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With the rapid economic development, the transportation sector becomes one of the high-energy-consumption and high-CO,-
emissions sectors in China. In order to ensure efficient use of energy and to reduce CO, pollution, it is important to gain the best
performance standards in China’s transportation sector. Data envelopment analysis (DEA) has been accepted as a popular tool of
efficiency measurement. However, previous studies based on DEA are mainly restricted to the radial expansions of outputs or radial
contractions of inputs. In this paper, we present a nonradial DEA model with multidirectional efficiency analysis (MEA) involving
undesirable outputs for the measurement of regional energy and environmental efficiency of China’s transportation sector during
the period 2006-2010. We not only evaluate the energy and environmental efficiency level and trend of China’s transportation sector
but also investigate the efficiency patterns of 30 regions and three major areas of China. Additionally, we identify the energy saving

potential and CO, emissions reduction potential for each province and area in China in this study.

1. Introduction

After the rapid growth of China’s economy in the past three
decades, the increasing energy consumption, the carbon
dioxide (CO,) emissions, and environmental pollution are
currently hindering the sustainability of China’s economic
growth. Since 2007, China has already surpassed the USA and
become the world’s largest energy consumer and contributor
of CO, emissions [1]. To address this issue, China’s 12th five-
year plan seeks to establish a “green, low-carbon development
concept.” [2]. In 2015, China will increase the proportion of
nonfossil fuels in energy generation to 11.4%, reduce energy
consumption per unit of gross domestic product (GDP) by
16%, and reduce CO, emissions per unit of GDP by 17% from
the levels in 2010 [2].

Recognizing the great significance of reducing energy
consumption and CO, emissions as well as sustainable
development, more and more researchers have focused on
evaluating and improving energy utilization and CO, emis-
sions efficiency, which is considered as a crucial way to save
energy, reduce greenhouse gas emissions, protect environ-
ment, and mitigate global climate change [3-8]. These studies
mainly focused on the energy or environmental efficiency

of industries such as electricity, iron, and steel. However,
few papers have considered the energy and environmental
efficiency evaluation of China’s transportation sectors.

According to the International Energy Agency (IEA)
[9], we found that transport sector consumed 61.2% of the
world’s oil and approximately 28% of the total final energy
in 2007 and the transport sector had become the world’s
largest oil consumption sector. According to the International
Energy Agency (IEA) [10], transport sector became the
world’s second largest greenhouse gas emitting sector which
accounted for 22% of the world’s CO, emissions. Thus, we
take for granted that it is worthwhile analyzing the energy
and environmental efficiency of transportation sector in the
largest polluting country of the world since it provides a lot
of information on energy and environmental policy analysis
and decision making.

The indexes of energy or environmental performance
are constructed in the form of mathematics programming
methods such as data envelopment analysis (DEA). As a
nonparametric approach to evaluate the relative efficiency
of a set of comparable decision making units (DMUs),
DEA, which was developed by Charnes et al. [11], has been
widely investigated and popularly applied to many fields,



such as schools, hospital, and banks [12, 13]. Recently, at
the macroeconomy level, DEA has been universally used
in studying the energy and environmental performance in
examining the relative efficiency [14]. For instance, Hu and
Wang [15] adopted the traditional Charnes-Cooper-Rhodes
(CCR) model to evaluate the total-factor energy efficiency of
29 regions in China during 1995-2002. Zhang et al. [16] ana-
lyzed the industrial sectors’ ecoefliciency of 30 provinces in
China by a DEA model and found that most Chinese regions
with higher levels of GDP per capital would have higher
ecoefficiency. Yeh et al. [7] incorporated undesirable outputs
into calculating the technical efficiency of energy utilization
in Chinese mainland and Taiwan during the period of 2002-
2007 through employing the traditional Banker-Charnes-
Cooper (BCC) model. Shi et al. [17] used three extended
DEA models to investigate the energy and environmental
overall technical efficiency, pure technical efficiency, and
scale efficiency of industry sectors in 28 regions of China
during 2000-2006, with the undesirable output of industrial
waste gas being treated as inputs in energy and environmental
efficiency analysis. Bian and Yang [6] presented several DEA
models for calculating resource and environmental efficiency
and applied their proposed approach in real data set of 30
provinces in China. Wang et al. [18] adopted a traditional
DEA to analyze the industrial sectors’ energy efficiency in
China’s 30 provinces during the period of 2005-2009. Their
study showed that the west area had the greatest amount
of energy redundancies in the three major areas. Wang
etal. [19] established several efficiency models which were
capable of integrating undesirable outputs into efficiency
measure framework to evaluate the economic efficiency, CO,
emissions efficiency, and economic-environmental efficiency
of 28 provinces in China from 2001 to 2007. Similar studies
also can be found in [5, 20-23].

