal
density, we employ the Metropolis-Hastings-within-Gibbs
(MHWG) algorithm [11, page 291], to correctly estimate the
true target posterior density.

Having laid out the general outline we now move on to
the body of the paper. We begin by introducing and defining
the standard multivariate multiple regression model. We
follow that by making a distributional assumption about
the error matrix of the multivariate regression model. This
provides us with amechanism to state the likelihood function
for the model. In turn, we then go through the formal
analytical Bayesian derivations. Subsequent to the Bayesian
analysis we outline the MCMC procedure and discuss how
the posterior means and standard errors are numerically
calculated. We conclude with an application to the High
School and Beyond Survey [12].

2. Multivariate Multiple Regression Model

We consider the standard multivariate multiple regression
model:
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Notationally in matrix form we can succinctly write

Y = X𝛽 + 𝜖, (2)

where Y is the (𝑛 × 𝑝) matrix of response variables, X is the
(𝑛×𝑘)matrix of explanatory variables, 𝛽 is the (𝑘×𝑝)matrix
of unknown regression coefficients, and 𝜖 is the (𝑛×𝑝)matrix
of random errors. In Section 2.1 we introduce the matrix
normal distribution and make a general assumption about
the distribution of the (𝑛 × 𝑝) random error matrix 𝜖 in (2).
The matrix normal representation will greatly facilitate the
Baysian analysis that follows. Based upon the matrix normal,
we proceed in Section 2.2 to develop the joint likelihood
function for 𝛽 and Σ. Hierarchical prior specifications are
discussed in Section 2.3 and the joint posterior distribution
is reported in Section 2.4.

2.1. Distributional Assumptions and Matrix Normal Distribu-
tion. Thematrix normal distribution is closely related to, and
is a generalization of the multivariate normal. In particular,
the (𝑛×𝑝) randommatrixM ∼ MN

(𝑛×𝑝)
(Φ,Σ,Ω), if and only

if, the (𝑛𝑝 × 1) random vector Vec(M) ∼ N
𝑛𝑝
(Vec(Φ),Σ ⊗

Ω), where MN
(𝑛×𝑝)

denotes the (𝑛 × 𝑝) dimensional matrix
normal distribution, Φ is a (𝑛 × 𝑝) location matrix, Σ is a
(𝑝 × 𝑝) first covariance matrix, and Ω is a (𝑛 × 𝑛) second
covariance matrix [13, page 54]. Vec(⋅) and ⊗ are the standard
vector operator and Kronecker product, respectively.

We make the distributional assumption that, conditional
on the (𝑝 × 𝑝) covariance matrix Σ, the (𝑛 × 𝑝) random
error matrix 𝜖 = (𝜖𝑇

1
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2
, . . . , 𝜖𝑇

𝑛
)𝑇, in (2), follows a matrix

normalwith (𝑛×𝑝) zeromeanmatrix and covariancematrices
given by Σ and I

𝑛
, where I

𝑛
is a (𝑛 × 𝑛) identity matrix.

Formally, we have 𝜖 | Σ ∼ MN
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(0,Σ, I
𝑛
), or equivalently,

the error terms 𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
are independent and identically

distributed normal random vectors each with mean vector 0
and covariancematrix Σ.The probability density function for
the error matrix is given by

𝑓
𝜖
(𝜖 | Σ) = (2𝜋)−𝑛𝑝/2 |Σ|−𝑛/2 exp {−12 tr [𝜖

𝑇
𝜖Σ
−1]} , (3)

where tr(⋅) is the standard trace function.
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2.2. Likelihood Function for Σ Conditional on 𝛽. From the
multivariate multiple regression model (2) we can write 𝜖 =
Y − X𝛽. Therefore, the joint likelihood function for 𝛽 and Σ
is given by the following:

𝐿 (𝛽,Σ | Y) = (2𝜋)−𝑛𝑝/2 |Σ|−𝑛/2

× exp {−12 tr [(Y − X𝛽)𝑇 (Y − X𝛽)Σ−1]} .
(4)

For a given value of 𝛽 let S = 𝑛−1(Y−X𝛽)𝑇(Y−X𝛽). Note
that S is a (𝑝 × 𝑝) symmetric almost surely positive definite
matrix.Then the likelihood function (4) for Σ conditional on
𝛽 can be written as

𝐿 (Σ | Y,𝛽) = (2𝜋)−𝑛𝑝/2 |Σ|−𝑛/2 exp {−𝑛2 tr [SΣ−1]} . (5)

In Bayesian analysis for a univariate normal model, the loga-
rithm of the variance parameter has been modeled by a uni-
variate normal prior distribution. In amultivariate setting the
matrix logarithm of a covariance matrix has also been inves-
tigated by Chiu et al. [14]. Along these same lines, we consider
the matrix logarithm of Σ and S:

A
(𝑝×𝑝)

= log (Σ) = E [log (D)]E𝑇,

Λ
(𝑝×𝑝)

= log (S) = E
0
[log (D

0
)]E𝑇
0
,

(6)

where E is a (𝑝 × 𝑝) orthonormal matrix whose columns are
normalized eigenvectors andD is a (𝑝×𝑝) diagonal matrix of
the corresponding normalized eigenvalues associated with Σ.
E
0
and D

0
are defined analogously for S. Using the fact that

A = log(Σ) from (6) and noting that |Σ| = exp{tr[A]}, we
can express the exact likelihood function (5) in the following
equivalent fashion:

𝐿 (A | Y,𝛽) = (2𝜋)−𝑛𝑝/2 exp {−𝑛2 tr [A + S exp {−A}]} . (7)

We now define the following unconventional matrix operator
Vec∗(⋅). Let 𝑎

𝑖𝑗
be the element in the 𝑖th row and 𝑗th column

of the matrix A, and then

𝛼
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where 𝛼 = [𝛼
1
, . . . , 𝛼

𝑞
]𝑇 is a (𝑞×1) vector and 𝑞 = (1/2)𝑝(𝑝+

1). We analogously define 𝜆 = Vec∗(Λ), which will appear
again in Section 3.4. Moving forward we will use 𝛼, which
captures the unique elements of the matrix logarithm of the
covariance matrix, to model the covariance structure.

