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A semiblind image deconvolution algorithm with spatially adaptive total variation (SATV) regularization is introduced. The spatial
information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue
to distinguish flat areas from edges. Meanwhile, the split Bregman method is used to optimize the proposed SATV model. The
proposed algorithm integrates the spatial constraint and parametric blur-kernel and thus effectively reduces the noise in flat regions
and preserves the edge information. Comparative results on simulated images and real passive millimeter-wave (PMMW) images

are reported.

1. Introduction

Image deconvolution is a classical inverse problem that
has been widely investigated in astronomical, medical, and
remote sensing imaging. Over the years, many deconvolution
algorithms have been developed (for reviews see [1, 2]). In this
paper, we are concerned with the semiblind deconvolution,
in which the point spread function (PSF) is described as
a parametric Gaussian form. The degraded model can be
described as

g =H,u+n, (1)

where H, denotes the convolution operator with a Gaussian
kernel h, parameterized by its width o, that is, Hu =
h,(x, y) * u, n denotes the system noise, and g and u are the
observed image and the true image, respectively.
Deconvolution is an ill-posed problem and should be
regularized. The TV regularization was first proposed by
Rudin et al. [3] in image denoising. Because of its advantages
in preserving edge and detailed information, it has attracted
strong research interest [4-6]. Nevertheless, TV model has
certain shortcomings. First, TV regularization favors a piece-
wise constant solution, and, as a result, the processing results
in the flat region are poor and some “staircase effects”

are produced (Figure1(b)). Second, TV-based method is
sensitive to the regularization parameter. For instance, a large
regularization parameter can help reduce the noise in flat
regions but blur the edge and detailed information at the same
time (Figure 1(c)).

In many practical situations, the PSF can be modeled by
the physics/optics of the imaging set-up and described as
parametric function. Then, during the deconvolution, only
the PSF parameters need to be estimated. It is often called
semiblind deconvolution. Some works are available in [2, 6,
7].In [7], Bar et al. presented an integrated variational frame-
work for simultaneous semiblind restoration of Gaussian blur
and image segmentation. The objective functional is

1
F. (u,v,0) = EHH‘,u - g"; +G, (u,v) + y“VhU”z, (2)

G, (u,v) = ﬁj v2|Vu|2dx dy
Q
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where v denotes the edge map and Q is the support of
the image. They have demonstrated successful semiblind
image restoration that is more robust than the total variation
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FIGURE I: Semiblind deconvolution with different TV regularization strengths. (a) Degraded image. (b) Best (with the highest PSNR value)

result. (c) Result with large regularization strength.

blind image restoration [4] where the kernel form is not
restricted. However, the framework of [7] is very sensitive to
noise. Extracting the edge map v will fail in the presence of
noise. Therefore, it is limited in practical application. Further
illustration can be found in [8].

In this paper, a semiblind image deconvolution model
with spatially adaptive TV regularization (SATV) [9] is
proposed. An effective spatial information extractor called
difference eigenvalue, recently proposed by Tian et al. [10],
is used to extract the spatial information in the image.
For each pixel, a weighted parameter determined by spatial
information is added to constrain the TV regularization
strength. For flat area pixels, a large weight parameter is
set to suppress noise. On the contrary, for nonsmooth area
pixel, a small weighed parameter is set to preserve edge and
detail information. To make the SATV regularization easy
to optimize, the split Bregman method is used to solve the
nonsmooth energy model. Our experimental results show
that the proposed SATV method can automatically balance
the regularized strength between different spatial property
regions in the image, and thus it can effectively reduce the
noise in flat regions as well as preserving the edge and detailed
information.

The remainder of this paper is as follows. In Section 2,
the proposed model and efficient solution are presented. In
Section 3, experimental results are given. Finally, conclusions
are drawn in Section 4.

2. SATV Model and Optimization Solution

In this section, our spatially adaptive TV semiblind deconvo-
lution model is presented, and then the split Bregman method
is used to solve the model.