However, most of the previous studies on energy and
environmental efficiency mentioned above took advantage of
the traditional DEA approach, in which the DMUs under
measurement were restricted to the radial constraints on
input and output variables. In this study, we take multidi-
rectional efficiency analysis (MEA) instead of the traditional
radial DEA approach. MEA selects benchmarks such as the
input reductions and the output expansions are proportional
to the potential improvements related to each input and
output dimension separately. It enables us to have a specific
insight of the patterns of efficiencies for each DMU. The tra-
ditional MEA approach does not always consider the undesir-
able outputs. Although Asmild and Matthews [24] and Wang
et al. [1] used the approach and took the undesirable outputs
as input, it was inappropriate to reflect the actual production
process since undesirable outputs were produced as the by-
products of production process rather than the input. Thus we
adopt the environmental DEA technology proposed by Fare
et al. [25] as the alternative approach to model undesirable
outputs. Meanwhile, traditional MEA model presents the fact
that the input reductions and output expansions have the
same proportion to the potential improvements identified
considering the improvement potential related to each input
and output variable separately. But it is still treated as a
radial measure of efficiency. Since the radial model adjusts all
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variables to efficient targets by the same proportion, it cannot
provide information regarding the efficiency of the specific
inputs or outputs involved in the production process [26].
At the same time, radial efficiency measures may neglect the
slack variables, leading to efliciency overestimation [27]. As
a result, recent studies have tried to use the nonradial DEA
model [26, 28-30] to overcome these problems. So we follow
the same pattern and adjust the MEA model to make input
reductions and the output expansions nonproportional to
the potential improvements related to each input and output
dimension separately.

As for the transportation sector, Ramanathan [31] used
DEA to measure the energy efficiency of alternative transport
modes in India. Tongzon [32] also assessed the efficiency
of four Australian and twelve international container ports
based on DEA. However, all these studies in the transporta-
tion sector did not involve undesirable outputs in estimating
efficiency. In order to investigate the levels and the patterns
of efficiency in China’s transportation sector and provide
additional insights into the energy and emissions efficiency
of each China’s region, hence our study will use the modified
MEA model and consider undesirable outputs.

The rest of this paper is organized as follows. Section 2
introduces the environmental production technologies and
outlines the methodology of modified MEA model. In
Section 3, we show an empirical study of China’s 30 regions
in transportation sector during 2006-2010 to illustrate our
model. Section 4 gives discussions and conclusions.

2. Methodology

2.1. Environmental Production Technology. Let us consider a
production process that consumes a vector of inputs x to
obtain a vector of desirable outputs y and a set of undesirable
outputs denoted by the vector c. Then a production technol-
ogy is given by

T = {(x,y,¢) : x can produce (y,c)}. (1)

Following Fire et al’s [33] approach, we treat by-products
as outputs and accept the following three assumptions which
are imposed on the production technology.

(1) Strong or free disposability of desirable outputs: it
implies that if (x,y,c) € T and y* < vy, then
(x,¥°,¢) € T. This allows for the assumption that if
an observed desirable and undesirable output vector
are possible, then each output vector with a smaller
desirable output is also feasible. It implies that we
can always freely dispose of some desirable outputs
without undertaking any cost.

(2) Weak disposability of undesirable outputs: if
(x,y,¢) € Tand 0 < 0 < 1, then (x,0y,0c¢) € T. This
means that the proportional reduction in desirable
and undesirable outputs is possible, whereas it may
be costly to reduce undesirable outputs and these
abatement activities will usually divert resources
away from desirable outputs. The assumption is to
introduce the idea that it is not feasible to reduce
undesirable outputs solely.
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(3) Desirable and undesirable outputs being null-joint: if
(x,y,¢) € T and ¢ = 0, then y = 0. This assumption
says that it is not technically feasible to produce
only desirable outputs in the absence of undesirable
outputs. The only way to eliminate all the undesirable
outputs is to end the production process.