2.3. Prior Distributional Specfications. We will assume a
priori that 𝛽 is independent of Σ. More specifically, with
respect to 𝛽 we make the assumption of a uniform prior
distribution:

𝜋 (𝛽) ∝ 1. (9)

Note that the uniform prior assumption for 𝛽 can be viewed
as a limiting case of the informativemultivariate normal prior
specification, which this modeling approach could accom-
modate.

We will assume a priori that, given 𝜂 and Υ, 𝛼 follows a 𝑞
dimensional normal distribution with mean location hyper-
parameter vector 𝜂 and covariance hyperparameter matrix
Υ. The multivariate normal provides a very rich and flexible
family of prior distributions for the matrix logarithm of the
covariance structure. This adds far greater flexibility than
the conventional inverse Wishart prior specification. Since
the multivariate normal is fully parameterized by a mean
vector and covariance matrix, we have the ability to model
more complex prior information. In particular, we can specify
different prior mean values for each element of 𝛼 via the
elements of the location hyperparameter 𝜂. Moreover, we
have the ability to model varying degrees of strength of the
prior belief in each of the 𝑞 elements of 𝜂 through the 𝑞 diag-
onal elements of the covariance hyperparameter matrix Υ.
Additionally, with the multivariate normal prior we are able
to model potential interdependency among the elements of
𝛼 because we can specify nontrivial covariance terms in the
covariance hyperparameter matrix. That is, the off diagonal
elements ofΥ can be used to specify any potential correlations
amongst the elements of 𝛼.

We are now able to craft a more complex and accurate
prior specification for the covariance structure. A subjective
Bayesianmay in fact wish to specify all 𝑞+(1/2)𝑞(𝑞+1) hyper-
parameters. In this way, the practitioner can fully take advan-
tage of any relevant prior information throughuse of the flexi-
ble multivariate normal prior specification for the covariance
structure. Alternatively, we can opt to model 𝜂 = 𝜂(𝜇) and
Υ = Υ(𝜎), where 𝜇 and 𝜎 are of smaller order than 𝜂 and
Υ, respectively. That is, a priori we may wish to only model
certain subsets of the covariance structure. An obvious choice
is to consider the variance components as one subset and
the covariance components as another. However, we stress
the point that the fully general multivariate normal prior
specification can be utilized in its totality.

Here we will consider the intraclass matrix form for the
prior specification as an example of the fully generalized
multivariate normal prior distribution. Specifically, we will
consider the first𝑝 elements of𝛼 separate from the remaining
(𝑞 − 𝑝) terms. That is, we wish to model the variance
components separately from the covariance components of
𝛼. Formally, we assume 𝛼 | 𝜇,Δ ∼ N

𝑞
(J𝜇,Δ) for the prior

distribution.We have the following prior distributional form:

𝜋 (𝛼 | 𝜇,Δ) ∝ |Δ|−1/2 exp {−12 (𝛼 − J𝜇)𝑇Δ−1 (𝛼 − J𝜇)} ,
(10)
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where the (2 × 1) vector 𝜇 = [𝜇
1
, 𝜇
2
]𝑇 and

J
(𝑞×2)

= [1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0
0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1]

𝑇

, Δ
(𝑞×𝑞)

= [𝜎
2

1
I
𝑝

0
0 𝜎2

2
I
𝑞−𝑝

] .

(11)

Note that J is a (𝑞×2)matrix, whose first𝑝 elements of the first
column are equal to one and the remaining (𝑞−𝑝) terms of the
first column are equal to zero.The second columnof J consists
of the first 𝑝 elements equal to zero and the remaining (𝑞−𝑝)
elements equal to one. InΔ, I

𝑝
and I
𝑞−𝑝

are indicatormatrices
of dimension 𝑝 and 𝑞 − 𝑝, respectively.

Thus, 𝜇
1
and 𝜎2

1
are the location and variance hyper-

parameters, respectively, for the variance components of 𝛼.
Analogously, 𝜇

2
and 𝜎2

2
are the location and variance hyper-

parameters for the covariance components of 𝛼. In this way
we can specify two different location hyperparameters and
two levels of confidence.

For the hyperparameters,𝜇 = [𝜇
1
, 𝜇
2
]𝑇 andΔ = ℎ(𝜎2

1
, 𝜎2
2
),

we will assume the following vague prior distribution:

𝜋 (𝜇,Δ) ∝ 1. (12)

Note here that the uniform prior specification can be viewed
as a limiting case of a multivariate normal and inverse
Wishart prior specification for 𝜇 andΔ, respectively. Further-
more, the analysis could in fact accommodate such nontrivial
specifications quite easily. Having stated all the prior distri-
butional assumptions we now turn to the posterior Bayesian
analysis. We begin this by first examining the exact joint
posterior distribution.

2.4. Exact Joint Posterior Distribution. The exact joint poste-
rior distribution for all parameters and hyperparameters will
be proportional to the product of (4) the exact likelihood
function, (9) the prior distribution for 𝛽, (10) the prior
distribution for 𝛼, and (12) the prior distribution for 𝜇 and Δ.
Note that here we will use 𝛼 interchangeably with Σ:

𝜋 (𝛼,𝛽,𝜇,Δ | Y)

∝ |Δ|−1/2 |Σ|−1/2

× exp {−12 tr [(Y − X𝛽)𝑇 (Y − X𝛽)Σ−1]}

× exp {−12 (𝛼 − J𝜇)𝑇Δ−1 (𝛼 − J𝜇)} .

(13)

The 𝜇 term in (13) can be integrated out, so that

𝜋 (𝛼,𝛽,Δ | Y)

∝ |Δ|−1/2 |Σ|−1/2

× exp {−12 tr [(Y − X𝛽)𝑇 (Y − X𝛽)Σ−1]}

× 󵄨󵄨󵄨󵄨󵄨J
𝑇
Δ
−1J󵄨󵄨󵄨󵄨󵄨 exp {−

1
2 (𝛼 − J𝜇̂)𝑇Δ−1 (𝛼 − J𝜇̂)} ,

(14)

where 𝜇̂ = (X𝑇Δ−1X)−1X𝑇Δ−1𝛼.

We clearly see that the exact joint posterior distribution
is in fact not tractable. This is the driving motivation behind
the implementation of the numerical MHWG sampling
techniques. Rather than working with the cumbersome exact
joint posterior distribution it is much easier to consider the
so-called full conditional distributions for each of the param-
eters and hyperparameters.