2.1. Formulation of Our Model. In this paper, a spatially
weighted TV regularization model considering the spatial
dependent property of the TV regularization is introduced.
The key problem is to select a good spatial information
indicator, which can distinguish edges from flat areas in

the image. Several alternative edge indicators have been
proposed, such as gradient operator, Gaussian curvature,
difference curvature [11], and difference eigenvalue [10]. As
shown in Figure 2, the difference eigenvalue is more robust to
indicate the edge under significant noise. So we use difference
eigenvalue to indicate the spatial information.

The difference eigenvalue [10] is based on the Hessian
matrix of the image. We use a Gaussian filtered version of the
Hessian matrix to improve the robustness to noise:

o= []ﬁ j12:| _ [”xx * Gy Uy * G’?] (4)
n i J G, u,*G,|’
Jiz J22 uxy * n “yy n
where G, denotes the Gaussian kernel with the parameter
n (the size is 5 x 5 and # = 0.8 in this paper). The two
eigenvalues of J,, denoted by A, and A,, are given by

17,. . . . \2 .
Ay = 5 [(]11 + o) % VU1 ~ jo) +4J%z] . (5)

Let A, denote the larger eigenvalue and let A, denote the other
eigenvalue. Here A, and A, correspond to the maximum
and minimum local variation at a pixel, respectively. The
difference eigenvalue edge indicator D(x, y) is defined as

D(x,y) = (A =) hw(u(xy)), (6)

where w(u(x, y)) is a weighting factor which is used to
achieve balance between detail enhancement and noise sup-

pression. Its value is estimated from the gray-level variance
and defined by

{(x,y) - min ({)
max ({) - min ({)’

where min(() and max({) are minimum and maximum gray-
level variances of u, respectively. For a given pixel with
coordinates (x, y), the gray-level variance is calculated from
its 3 x 3 neighborhood:

w(u(xy)) = )

()= 1Y Y luleriys D-ule). ©

i=——1j=—1
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FIGURE 2: Edge map indicated by (a) gradient magnitude, (b) Gaussian curvature, (c) difference curvature, and (d) difference eigenvalue.

With the difference eigenvalue edge indicator D(x, ), the
SATV model proposed in this paper is defined as

1

—————  |Vu|dx dy.
1+0D(x,y)| ul dxdy

)

Here p = 1/(1 + 6D(x, y)) is the spatial weight and 6 is
the contrast factor. To summarize, several good features of
SATV can be drawn: (1) for flat area pixels, because D(x;, y)
is close to zero, p is close to 1, which means that a large TV
regularization strength is enforced, and then the noise will
be well suppressed; (2) for edge and detailed pixels, because
D(x, y) is very large, p is small and almost close to zero, and
this weakens the TV regularization strength, so the edge and
texture will be well preserved.

Substituting G, (1, v) in (2) with SATV presented in (9),
we introduce a new total bounded variation-based image
restoration model as

SATV = J plVuldxdy = J
Q Q

! 2 |22 2
IB},“EHHG” -g,+2 L p|Vuldxdy + 5||u||2 + || Vh, |-
(10)
Note that the quadratic regularization term about u pro-
vides the probability to discriminate the structure of stability

results from that of the nonquadratic bounded variation term
(12].

2.2. Numerical Algorithm. The split Bregman iteration meth-
od [5, 13] is used to solve the nonsmooth model (10). The
discrete version of (10) is expressed as

1
min= [Hyu = g} + ATV, @)+ Sl + y9h,[5. (D)

The discrete spatially weighted TV model is defined by

™, = Yo |() + (Gu), @)

ijeQ

where Vé’.u and Vi‘}u denote the horizontal and vertical first-
order differences at pixel (i, j), respectively. By lettingd = Vu,
this yields a constraint optimization problem:

min = [Hyu-gl; +1 Y pz-jJ(dZ-)z + ()’

wdo ijeQ

(13
+ Chul} + yIVRI;

st. d=Vu.
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(2) While (|a

prev — G' > g,) repeat

ijeQ
bk+1 — bk + (vuk+l _ dk+1)

Seto,,,., = 0, and solve

End
(3) Output: u/**!