Once the three assumptions are imposed, T is termed as
environmental production technology. Suppose there are j =
1,2,...n decision making units (DMUs) which consume m
inputs to produce s, desirable outputs and s, undesirable out-
puts. Now we denote x; = (x,,. ..xmj)t, Y = - ..yslj)t,
and ¢ = (q jpeeeGs, j)t. as the vector of inputs, desirable out-
puts, and undesirable outputs of DMU;, respectively. In the
DEA framework, the environmental production technology
can be modeled as

n
T= (X,Y,C):Z/‘jxijﬁxij, i=1,2,...,m
j=1

n
DAy <y r=12,.0,5 )
j=1

In model (2), (A1, A5, ..., AJ-) denotes a vector of intensity
variables that form linear combinations of observed inputs
and outputs with constant returns to scale not imposed by
the constraint that Z;‘:l A; = 1. The inequality on desirable
outputs and equality on undesirable outputs help us to
impose the strong or free disposability of desirable outputs
and weak disposability of undesirable outputs.

2.2. Multidirectional Efficiency Analysis (MEA). Our aim is to
gain a deeper insight into the regional energy and environ-
mental efficiency of China’s transportation by investigating
the situation and analyzing the efficiency patterns in each
region and area. More specifically, we measure the compre-
hensive efficiency incorporating CO, emissions and energy
efficiency of China’s regional transportation sector. In this
study, we will use multidirectional efficiency analysis (MEA)
instead of the traditional radial DEA approach, which enables
us to have a specific view of the patterns of efficiencies.
Multidirectional efficiency analysis was firstly proposed
by Bogetoft and Hougaard [34], further developed by
Bogetoft and Hougaard [35] and Asmild and Pastor [36].
Previous studies [24, 37, 38] did not take the undesirable
outputs into account by using MEA. In this paper we will
make full use of this approach and consider the undesirable
outputs simultaneously. It is able to select benchmarks such
as the inputs, undesirable outputs reduction, and desirable
outputs augmentation, which are not proportional to the
actual production, but proportional to the potential improve-
ments related to each input and output variable separately.
In addition, since MEA considers the improvement potential
in each variable separately, it is very suitable to investigate

situations, where the purpose is to reduce the consumptions
of some inputs and the emission of some undesirable outputs
and to expand the production of some desirable outputs.
Furthermore, since efficiency improvements in the present
case were derived from a combination of the inputs consumed
reduction and the desirable outputs production increment, as
well as the undesirable outputs emission abatement, we see
it a better way to adopt the MEA approach to achieve the
efficiency improvements.

In the general case of considering reductions of all inputs
and undesirable outputs simultaneously with augmentations
of all of desirable outputs in MEA, we define the unit specific
directional distance function on the basis of the unit specific
ideal reference point. In order to find the ideal reference
point, we firstly solve the following linear programs, one for
each of input dimensions, desirable output dimensions, and
undesirable output dimensions, respectively:

min d

io

n
s.t. Z Ajxi; < digs
j=1

n

Z/\jx_iij_io, —-i=1,...,i-Li+1,...m

=1

(32)

n

ijyerym, r=1,...,s1

=1

n

Z/\jckj:cko, k=1,...,s2.

=1

Aj20, j=1,...,m,

max 6,

n
s.t. Z AiYei = 8,5

=1

n

Z/\jy_ery_m, —-r=1,...,r=1,r+1,...,sl

=1

n

ZA]xl]wa, i=1,...,m

=1

n

Z/\jckj oo k=1,...,82

=1

Aj20, j=1,...,n,
(3b)

min ¢,

n
s.t. Z )tjij = @Pro
=

-k=1,...,k—-1k+1,...,52



(3¢)

By solving the model (3a)-(3c), we are able to determine
the ideal reference point (d;,, 8, ¢r,) for (x;y, ¥,0> C,)> Where
# denotes the optimal solutions of model (3a)-(3¢c). With the
unit specific ideal point determined, we next consider the
following linear programming model (4):

max 3,

n
s.t. Z/\jxiijio—,Bo(xio—d;), i=1...,m
=1

DAY 2 Yo+ By (8l = Yio)s T=1sl (4)
=1

n
ZAjij:Cko_ﬁo(Cko_Soljo)’ k=1,...,s2
=1

)tj >0, j=1,...,m

where 3, represents the productive technical inefliciency
of DMU, and also measures the proportion by which the
desirable outputs are added while the undesirable outputs and
inputs are contracted in the same proportion. The value of
B, belongs to the interval [0, 1]. If 3, = 0, it means that the
evaluated DMU reaches to the frontier of the best practice
and is therefore efficient.