3. Markov Chain Monte Carlo Approach

As already noted, the joint posterior distribution in (14) is not
analytically tractablewith respect to drawing inference for the
relevant parameters and hyperparameters. This will give rise
to our consideration in the subsequent subsections of the full
conditional posterior distributions.The conditional posterior
distributions we derive below will provide the framework for
the MHWG sampling techniques.

3.1. Exact Conditional Posterior Distribution for𝛽. Recall that
𝛽̂ = (X𝑇X)−1X𝑇Y is the maximum likelihood estimator of 𝛽.
Furthermore, we can rewrite the exact likelihood function (4)
as

𝐿 (𝛽,Σ | Y) = (2𝜋)−𝑛𝑝/2 |Σ|−𝑛/2

× exp {−12 tr [(Y − X𝛽̂)𝑇 (Y − X𝛽̂)Σ−1

+ (𝛽 − 𝛽̂)𝑇X𝑇X (𝛽 − 𝛽̂)Σ−1]}.
(15)

Therefore, the posterior distribution for 𝛽 conditional on Σ
will be proportional, with respect to only the terms involving
𝛽, to the product of (15) the exact likelihood function
multiplied by (9) the prior distribution for 𝛽:

𝜋 (𝛽 | Y,Σ) ∝ exp {−12 tr [(𝛽 − 𝛽̂)
𝑇

X𝑇X (𝛽 − 𝛽̂)Σ−1]} .
(16)

We recognize that the posterior distribution of 𝛽 conditional
on Σ is of a matrix normal form. Making use of the
relationship between the matrix normal and the multivariate
normal distributions as stated above in Section 2.1, we have

Vec (𝛽) | Y,Σ ∼ N
𝑘𝑝
(Vec (𝛽̂) ,Σ ⊗ (X𝑇X)−1) . (17)

3.2. Exact Conditional Posterior Distribution for 𝛼. The joint
prior distribution for 𝛼, 𝜇, and Δ is given by the product
of (10) the prior distribution for 𝛼 and (12) the joint prior
distribution for 𝜇 and Δ. We can derive the joint prior
distribution for just𝛼 andΔ by integrating over the joint prior
distribution for 𝛼, 𝜇, and Δ with respect to 𝜇. Upon com-
pletion of the integration we have the following joint prior
distribution for 𝛼 and Δ:

𝜋 (𝛼,Δ) ∝ |Δ|−1/2 󵄨󵄨󵄨󵄨󵄨J
𝑇
Δ
−1J󵄨󵄨󵄨󵄨󵄨
−1/2

exp {−12𝛼
𝑇G∗𝛼} , (18)
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where

G∗
(𝑞×𝑞)

= [I
𝑞
− J (J𝑇Δ−1J)−1 J𝑇Δ−1]

𝑇

× Δ−1 [I
𝑞
− J (J𝑇Δ−1J)−1 J𝑇Δ−1]

(19)

and I
𝑞
is a (𝑞×𝑞) identity matrix. By integrating 𝜇 out we will

help to facilitate theMCMCprocedure both in terms of speed
and simplification of the algorithm.

The exact posterior distribution will be proportional to
the product of (7) the exact likelihood function, multiplied
by (18) the joint prior distribution for 𝛼 andΔ. Note that here
we will use 𝛼 interchangeably with A:

𝜋 (𝛼 | Y,𝛽,Δ) ∝ exp {−𝑛2 tr [A + S exp {−A}] − 1
2𝛼
𝑇G∗𝛼} .

(20)

Note that the above exact posterior distribution is not of a
known form and cannot be directly simulated from in an
easy fashion. This will motivate us to use a proposal density
that closely matches this target density in aMHWG sampling
routine.

3.3. Exact Conditional Posterior Distribution for Δ. The exact
posterior distribution for Δ = ℎ(𝜎2

1
, 𝜎2
2
) conditional on 𝛽 and

𝛼 will be proportional to (18) the joint prior distribution for
𝛼 and Δ. Note that the exact likelihood function (7) does not
depend upon Δ and thus can be omitted entirely:

𝜋 (Δ | Y,𝛼,𝛽)

∝ 𝜎−(𝑝−1)/2
1

𝜎−(𝑞−𝑝−1)/2
2

× exp
{
{
{
− 1
2𝜎2
1

𝑝

∑
𝑖=1

(𝛼
𝑖
− 𝛼V)2 −

1
2𝜎2
2

𝑞

∑
𝑖=𝑝+1

(𝛼
𝑖
− 𝛼
𝑐
)2}}
}
,

(21)

where𝛼V = (1/𝑝)∑𝑝
𝑖=1

𝛼
𝑖
and𝛼
𝑐
= (1/(𝑞−𝑝))∑𝑞

𝑖=𝑝+1
𝛼
𝑖
are the

arithmeticmeans of the variance and covariance components
of 𝛼, respectively. We recognize that the posterior distribu-
tions for 𝜎2

1
and 𝜎2

2
conditional on 𝛼 are independent Inverse

Gamma random variables:

𝜎2
1
| Y,𝛼,𝛽 ∼ InverseGamma(𝑝 − 3

2 , 12
𝑝

∑
𝑖=1

(𝛼
𝑖
− 𝛼V)2) ,

(22)

𝜎2
2
| Y,𝛼,𝛽 ∼ InverseGamma(𝑞 − 𝑝 − 32 , 12

𝑞

∑
𝑖=𝑝+1

(𝛼
𝑖
− 𝛼
𝑐
)2).

(23)

This result is intuitive and theoretically appealing in that the
posterior distribution for 𝜎2

1
, the variance hyperparameter

for the variance components of 𝛼, depends only on the
number of variance terms 𝑝 and 𝛼

1
, . . . , 𝛼

𝑝
, whereas the

posterior distribution for𝜎2
2
, the variance hyperparameter for

the covariance components of𝛼, depends only on the number
of covariance terms 𝑞−𝑝 and 𝛼

𝑝+1
, . . . , 𝛼

𝑞
.This draws out the

point ofmodeling the variance components separate from the
covariance components. In addition, the Inverse Gamma is
highly tractable and lends itself to the numerical procedures
in the subsequent section.