(1) Initialization: u° = g, b° = 0,d° = 0,0 = 6%, 0, >> 1

k ! 2 ,3 k k2, #
k= argmulnEHHau - g”2 + E”d -Vu-" "2 + 5||u||§

0 =arg main%”H,,ukJr1 - 9"2 + VHVhallﬁ

prev

ALGORITHM 1: Algorithm (SBD-SATV).

Rather than considering (13), we will consider an uncon-
straint problem:

min L[, glf + 1Y gy ()" + ()’

ijeQ
B

2

(14)

2, B2 2
+ =|d - Vull; + 5"”"2 + 7| Vhg|5-
Then the corresponding split Bregman algorithm is given as
shown in Algorithm 1. Here, ¢, is a small positive constant.

Note that d**! can be computed by direct formula and to

get 1! we solve a linear system of equation:

5 * k k
e Hig+pv* (d*-b ), (15)
H*H, + pV*V +u

Vuk+l + bk

|Vuk+1 + bk| > (19

art = max(|Vuk+1 + bk| - %p,O)

where H, is the adjoint operator of H,. Minimizing with
respect to the scalar parameter o, one can obtain

oh 0 2
(Hau—g)<—°*u) +y <—|th| ) =0,
z]ZE:Q iy ij z]ZE:ﬂ do ij
(17)
where

%: 1 exp _x2+y2 x2+y2_% ’
do  2nco? 202 o3 o

0|Vh, |’ 1 exp (_x2 +y2)<x2 +y' i) (18)

do  2mot

X (x2 +y2).

The bisection method was used to solve (17) for o. The discrete
support of the Gaussian was limited at about 210 x 2lo.
Equation (15) is computed in the Fourier domain, which helps
accelerate the convolution operation [14].

3. Experiments’ Results

In this section, numerical results are presented to test the
proposed method. For comparison, the semiblind restored
method proposed by Bar et al. [7] is also tested. We call it
Bar-SBD method later.

Peak-signal-to-noise ratio (PSNR) and the structural sim-
ilarity (SSIM) [12] are used to measure the restored quality.
For the simulation, the satellite, Lena, and cameraman images
were blurred by Gaussian PSFs with standard deviation 2.1
of sizes 11 x 11 and 15 x 15, respectively. Then zero-mean
Gaussian noise with standard deviations 0.001, 0.005, and 0.01
is added by the MATLAB command imnoise. The initial value
0 was 0.5 and convergence tolerance &, was 107,

Example 1. Figure 3 shows the restoration results for the
PSF size of 11 x 11 and noise level of 0.005. From the
three images, it can be seen that our method has restored
much sharper results with less residual noise. Moreover, our
method showed good convergence property. The estimated
kernel width converged nearly to the accurate value after
about 15 iterations, as illustrated in the bottom line of
Figure 3.

Example 2. We restored the images degraded by Gaussian
PSF size of 15 x 15 and the three noise levels. The PSNR and
the calculating times of the two methods are listed in Table 1.
0 is the estimated kernel width. The implementations were in
MATLAB on a 2.93 GHz PC. The advantage of our method
appears obvious. In every case, our method has achieved
the higher PSNR and the lower computational time. Also, in
every case, our method obtains more accurate estimates of the
actual blur parameter. These results show that our method
outperforms the Bar-SBD method at a wide range of noise
levels.

Example 3. A restoration example of real passive millimeter-
wave (PMMW) image is shown in Figure 4. The PMMW
image was taken with a 94 GHz passive millimeter-wave
imager at London Heathrow airport.

Because of the long wavelength of millimeter-wave, the
PMMW image often suffers poor spatial resolution.



Mathematical Problems in Engineering 5

2.2 2.2 2.2
2 2 2
1.8 1.8 1.8
1.6 1.6 1.6
o 14 o 14 o 14
1.2 1.2 1.2
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Number of iterations Number of iterations Number of iterations
(d)

FIGURE 3: (a) Blurred and noisy images. (b) Results by Bar-SBD. (c) Results by the proposed method. (d) Convergence curve of the estimated
width o by the proposed method.



6 Mathematical Problems in Engineering

TABLE 1: PSNR (dB) and CPU time (seconds) of two methods (the numbers 1, 2, and 3 denote satellite, Lena, and cameraman image, resp.).