From model (4), we find that the inputs and undesirable
outputs reduction and desirable outputs expansion have the
same proportion to the potential improvements identified
considering the improvement potential related to each input
and output variable separately. So it may still be treated as a
radial measure of efficiency. However, radial efficiency mea-
sures overestimate the efficiency when there exist nonzero
slacks. Based on this, we will modify model (4) and make the
inputs and outputs be adjusted nonproportionally. Next, we
will form model (5):

max ﬁio + ﬁro + ﬁko

n
* .
s.t. Z)L]xl] S.xio_ﬁio (xio_dio), 1= 1,...,m
j=1

Z/\jyrjzyro"'ﬁro(&:o_yro)’ r=1,...,sl (5)
j=1

n
Z/\jckj = o — Bro (o —fl’;:o)) k=1,...,82
=1

A:=0,

i j=1...,n
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We are able to get an optimal solution by solving model
(5). Then we define the relative variable specific MEA effi-
ciency for every variable separately.

For the input variable x;,, we are able to define specific
input MEA efficiency as follows:

Xio — ﬁio ('xio B di*u)

P

(6)

10
For the desirable output y,,, we are able to define specific
desirable output MEA efficiency as follows:
yTO
Yro* Bro (86 = ¥ro)
For the undesirable output ¢, we are able to define
specific undesirable output MEA efficiency as follows:

7)

Cho — ﬁko (Cko - (Pljo) (8)

o

By defining each of MEA efficiencies for every variable,
we focus on the pattern of the individual specific variable
efficiencies. For instance, we pay attention to the efficiency
of energy and environment in China’s transportation. Based
on the individual variable specific efficiencies, we require
a comprehensive measure of efficiency for the measured
DMUs. Fire and Knox lovell [39] firstly proposed Russell
graph measure which is a comprehensive efficiency measure.
This remains as a theoretical contribution and still inspires
most of the following comprehensive efficiency measures.
For example, many DEA efliciency assessments have been
proposed based on the additive model [40], which detect
all the technical inefliciency in all dimensions such that the
benchmarks lie on the strong efficiency and do not have any
slacks [41-44]. Now we will use the same comprehensive
measure as the SBM model of Tone [44] to combine the
inefficiencies in the different dimensions into one overall
value. And the overall score of MEA efficiency for the
observation of DMUj, can be defined as follows:

90=<1—$iw>

Xio

1
x| 1+
sl +s2

< ro 6:0_ ro
X(zﬁ ( Vro)

r=1 yTD

, § P (cko—go;a))l_
k=1

)

Cko

Unlike the original MEA efficiency, the comprehensive
measure (9) has the desirable characteristic that the resulting
value incorporates all variables.

3. Empirical Studies

3.1. Data and Variables. This study will examine the energy
and environmental efficiency of China’s transportation sector
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TABLE 1: Areas and regions of China (excluding Tibet).

Areas

Regions

East area

Central area

Beijing, Tianjin, Shanghai, Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian, Guangdong, and Hainan

Heilongjiang, Jilin, Inner Mongolia, Henan, Shanxi, Anhui, Hubei, Hunan, Jiangxi, and Guangxi

West area Gansu, Guizhou, Ningxia, Qinghai, Shaanxi, Yunnan, Xinjiang, Sichuan, and Chongging

TaBLE 2: CO, emissions factor by major carbonaceous fuel types in China (source: NDRC, 2007 [50]).
Fuels Coal Petrol Kerosene Diesel Fuel oil Nature gas
CCF 2728 18.9 19.6 20.17 21.09 15.32
HE 192.14 448 4475 433.3 401.9 0.384
COF (%) 92.3 98.0 98.6 98.2 98.5 99.0

Notes: CCF and HE are expressed in units of tons, carbon/trillion Joules, and trillion Joules/ 10* tons (m?), respectively.

of 30 provinces in mainland during the 11th five-year plan
period (2006-2010). From the perspective of China’s devel-
opment and policy factors, these provinces and autonomous
regions are divided into three areas: east, central, and west
China [15]. Detailed information is shown in Table 1.