3.4. Approximate Conditional Posterior Distribution for 𝛼. In
order to implement theMHWG sampling algorithm, we have
derived all the full conditional posterior distributions 𝜋(𝛽 |
Y,Σ), 𝜋(𝛼 | Y,𝛽,Δ), and 𝜋(Δ | Y,𝛼,𝛽) in (17), (20), (22), and
(23), respectively. However, we clearly see that the simulation
of 𝛼 based upon the true conditional posterior distribution
in (20), the target distribution, is not tractable.Therefore, the
Metropolis-Hastings algorithm is employed and a proposal
density needs to be constructed. The algorithm works best if
the proposal density closely matches the shape of the target
distribution.

We can construct an approximation to a function, that
is, proportional to the likelihood function by utilizing the
linear Volterra integral. The key advantage of this is that the
approximation can be written as a multivariate normal with
respect to the unique elements of the matrix logarithm of the
covariancematrix.This allows for amultivariate normal to act
as conjugate prior. Hence, we have amultivariate normal pos-
terior, that is, a good proxy for the true posterior, and the pro-
posal can be easily simulated from. Interested readers should
refer to Leonard and Hsu [7] and Hsu et al. [8] for a detailed
exposition of how this is performed.

Leonard and Hsu [7] show how we can use Bellman’s
solution of a Volterra integral equation [10, page 171] to
derive the following approximation, that is, proportioanl to
the likelihood function of 𝛼 given Y and 𝛽:

𝐿∗ (𝛼 | Y,𝛽) ∝ exp {−12 (𝛼 − 𝜆)
𝑇Q (𝛼 − 𝜆)} . (24)

Recall from Section 2.2 that 𝜆 = Vec∗(Λ), where Λ is as
defined in (6). The (𝑞 × 𝑞) symmetric almost surely positive
definite matrix Q is the likelihood information matrix of 𝛼
and is a function of the normalized eigenvalues and normal-
ized eigenvectors of S. In particular,

Q
(𝑞×𝑞)

= 𝑛
2
𝑝

∑
𝑖=1

f
𝑖𝑖
f𝑇
𝑖𝑖
+ 𝑛
𝑝

∑
𝑖<𝑗

𝑝

∑𝜉
𝑖𝑗
f
𝑖𝑗
f𝑇
𝑖𝑗
, (25)

where f
𝑖𝑗

(𝑞×1)

= e
𝑖
∗ e
𝑗
and

𝜉
𝑖𝑗
=

(𝑑
𝑖
− 𝑑
𝑗
)2

𝑑
𝑖
𝑑
𝑗
[log (𝑑

𝑖
) − log (𝑑

𝑗
)]2

(26)

where 𝑑
𝑗
and e

𝑗
for 𝑗 = 1, . . . , 𝑝 are the 𝑗th normalized

eigenvalue and eigenvector, respectively, of S. f
𝑖𝑗
denotes the

(𝑞×1) vector that satisfies the condition 𝛼𝑇(e
𝑖
∗ e
𝑗
) = e
𝑖

𝑇Ae
𝑗
.

We see that the approximate likelihood function (24) is a
multivariate normal form with respect to 𝛼. This functional
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form of the approximate likelihood function in (24) will be
the driving mechanism in the Bayesian analysis for 𝛼. Again,
for details of the derivation of the approximate likelihood
function please refer to Leonard and Hsu [7] and Hsu et al.
[8].

Equation (24) provides an excellent approximation to a
function, that is, proportional to the exact likelihood (7),
when the sample size 𝑛 is large. To illustrate the effects of 𝑛, the
sample size, and 𝑝, the dimension of the covariance matrix Σ,
we conduct the following exercise. Without loss of generality,
we consider a simplified model, when Y

1
, . . . ,Y

𝑛
is a random

sample from 𝑁
𝑝
(0,Σ). In our illustrative example, three

dimensional sizes (𝑝= 3, 5, and 10), and four sample sizes (𝑛=
20, 100, 500, and 5000) were considered for comparison. For
a fair comparison, the same sample covariance is used for all
four different sample sizes, for each 𝑝. The sample covariance
matrix S is assumed to consist of elements 𝑠

𝑖𝑗
for the 𝑖th row

and 𝑗th column, where 𝑠
𝑖𝑗
= 1.0 − |𝑖 − 𝑗| × 0.1. For example,

when 𝑝 = 3, then

S = [
[

1.0 0.9 0.8
0.9 1.0 0.9
0.8 0.9 1.0

]
]
. (27)

Thehistograms, in Figure 1, represent the exact likelihood
from (7) of the (1, 1)th element, 𝑎

11
, ofA, where the histogram

is normalized for comparison purposes, and the dotted
curves represent the univariate normal densities based on
approximation (24). Please note that these histograms are
computed according to an importance sampling method
using (24) as the importance function. For an overview
of importance sampling methods, please see, for example,
Rubinstein [15] and Leonard et al. [16]. It can be seen from
Figure 1 that the approximation is better when the sample
size 𝑛 is bigger and the dimension size 𝑝 is smaller. Similar
patterns were found for other variance and covariance ele-
ments of the covariancematrixA.The approximation is fairly
accurate when 𝑛 is 500 or greater.

The approximate joint posterior distribution for 𝛼 and
Δ conditional on 𝛽 will be proportional to the product of
the approximate likelihood function (24) and the joint prior
distribution (18):

𝜋∗ (𝛼,Δ | Y,𝛽)∝ 𝜎−(𝑝−1)/2
1

𝜎−(𝑞−𝑝−1)/2
2

× exp {−12 [(𝛼 − 𝜆)
𝑇Q (𝛼 − 𝜆) + 𝛼𝑇G∗𝛼]}.

(28)

Completing the square for the two terms in the exponent
of (28) yields the following approximate posterior distribu-
tion for 𝛼 conditional on 𝛽 and Δ:

𝜋∗ (𝛼 | Y,𝛽,Δ) ∝ exp {−12 (𝛼 − 𝛼
∗)𝑇 (Q + G∗) (𝛼 − 𝛼∗)} ,

(29)

where the (𝑞 × 1) vector 𝛼∗ = (Q + G∗)−1Q𝜆. Recall that Q
and G∗ are as defined in (25) and (19), respectively. Thus, we

have the following approximate posterior distribution for 𝛼
conditional on 𝛽 and Δ:

𝛼 | Y,𝛽,Δ ∼ N
𝑞
(𝛼∗, (Q + G∗)−1) . (30)

This demonstrates the conjugacy of utilizing the approximate
likelihood function. Equation (30) provides an efficient pro-
posal distribution for implementing a MHWG algorithm. In
short, we have developed a highly flexible while at the same
time tractable Bayesian methodology for the covariance
structure.