Noise level PSNR Bar-SBD Proposed
PSNR Time o PSNR Time o
0.001 22.10 22.93 119.4 1.75 24.46 46.4 2.21
1 0.005 22.09 22.76 78.8 1.79 24.41 46.1 2.21
0.01 22.03 22.11 168.5 1.83 24.28 59.4 2.20
0.001 23.36 24.37 60.1 1.54 27.01 59.6 2.06
2 0.005 23.34 24.26 79.2 1.56 26.86 64.0 2.06
0.01 23.28 24.21 80.6 1.60 26.41 59.0 2.00
0.001 21.93 22.44 133.2 1.66 24.58 48.4 2.10
3 0.005 21.91 22.36 133.9 1.68 24.54 52.1 2.09
0.01 21.86 22.08 128.1 1.70 24.32 54.5 2.08

(b)

FIGURE 4: Restoration of a real PMMW image. (a) From left to right: degraded image, Bar-SBD restored result, and our restored result. (b)
Close-up views.

Image deconvolution has been extensively researched TABLE 2: PSNR and SSIM values with different theta values in

to improve the resolution [15]. From the results, it can Example 1.
be seen that sharper details are restored by our method,
. b o Yo 0 0.0005 001 005 01 05 1 5
for instance, the number “2” and the car at right corner.
. . . o . PSNR 26.56 2650 26.48 26.70 26.74 26.77 26.69
Benefiting from the spatially adaptive regularization and split
SSIM  0.818 0.818 0.819 0.827 0.825 0.826 0.820

Bregman solution, the proposed method converges well for
the practical degraded image.

Example 4. Another restoration example of real PMMW
image is shown in Figure5. It can be observed from
Figure 5(b) that the recovered image by Bar-SBD amplifies
the noise obviously. As shown in Figure 5(c), the restored
image by proposed method looks natural and the noise is
suppressed well. The convergence process of the proposed
method is illustrated in Figure 5(d).

We have tried our best to determine the optimal parameters.
In (9), the parameter 0 in the spatial weight 1/(1 + 6D(x, y))
controls the ability to distinguish the edge and texture area
from the flat and ramp area. To show the effect of the
parameter 0 on the restored result, Table 2 lists the PSNR and
SSIM value when 6 is selected to be 0.0005, 0.01, 0.05, 0.1, 0.5,
1, and 5, respectively. It can be seen that the PSNR and SSIM

We remark that there are several parameters to be tuned
up in our proposed methods, and we have to choose optimal
parameters in order to make the relatively fair comparisons.

values show little change with the change of the parameter 0
and achieve little higher values when 6 ranges from 0.1 to 1.
In this paper, the parameter 6 was set to be 0.5.
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(c)

0 2 4 6 8
Number of iterations

(d)

FIGURE 5: Restoration of a real PMMW image. (a) Real PMMW image. (b) Bar-SBD restored result. (c) Our restored result. (d) Convergence

curve of the estimated width o by the proposed method.

The parameters A, f3, y, and y were selected manually to
provide the best PSNR results. We first fix the parameters A,
B, y, and p and adjust y such that it gives the best restoration
results measured by PSNR; in our implementation, we have
found that y = 180 is a relatively fair value in most cases
for different images. The remaining parameters are tuned
up one by one. This procedure is repeated several times for
each parameter until they become stable. In this paper, we
set parameter A = 0.0008. The parameters 3 and y were
chosen by trial and error tests. In all our experiments, the
parameters used were 3 = 0.005 and y = 0.003. Although the
better results could be obtained with “optimal” tuning of these
parameters, it was found that these heuristic values achieved
good results in most cases. In fact, the same parameter A
only needs to be tuned up slightly for different images by the
same blur-kernel and corrupted by the same noise level; this
significantly reduces the computational time of looking for
good parameters.

4. Conclusion

In this paper, we proposed a semiblind deconvolution
method with spatially adaptive TV regularization. The pro-
posed method can automatically balance the regularization
strength between different spatial property regions in the

image. Also, the split Bregman method is used to optimize
the nonsmooth model. Comparative results on simulated and
real degraded images show that the proposed method can
effectively reduce the noise in flat region as well as preserving
the edge and detailed information.
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