Tibet is excluded since the absence of relevant data in
this research. According to China’s Statistical Yearbooks, the
transportation sector in China is defined as consisting of
transport, storage, and post. So we will follow this definition
to collect the relevant data. In our study, three inputs, one
desirable output, and one undesirable output are considered
to measure the energy and environmental efficiency in
China’s transportation sector. Therefore the labor and capital
stocks are used as two nonenergy inputs, the volume of
energy consumed in the transportation sector as energy
input, a value-added amount in the transportation sector as
the only desirable output, and the volume of CO, emissions
related to fuel used in the sector as undesirable output. Since
there is no capital stock statistics data in China, we will use
the amount of fixed capital investment to represent capital
stock as some authors did [6, 17, 45, 46]. The total energy
consumption includes all types of energy, such as coal, oil,
natural gas, and electricity. We will convert these energies to
the tonne coal equivalent (tce).

The data of nonenergy inputs (labor and the fixed capital
investment), energy input, and desirable output (a value-
added) are available from China Statistical Yearbook 2007-
2011 [47] and China Energy Statistical Yearbook 2007-2011
[48]. Unfortunately, there are still no official statistical data
on CO, emissions in China. Thereby we will estimate the
provincial CO, emissions in the transportation sector during
2006-2010 based on a fuel-based carbon footprint model, as
described by the Intergovernmental Panel on Climate Change
Guidelines [49] for National Greenhouse Gas Inventories
for calculating CO, data. According to these guidelines for
estimating CO, emissions, the equation for calculating CO,
emissions from fossil fuels appeared as follows:

n 44
CO, = ZA x CCF; x HE; x COF, x <E> (10)
i=1

From (10), we know that CO, emissions are related to the
amount of all carbonaceous fuel combusted (A), the carbon

content factor (CCF), the heat equivalent (HE), and the
carbon oxidation factor (COF) of carbonaceous fuel. The
number (44/12) is the ratio of the molecular weight of CO,
(44) to the molecular weight of carbon (12), where CCF; x
HE, x COF,; x (44/12) is the CO, emissions factor of a fuel.
Aslong as we know the amount and the CO, emissions factor
of each fuel, the total CO, emissions of each province can be
calculated. The amount of consumption of each fuel of each
province in the transportation sector is collected from China
Energy Statistical Yearbook 2007-2011. The Energy Research
Institute (ERI) of National Development and Reform Com-
mission (NDRC) [50] of China reported the CO, emissions
factor by major type of carbonaceous fuels in China, as is
shown in Table 2. Then we will figure out the total CO,
emissions based on the formula of IPCC guidelines.

After collecting the related data on the three inputs,
one desirable output, and one undesirable output, a data set
encompassing 30 provinces during 2006-2010 is prepared for
analysis in Table 3. A correlation matrix of all inputs and
outputs is calculated for verifying the relationship between
the inputs and outputs variables. Table 4 shows the result that
all the correlation coefficients in the table are significantly
positive, which indicates that a quite high correlation exists
among every variable. Thus, energy and environmental effi-
ciency analysis in this case is feasible.

3.2. Efficiency Levels of China’s Region in Transportation
Sector. First we use models (5) and (9) to evaluate the
comprehensive MEA efficiency score of different provinces
in China’s transportation sector from 2006 to 2010, and the
related result is shown in Table 5. We find that the average
comprehensive MEA efficiencies of about 70% regions are
below 0.5, with Yunnan ranking lowest and Hebei ranking
highest during 2006-2010. There are only 3 regions exhibiting
MEA eflicient at least 1 year during 2006-2010. Only Hebei
performed best in keeping eflicient during the whole study
period. Shandong also performed well and was assessed as
efficient region for 4 years except 2010. The result indicates
that large parts of the regions in China are not performing
efficiently in the transportation sector. Hence, there is a
great possibility to reduce the energy consumption and CO,
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TABLE 3: Descriptive statistics of inputs and outputs for 30 regions.