3.5. Metropolis-Hastings within Gibbs Sampling Procedure.
Based upon the theoretical results derived above we outline
the following procedure for implementing the MHWG algo-
rithm. Specifically, from (17), (30), (20), (22), and (23)we have
a formal setup for implementing a MCMC procedure with a
Metropolis-Hastings step. Below we outline the specific steps
involved in implementing the MHWG algorithm.

(1) Simulate 𝜎2
1

(𝑡) and 𝜎2
2

(𝑡) from (22) and (23), respec-
tively. Initial starting values for 𝛼may be set equal to
𝜆̂ = Vec∗(log(Ŝ)), where

Ŝ = 𝑛−1 (Y − X𝛽̂)𝑇 (Y − X𝛽̂) (31)

and 𝛽̂ is the maximum likelihood estimator for 𝛽.
Subsequent simulations of 𝜎2

1

(𝑡) and 𝜎2
2

(𝑡) will be based
upon simulated values of 𝛼(𝑡).

(2) Simulate 𝛽(𝑡) from (17). Initial starting values for Σ
may be based upon Ŝ. Subsequent simulations of 𝛽(𝑡)

will be based upon simulated values of 𝛼(𝑡).
(3) Simulate a candidate value 𝛼̃ from (30) based upon

𝜎2
1

(𝑡) and 𝜎2
2

(𝑡) and 𝛽(𝑡) from steps (1) and (2),
respectively. Then let

𝛼
(𝑡+1) = {𝛼̃, with probability min (𝜌, 1) ,

𝛼(𝑡), otherwise, (32)

where 𝜌 is given by following expression:

𝜌 =
𝜋 (𝛼̃ | Y,𝛽(𝑡),Δ(𝑡))
𝜋∗ (𝛼̃ | Y,𝛽(𝑡),Δ(𝑡))

𝜋∗ (𝛼(𝑡) | Y,𝛽(𝑡),Δ(𝑡))
𝜋 (𝛼(𝑡) | Y,𝛽(𝑡),Δ(𝑡))

(33)

and 𝜋∗(⋅ | ⋅) and 𝜋(⋅ | ⋅) are as defined in (29) and
(20), respectively.

The last procedure in step (3) is the Metropolis-Hastings
algorithm. We employ this procedure since we are utilizing
an approximation to the exact posterior distribution [11, page
291].

Posterior moments for any parameter of interest can
be calculated easily upon the MHWG results. It is usually
the case in MHWG estimation procedures that the first 𝑙
simulations are not included in the estimates, due to the fact
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Figure 1: Comparison of the approximate likelihood (normalized) with the exact likelihood (normalized) for covariance matrices of
dimensions 𝑝 = 3, 5, and 10, and sample sizes 𝑛 = 20, 100, 500, and 5000. The histogram is the normalized likelihood and the dashed curve is
the approximate normalized likelihood.
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Figure 2: The sample ACF plots demonstrate that in our application a thinning procedure was not necessary. Other sample ACF plots for
various parameters looked quite similar. Practitioners should check for this in their applications.

that the Markov chain has not yet reached a steady state. In
the parlance of numerical procedures, 𝑙 is usually referred to
as the number of burn in iterations.

In addition to the burn in value, we also explored the
potential need to perform a so-called thinning procedure. A
thinning step entails only retaining every 𝑟th simulated value
of the MHWG sampling, where 𝑟 is chosen large enough
so that any autocorrelation is removed. By examining the
sample autocorrelation function (ACF) plots, practitioners
can decide if thinning is necessary. We investigated several
plots for numerous parameters. For illustrative purposes, in
Figure 2, we present the sample ACF plots for𝛽

11
,𝛽
12
,𝛼
1
, and

𝜎2
1
. We can see that autocorrelation is not a significant

concern in our particular application. Other sample ACF
plots looked quite similar to numerous other parameters.
Practitioners should explore the need to use a thinning
procedure in their specific applications.

4. Application: High School and
Beyond Survey

In 1980 theNational Education Longitudinal Studies program
of the National Center for Education Statistics administered
the High School and Beyond (HSB) Survey [12]. The HSB
study contains both a 1980 senior class cohort and a 1980
sophomore class cohort. Within the sophomore class cohort
we have a total sample size of 𝑛 = 14,667 students. The HSB
study has been analyzed extensively by many, for example,
Astone and McLanahan [17], Grogger [18], St. John [19], and
Zwick and Sklar [20].

4.1. Description of Data. The HSB study contains a myriad
of data and variables. In particular, for the sophomore class
cohort a total of 𝑝 = 7 exams were administered in the areas
of vocabulary, reading, two exams in mathematics, science,



Journal of Probability and Statistics 9

writing, and civics. As is often the case with educational
testing data the test scores were standardized to have a mean
of fifty and a standard deviation equal to ten.Wewill use these
standardized test scores for the sophomore class cohort as our
multivariate response variables.

Grade point average data was also obtained from official
transcripts that were included in the survey. In addition, a
number of demographic variables were collected on both the
school and individual student levels.These variables included
school type, relative urbanization of school environment,
geographic region of the country, gender, and race. All of
these variables will serve as categorical or qualitative explana-
tory variables in the multivariate multiple regression. Table 1
provides a description of the categorical explanatory variables
as well as the associated number of students per category.
Note that the originalHSB study did not include a school type
four.

As can be expected with educational data there was
some moderate degree of missing data. We employed a data
augmentation technique for missing data imputation. The
specific procedure was invoked using the mice library [21]
in R. This particular data augmentation procedure fits nicely
within the context of our research here since it employs
a multivariate imputation by chained equations technique.
That is, it uses amultivariate Gibbs sampler procedure to aug-
ment the missing data set. In particular, incomplete columns
of data, that is, variables with missing data, are augmented by
generating appropriate values of data given the values of the
other columns of variables.

4.2. Treatment Contrast for Categorical Variables. Character-
ization of the explanatory data or design matrixX to account
for categorical explanatory variables is not unique [22, page
173]. There are actually several contrast methods. In our
analysis, school type zero, which corresponds to a regular
public school, will serve as the base level and will not in
fact have its own regressor. In the same fashion, urban will
serve as the base level for the relative urbanization categorical
explanatory variable. Also, theNewEngland regionwill act as
the base level for the geographic variable. Hispanic or Spanish
is the base level for the race identifier variable. Finally, we will
designate male as the base gender level. Thus, after properly
accounting for the base levels in our particular application
𝑘 = 26.

4.3. Classical Multivariate Multiple Regression Results. We
consider the standard multivatiate regression model des-
cribed in (2) for the HSB survey data within the Sopho-
more class cohort. A total of 𝑛 = 14,667 students in that
cohort participated in the study. We estimated the model
for the seven standardized exams VOCAB, READ, MATH 1,
MATH 2, SCI, WRITE, and CIVIC regressed on GPA and
the other explanatory variables described in the previous
section.Most of the regression coefficient estimates are highly
significant. In particular, GPA is highly significant for all
seven exams. Although, certain particular levels for various
categorical variables are not significant for some of the
response variables. All of the associated 𝐹 statistics are highly
significant for all response variables. Moreover, based upon

Table 1: Categorical explanatory variable descriptions.

Categorical
variables Levels Level description Students per

level

School type

School type 0 Regular public 9534
School type 1 Alternative 437

School type 2 Cuban/Hispanic
public 156

School type 3 Other Hispanic
public 1483

School type 5 Regular catholic 1341
School type 6 Black catholic 758

School type 7 Cuban/Hispanic
catholic 216

School type 8 Private elite 294
School type 9 Private nonelite 448

Urbanization
Urban 1 Urban 3451
Urban 2 Suburban 7325
Urban 3 Rural 3891

Geographic
region

Region 1 New England 736
Region 2 Middle Atlantic 2518
Region 3 South Atlantic 2178
Region 4 East South Central 713
Region 5 West South Central 1750
Region 6 East North Central 2931

Region 7 West North
Central 1128

Region 8 Mountain 696
Region 9 Pacific 2017

Race

Race 1 Hispanic/Spanish 3122

Race 2
American

Indian/Alaskan
native

224

Race 3 Asian/Pacific
Islander 345

Race 4 Black 2050
Race 5 White 8880
Race 6 Other 46

Gender Gender 1 Male 7265
Gender 2 Female 7402

the analysis of variance that was performed we can conclude
that nearly all the explanatory variables are highly significant
for all seven subject area exams.

4.4. Posterior Estimates of the Model Parameters. In Tables
2, 3, 4, 5, and 6 we present the Bayesian posterior means
and the associated standard errors for the matrices 𝛽 and Σ.
In practice, for the MCMC procedure we found that a total
iteration size of 𝑇 = 500,000 was quite sufficient to establish
convergence and we used 𝑙 = 2,000 as the burn in value.

From Table 4 we observe that the posterior means for the
variance and covariance components are each slightly pulled
towards central quantities, respectively. To better illustrate
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Table 2: Posterior mean for 𝛽.

VOCAB READ MATH 1 MATH 2 SCI WRITE CIVIC
(Intercept) 37.0582 35.6555 33.6377 37.7119 37.3335 31.2303 37.9283
GPA 4.7810 5.2711 5.9424 4.8139 4.4674 5.7163 4.3733
School type 1 −1.1971 −0.3382 −1.0521 −0.5196 −1.1388 −0.9455 −0.5326
School type 2 −0.8747 −1.9121 −0.6682 −0.4325 −2.4736 −1.4395 −2.4039
School type 3 −1.0713 −0.9146 −0.3638 −0.3816 −1.1779 −0.9105 −0.7742
School type 5 2.7359 2.1862 2.3550 1.5275 0.7704 2.5247 2.1433
School type 6 1.8095 1.8877 0.9502 0.2953 0.2920 2.0570 2.1941
School type 7 3.0532 1.6308 1.5283 0.0003 0.5107 2.1525 1.7716
School type 8 10.3236 8.7564 8.8743 8.7145 5.8165 7.0452 5.5020
School type 9 2.9475 1.9583 2.9381 2.9743 2.1760 1.9975 1.7927
Urban 2 0.5558 0.0821 0.6002 0.9824 0.7407 0.5115 0.2248
Urban 3 −0.8006 −0.5359 −0.3611 −0.2156 0.4344 0.0087 −0.3363
Region 2 −1.0396 −0.7905 −0.3661 −1.0051 −0.4256 −0.6938 −0.9750
Region 3 −2.2086 −1.1256 −1.6328 −1.7664 −1.4603 −1.1176 −1.7760
Region 4 −3.9350 −1.8827 −2.4900 −2.8335 −2.0910 −1.3902 −2.3088
Region 5 −2.6954 −1.5560 −1.5315 −2.1349 −1.1494 −0.8252 −1.6827
Region 6 −2.1648 −1.5579 −0.9690 −1.7886 −0.6775 −0.5598 −1.5524
Region 7 −1.9171 −0.4627 0.1163 −0.3902 0.2802 0.2396 −0.3970
Region 8 −1.6480 −0.9278 −1.6167 −2.4756 −0.6947 −0.4478 −1.4824
Region 9 −0.4866 −0.7586 −0.5338 −1.0931 −0.6208 −0.0413 −1.5015
Gender 2 −1.5605 −1.2414 −1.8966 −1.5490 −3.0722 3.0841 0.2048
Race 2 −0.9813 0.5513 −0.8029 −0.2627 0.5303 0.8640 −0.9432
Race 3 1.7286 1.7006 4.9363 3.9146 2.4132 3.5702 1.3489
Race 4 −0.8534 0.0337 −0.6765 −0.5625 −1.3975 −0.3582 0.4884
Race 5 4.5403 3.7077 3.8777 2.3674 4.5873 3.9272 2.7858
Race 6 −0.5276 0.3656 −0.0162 −0.1581 0.4371 0.3194 0.9498

this shrinkage property of the posterior mean we present
the classical frequentist estimate of Σ in Table 5. If we make
the element-wise comparison between the posterior mean
in Table 4 and classical frequentist estimate in Table 5 we
see that, among all diagonal elements (variances), relatively
smaller elements of the classical frequentist estimate are
pulled up and relatively larger elements of the classical fre-
quentist estimate are pulled down. For example, the estimated
variance for MATH 1 moved up from 64.9922 in Table 5
to 65.0307 in Table 4 and the estimated variance for CIVIC
moved down from 80.8225 in Table 5 to 80.8041 in Table 4.
Similar phenomenon appeared for the off-diagonal elements
(covariances).This is due to the fact that we have assumed the
intraclass matrix form for the prior specification of 𝛼.