Inputs and outputs Year 2006 2007 2008 2009 2010
Mean 20.4 20.7 20.9 21.1 21.0
Labor (10* peoples) Standard development 11.0 1.6 1.7 12.2 124
Maximum 48.3 48.8 49.3 53.5 56.1
Minimum 2.9 2.8 2.8 3.0 2.9
Mean 363.7 409.7 468.5 671.1 821.1
Capital (10° yuan) Standard development 210.9 221.8 246.8 348.0 431.9
Maximum 865.0 862.5 1108.8 1596.2 1820.0
Minimum 51.3 48.9 90.1 90.1 120.9
Mean 625.4 698.3 764.4 811.9 885.2
Energy (10° TCEs) Standard development 456.4 505.1 528.5 556.5 596.3
Maximum 1851.5 2042.5 2201.1 2311.5 2564.5
Minimum 39.9 71.1 88.2 98.2 110.5
Mean 435.9 498.1 571.2 715.7 826.6
Value-added (10° yuan) Standard development 3073 354.8 429.6 516.7 606.9
Maximum 1212.3 1399.9 1873.6 1971.0 2328.4
Minimum 353 40.9 40.7 61.3 67.5
Mean 13.0 14.5 15.8 16.8 18.2
1 . 10. 11.1 11. 12.4
CO, emissions (10° tons) Standard d.eve opment 9.6 0.6 7
Maximum 38.6 42.5 45.8 48.0 53.0
Minimum 0.8 1.5 1.8 201 2.3
TABLE 4: Correction matrix of inputs and outputs variables.
Labor Capital Energy Value-added CO,
Labor 1
Capital 0.599*" 1
Energy 0.783"* 0.731"* 1
Value-added 0.678*" 0.786™" 0.804™" 1
CO, 0.774*" 0.722"" 0.999"" 0.793*" 1

**shows significant correlation at 0.01 significance level (2-tailed).

emission and to increase the value-added amounts in each
region.

Then the annual average comprehensive MEA efficiency
of China and its three major areas during 2006-2010 are
calculated and illustrated in Figurel. From the angle of
area, the regions in east China have the highest average
comprehensive MEA efficiency, followed by the regions in
central China and then the regions in west China. The average
comprehensive MEA efficiency of China and its three major
areas basically keep first decreasing and then increasing.
Also the average comprehensive MEA efliciencies of east
China and central China are generally higher than those
of China. And west China’s average comprehensive MEA
efficiency is evidently lower than the average comprehensive
MEA efficiency of China. It reflects the materially unbalanced
development in China’s transportation sector and the gap
between east and west. This result is similar to some studies
about China’s regional energy efficiency and environmental
efficiency.

3.3. Efficiency Patterns and Differences of China’s Region in
Transportation Sector. The above evaluation results manifest
that east China has a higher comprehensive MEA efficiency
than central and west China in the transportation sector.
However, the comprehensive MEA efficiency just displays the
efficiency levels and the change trends of different regions
and areas. We are not able to take a thorough understanding
of the sources of inefficiency and to detect the patterns of
efficiency differences among China’s regions and three major
areas in transportation sector, which are more attractive to
policy makers. Therefore, it is necessary to investigate the
efficiencies on individual variables of each DMU. Through the
definitions (6)-(8), we calculate the relative variable specific
MEA efliciencies, which enable us to survey the patterns of
efficiencies in different China’s regions and areas. Since this
study centers on the energy and environmental efficiency,
here we only figure out the energy and CO, emissions
efficiency using the definitions (6) and (8) separately.

Table 6 illustrates the relative variable specific MEA
efficiency (i.e., energy and CO, emissions efficiency) in each



Mathematical Problems in Engineering 7
TABLE 5: Regional comprehensive MEA efficiency of China (2006-2010).
Region 2006 2007 2008 2009 2010 Mean
Beijing 0.386 0.313 0.239 0.266 0.370 0.315
Tianjin 0.508 0.438 0.391 0.514 0.830 0.536
Hebei 1.000 1.000 1.000 1.000 1.000 1.000
Shanxi 0.653 0.641 0.382 0.306 0.381 0.473
Inner Mongolia 0.767 0.755 0.757 0.747 0.747 0.754
Liaoning 0.328 0.327 0.283 0.343 0.367 0.330
Jilin 0.451 0.388 0.336 0.321 0.327 0.365
Heilongjiang 0.774 0.364 0.326 0.292 0.772 0.506
Shanghai 0.363 0.297 0.281 0.703 0.617 0.452
Jiangsu 0.651 0.619 0.595 0.814 1.000 0.736
Zhejiang 0.474 0.484 0.454 0.423 0.510 0.469
Anhui 0.922 0.874 0.869 0.468 0.525 0.732
Fujian 0.949 0.917 0.848 0.516 0.790 0.804
Jiangxi 0.464 0.482 0.507 0.448 0.450 0.470
Shandong 1.000 1.000 1.000 1.000 0.826 0.965
Henan 0.686 0.714 0.823 0.531 0.499 0.651
Hubei 0.307 0.287 0.726 0.290 0.737 0.469
Hunan 0.480 0.431 0.387 0.383 0.437 0.423
Guangdong 0.462 0.450 0.382 0.380 0.420 0.419
Guangxi 0.344 0.318 0.287 0.261 0.295 0.301
Hainan 0.338 0.330 0.252 0.197 0.703 0.364
Chonggqing 0.426 0.323 0.287 0.296 0.312 0.329
Sichuan 0.441 0.393 0.321 0.216 0.232 0.320
Guizhou 0.301 0.301 0.238 0.495 0.526 0.372
Yunnan 0.193 0.189 0.190 0.129 0.113 0.163
Shaanxi 0.331 0.302 0.261 0.271 0.287 0.290
Gansu 0.410 0.505 0.447 0.413 0.402 0.436
Qinghai 0.328 0.225 0.171 0.185 0.218 0.226
Ningxia 0.316 0.327 0.287 0.492 0.608 0.406
Xinjiang 0.283 0.287 0.231 0.233 0.233 0.253