To further investigate the shrinkage property we consid-
ered an informative prior distribution for 𝜎2

1
and 𝜎2
2
instead of

the vague prior specification of (12). In particular, we assumed
a priori that 𝜎2

1
, 𝜎2
2

𝑖𝑖𝑑∼ Inverse Gamma (5000, 1). Table 7
presents the posterior mean for Σ with such informative
conjugate prior specification. Under this informative prior
specification the variance and covariance components are
each pulled more towards central quantities, respectively, in
comparison to the elements of Table 4. For example, the esti-
mated variance for MATH 1 moved further up from 65.0307

in Table 4 to 65.7643 in Table 7 and the estimated variance
for CIVIC moved further down from 80.8041 in Table 4 to
79.0518 in Table 7. Under the informative prior specification
for 𝜎2
1
and 𝜎2
2
we observe that the shrinkage property is more

pronounced.
Specifically, observe that the posterior estimates for the

variance of the MATH 2 and CIVIC exams are less than their
associated classical frequentist estimates, whereas, all others
on diagonal elements of the posterior mean estimate for Σ are
greater than their respective classical frequentist estimates.
An analogous statement concerning the covariance terms can
also be made. This draws our attention to the notion of the
Bayesian posterior mean as a compromise between the prior
information and the information contained in the data.

4.5. Posterior Estimates of the Sum Total. Of particular
interest to educational testing data is some estimate of the
overall summary or composite score of the individual subject
area exams for a given set of explanatory variables. An
obvious choice is to estimate the sum total of the individual
exam scores. In a Bayesian framework, this can easily be
accomplished by simply summing the individual posterior
estimates of the seven subject area exams. However, the
standard error associated with this estimate of the sum total
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Table 3: Posterior standard deviations for 𝛽.

VOCAB READ MATH 1 MATH 2 SCI WRITE CIVIC
(Intercept) 0.4421 0.4482 0.4195 0.4585 0.4383 0.4201 0.4678
GPA 0.0920 0.0930 0.0872 0.0951 0.0913 0.0874 0.0972
School type 1 0.4327 0.4379 0.4102 0.4483 0.4297 0.4110 0.4568
School type 2 0.7111 0.7199 0.6736 0.7352 0.7047 0.6761 0.7518
School type 3 0.2797 0.2823 0.2651 0.2902 0.2773 0.2662 0.2954
School type 5 0.2561 0.2589 0.2428 0.2659 0.2540 0.2438 0.2707
School type 6 0.3358 0.3392 0.3185 0.3480 0.3327 0.3193 0.3553
School type 7 0.6116 0.6187 0.5786 0.6331 0.6054 0.5806 0.6452
School type 8 0.5164 0.5229 0.4901 0.5359 0.5125 0.4912 0.5457
School type 9 0.4171 0.4222 0.3963 0.4325 0.4138 0.3972 0.4414
Urban 2 0.1864 0.1882 0.1764 0.1927 0.1844 0.1769 0.1964
Urban 3 0.2135 0.2158 0.2020 0.2206 0.2114 0.2027 0.2253
Region 2 0.3623 0.3672 0.3441 0.3759 0.3593 0.3438 0.3825
Region 3 0.3706 0.3759 0.3520 0.3848 0.3681 0.3524 0.3915
Region 4 0.4512 0.4574 0.4286 0.4678 0.4480 0.4290 0.4774
Region 5 0.3877 0.3928 0.3681 0.4020 0.3850 0.3686 0.4097
Region 6 0.3538 0.3587 0.3358 0.3669 0.3513 0.3365 0.3743
Region 7 0.4056 0.4103 0.3846 0.4208 0.4022 0.3858 0.4286
Region 8 0.4647 0.4709 0.4411 0.4819 0.4614 0.4426 0.4917
Region 9 0.3783 0.3830 0.3586 0.3925 0.3753 0.3598 0.3998
Gender 2 0.1421 0.1436 0.1347 0.1470 0.1411 0.1351 0.1500
Race 2 0.5944 0.6018 0.5630 0.6159 0.5897 0.5652 0.6273
Race 3 0.4938 0.4996 0.4679 0.5114 0.4903 0.4692 0.5216
Race 4 0.2599 0.2639 0.2467 0.2697 0.2579 0.2470 0.2752
Race 5 0.2061 0.2085 0.1952 0.2136 0.2042 0.1959 0.2175
Race 6 1.2666 1.2806 1.1995 1.3091 1.2548 1.2040 1.3359

Table 4: Posterior mean for Σ.

VOCAB READ MATH 1 MATH 2 SCI WRITE CIVIC
VOCAB 72.3406 45.3069 34.3079 25.0339 39.1280 35.7151 32.6781
READ 45.3069 74.0616 37.4238 29.2657 40.8084 36.8560 34.3226
MATH 1 34.3079 37.4238 65.0307 39.9597 36.9083 34.2467 27.4186
MATH 2 25.0339 29.2657 39.9597 77.6078 28.6053 25.5057 19.7419
SCI 39.1280 40.8084 36.9083 28.6053 71.1835 34.7257 31.7008
WRITE 35.7151 36.8560 34.2467 25.5057 34.7257 65.3904 31.9590
CIVIC 32.6781 34.3226 27.4186 19.7419 31.7008 31.9590 80.8041

Table 5: Classical frequentist estimate for Σ.

VOCAB READ MATH 1 MATH 2 SCI WRITE CIVIC
VOCAB 72.3308 45.3567 34.2973 24.9684 39.1487 35.7217 32.6627
READ 45.3567 74.0529 37.4264 29.2202 40.8335 36.8651 34.3098
MATH 1 34.2973 37.4264 64.9922 39.9886 36.9119 34.2393 27.3645
MATH 2 24.9684 29.2202 39.9886 77.6275 28.5646 25.4523 19.6396
SCI 39.1487 40.8335 36.9119 28.5646 71.1592 34.7254 31.6765
WRITE 35.7217 36.8651 34.2393 25.4523 34.7254 65.3498 31.9434
CIVIC 32.6627 34.3098 27.3645 19.6396 31.6765 31.9434 80.8225
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Table 6: Posterior standard deviations for Σ.

VOCAB READ MATH 1 MATH 2 SCI WRITE CIVIC
VOCAB 0.8456 0.7119 0.6329 0.6507 0.6759 0.6399 0.6872
READ 0.7119 0.8657 0.6514 0.6705 0.6886 0.6513 0.6990
MATH1 0.6329 0.6514 0.7604 0.6731 0.6389 0.6082 0.6393
MATH2 0.6507 0.6705 0.6731 0.9069 0.6567 0.6251 0.6742
SCI 0.6759 0.6886 0.6389 0.6567 0.8316 0.6326 0.6779
WRITE 0.6399 0.6513 0.6082 0.6251 0.6326 0.7647 0.6556
CIVIC 0.6872 0.6990 0.6393 0.6742 0.6779 0.6556 0.9425

Table 7: Posterior mean for Σ with an informative prior.

VOCAB READ MATH 1 MATH 2 SCI WRITE CIVIC
VOCAB 72.3394 44.8244 34.4191 25.5068 38.8961 35.6451 32.5834
READ 44.8244 74.1193 37.4280 29.5260 40.5447 36.7774 34.1974
MATH 1 34.4191 37.4280 65.7643 39.5284 36.9010 34.3695 27.7634
MATH 2 25.5068 29.5260 39.5284 76.2078 28.8305 25.8843 20.4709
SCI 38.8961 40.5447 36.9010 28.8305 71.2920 34.7172 31.6945
WRITE 35.6451 36.7774 34.3695 25.8843 34.7172 65.8718 31.8856
CIVIC 32.5834 34.1974 27.7634 20.4709 31.6945 31.8856 79.0518

cannot simply be calculated as the square root of the sum
of the variance of the individual estimates. This would
fail to incorporate the obvious covariance terms that exist
amongst the subject area exams. Additionally, we would be
overlooking any potential parameter uncertainty.

Suppose for an individual we have the (𝑝 × 1) vector of
response variables Y

ℎ
= [𝑌
ℎ1
, . . . , 𝑌

ℎ𝑝
]𝑇 and the associated

(𝑘 × 1) vector of explanatory variables x
ℎ
= [𝑥
ℎ1
, . . . , 𝑥

ℎ𝑘
]𝑇.

Note that the linear model for a single observation can be
expressed as Y

ℎ
= 𝛽𝑇x

ℎ
+ 𝜖
ℎ
. Furthermore, the sum total

score is 𝑊 = 1𝑇Y
ℎ
= ∑𝑝
𝑗=1

𝑌
ℎ𝑗
, where 1 = [1, . . . , 1]𝑇 is a

(𝑝 × 1) vector of ones. Then, given 𝛽 and Σ, the total score𝑊
follows a univariate normal distribution with mean 1𝑇𝛽𝑇x

ℎ

and variance 1𝑇Σ1.
In order to more fully account for the added variability

due to parameter uncertainty we consider the unconditional
mean and variance of the sum total for an individual:

𝐸 [𝑊] = 𝐸
𝛽,Σ|Y [𝐸 [𝑊 | 𝛽,Σ]] = 𝐸

𝛽,Σ|Y [1𝑇𝛽𝑇x𝑖] ,
Var [𝑊] = 𝐸

𝛽,Σ|Y [Var [𝑊 | 𝛽,Σ]] + Var
𝛽,Σ|Y [𝐸 [𝑊 | 𝛽,Σ]]

= 𝐸
𝛽,Σ|Y [1𝑇Σ1] + 𝐸𝛽,Σ|Y [(1𝑇𝛽𝑇xℎ)

2]

− (𝐸
𝛽,Σ|Y [1𝑇𝛽𝑇xℎ])

2 .
(34)

Here it is understood and the notation implies that the
resulting expectations in (34) are in fact taken with respect to
the posterior distributions of 𝛽 and Σ, given Y. Equation (34)

can be calculated based upon the results from the MCMC
procedures in the following manner:

𝐸
ℎ
= 1
𝑁
𝑇

∑
𝑡=𝑙

1𝑇𝛽(𝑡)
𝑇

x
ℎ
,

𝑉̂
ℎ
= 1
𝑁
𝑇

∑
𝑡=𝑙

1𝑇Σ(𝑡)1 + 1
𝑁
𝑇

∑
𝑡=𝑙

(1𝑇𝛽(𝑡)𝑇x
ℎ
)
2

− 𝐸2
ℎ
,

(35)

where 𝑇 is the total number of iterations of the MCMC
algorithm, 𝑙 is the number of burn-in iterations defined in
Section 3, and𝑁 = 𝑇 − 𝑙.

Notice that by calculating the variance of the sum total
score in this fashion we fully incorporate the obvious covari-
ance structure amongst the response variables. Furthermore,
in a Bayesian sense we capture the added variation due to
parameter uncertainty.

As a particular example we investigated a hypothetical
student. The student is a female of Hispanic or Spanish
decent. Her GPA is 3.0 and she attends a private nonelite
school in a rural community of the Pacific region of the
United States. Thus, for this particular example we have the
following characterization of the (𝑘×1) vector of explanatory
variables x

ℎ
. 𝑥
ℎ1

= 𝑥
ℎ10

= 𝑥
ℎ12

= 𝑥
ℎ20

= 𝑥
ℎ21

= 𝑥
ℎ26

= 1,
𝑥
ℎ2
= 3, and all the other remaining elements of x

ℎ
are equal

to zero.
We obtained the following estimates of the Bayesian

posterior means for the individual area exams, 50.9732,
51.2566, 51.5953, 52.1122, 50.0902, 53.7476, and 52.1576 for the
VOCAB,READ,MATH1,MATH2, SCI,WRITE, andCIVIC
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exams, respectively. This results in an estimated sum total of
361.9328 with a standard error of 44.2357.

5. Conclusion

In conclusion, we have demonstrated how a flexible prior
specification for the covariance structure of a multivariate
multiple regression model can provide a richer class of
distributions than the inverse Wishart family. We discussed
how the likelihood function for the covariance structure can
be approximated based upon Bellman’s solution of a linear
Volterra integral equation. We discussed the shrinkage prop-
erties of the posterior mean of the covariance structure. This
highlighted the concept of the posterior means as a com-
promise between the prior information and the information
contained in the data.

All posterior estimates were calculated based upon the
numerical results of a MHWG procedure. The Metropolis-
Hastings algorithm was employed to account for sampling
from an approximate posterior distribution for the covari-
ance structure.
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