region of China, which is similar to the comprehensive MEA
efficiency. Most of the regional energy and CO, emissions
MEA efficiency are under 0.5. The results make it clear that
larger parts of the regions in China are not performing MEA
efficiently on energy and CO, emissions in the transportation
sector. Therefore, there lies a great potential to reduce the
energy consumption and CO, emission in each region. Also
we notice a strange phenomenon that some regions have
correspondingly high energy MEA efficiency but a low CO,
emissions MEA efliciency, for example, Inner Mongolia. It
indicates that the resource of inefliciency is from CO, emis-
sions inefficiency. From the relative variable specific MEA
efficiency illustrated in Table 6, we can detect the reasons of
inefficiency in each region, and the decision marker can draw
up the relevant policies and measures to improve the relative
energy or CO, emissions efficiency separately.

After we have the relative variable specific MEA efficiency
(i.e., energy and CO, emissions relative efficiencies), we are
able to investigate the efficiency of three major areas during
2006-2010. Figure 2 demonstrates the annual average energy
efficiency and CO, emissions efficiency for China and its

three major areas in the transportation sector. It seems that
both the variable specific efficiencies of China and its three
major areas overall experienced a process of first decreasing
and then increasing over the study period. In Figure 2, we are
able to see that the east area and central area have higher MEA
efficiencies than west area on both the two variable specific
efficiencies. However, the MEA efficiency difference of energy
and CO, emissions is mixed between the east China and the
central China. We find that the east China performs better
than central China on MEA efficiency of CO, emissions
during 2006-2010. But for MEA efficiency of energy, the east
China has lower MEA efficiency score than central China
during 2006-2008, and it is just opposite in 2009 and 2010.
Therefore it can be concluded that the higher comprehensive
MEA efficiency dominance of the east China over the central
China and west China results from both the higher energy
and CO, emissions variable specific efficiency.

3.4. Efficiency Related Reduction Potentials on Energy and
CO, Emissions of China’s Region in Transportation Sector.
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TABLE 6: Regional energy and CO, emissions MEA efficiency of China (2006-2010).

Region Energy CO, emissions

2006 2007 2008 2009 2010 2006 2007 2008 2009 2010
Beijing 0.519 0.427 0.340 0.309 0.370 0.510 0.424 0.338 0.306 0.362
Tianjin 0.529 0.550 0.488 0.570 1.000 0.506 0.529 0.468 0.543 0.615
Hebei 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Shanxi 0.725 0.727 0.346 0.324 0.392 0.763 0.768 0.339 0.315 0.391
Inner Mongolia 1.000 1.000 1.000 1.000 1.000 0.392 0.363 0.357 0.322 0.322
Liaoning 0.323 0.292 0.298 0.269 0.306 0.308 0.278 0.282 0.252 0.286
Jilin 0.598 0.458 0.383 0.350 0.371 0.563 0.427 0.364 0.330 0.346
Heilongjiang 1.000 0.437 0.482 0.408 1.000 0.415 0.409 0.461 0.376 0.411
Shanghai 0.300 0.254 0.239 1.000 1.000 0.283 0.239 0.224 0.156 0.247
Jiangsu 0.697 0.634 0.593 1.000 1.000 0.667 0.605 0.568 0.542 1.000
Zhejiang 0.522 0.492 0.463 0.415 0.465 0.500 0.471 0.441 0.392 0.441
Anhui 1.000 1.000 1.000 0.517 0.517 0.831 0.711 0.697 0.491 0.488
Fujian 1.000 1.000 1.000 0.548 1.000 0.893 0.820 0.642 0.515 0.535
Jiangxi 0.636 0.605 0.624 0.532 0.494 0.603 0.573 0.592 0.504 0.469
Shandong 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.578
Henan 0.882 0.784 0.899 0.523 0.493 0.894 0.779 0.895 0.512 0.480
Hubei 0.301 0.277 1.000 0.272 1.000 0.286 0.261 0.252 0.252 0.285
Hunan 0.465 0.421 0.496 0.452 0.480 0.456 0.411 0.483 0.430 0.460
Guangdong 0.416 0.378 0.353 0.333 0.344 0.398 0.361 0.336 0.314 0.325
Guangxi 0.344 0.332 0.339 0.272 0.316 0.324 0.312 0.316 0.252 0.295
Hainan 0.336 0.321 0.225 0.157 1.000 0.318 0.302 0.210 0.145 0.155
Chonggqing 0.523 0.387 0.361 0.367 0.339 0.497 0.365 0.340 0.346 0.317
Sichuan 0.471 0.395 0.352 0.237 0.276 0.461 0.386 0.338 0.225 0.267
Guizhou 0.346 0.308 0.244 0.454 0.472 0.350 0.309 0.238 0.445 0.459
Yunnan 0.206 0.189 0.189 0.128 0.111 0.196 0.179 0.180 0.120 0.103
Shaanxi 0.444 0.378 0.311 0.257 0.263 0.446 0.381 0.303 0.252 0.258
Gansu 0.451 0.489 0.419 0.342 0.330 0.459 0.513 0.433 0.348 0.341
Qinghai 0.612 0.354 0.259 0.242 0.268 0.609 0.333 0.251 0.222 0.252
Ningxia 0.280 0.259 0.270 0.396 0.516 0.268 0.252 0.262 0.387 0.514
Xinjiang 0.259 0.237 0.229 0.223 0.222 0.248 0.228 0.217 0.210 0.208

By applying the MEA approach, we are able to measure
the energy and CO, emissions variable specific efficiency
for each region of China in the transportation sector, and,
based on the DEA theory, the inefficient regions can become
efficient on each of their input and desirable and undesirable
output variable so as to reach the benchmark by adjusting
improvement potential associated with each variable. There-
fore, in this section, we will further use the MEA approach to
survey the energy conservation and CO, emissions reduction
potential for Chinas different regions during our study
period.

From model (5), we know that the potential saving of
each input variable is able to be calculated as f;,(x;, — d;,),
the target value of each input variables after improvement
potential adjustment is x;, — f3;,(x;, — d;,), the potential
redundancy of CO, emissions could be calculated as f3; (¢, —
®r,)> and the target of CO, emissions after improvement
potential adjustment is ¢, — Bi,(Go — ¢%,)- Table 7 docu-
ments the energy conservation potential and CO, emissions
reduction potential for China’s each region in transportation

sector during 2006-2010. In Table 7, we can see that the
energy conservation potential and CO, emissions reduction
potential of each region are great in the transportation
sector. For the energy conservation potential, there are ten
out of 30 regions: Hebei, Inner Mongolia, Heilongjiang,
Shanghai, Jiangsu, Anhui, Fujian, Shandong, Hubei, and
Hainan, which do not have the improvement potential of
energy for at least 1 year during our study period. But for
CO, emissions reduction potential, only two regions, namely,
Inner Mongolia and Shandong do not have the improvement
potential of CO, emissions for at least 1 year during our study
period. Only Hebei and Shandong have no improvement
potential of energy and CO, emissions simultaneously except
2010’ improvement potential of CO, emissions in Shandong.
From an area perspective, we can further investigate the
reduction potentials of energy saving and CO, emissions
reduction of three major areas from 2006 to 2010, which are
illustrated in Figure 3. In short, as shown in Figure 3, the
total energy conservation potential of China’s transportation
sector on the whole keeps first increasing and then decreasing
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FIGURE 1: Average comprehensive MEA efficiency of China and its
three major areas.

beginning from 2009 during the study period. But the total
CO, emissions reduction potential of China’s transportation
sector always keeps an increasing trend. In general, east
China has the largest energy conservation and CO, emissions
reduction potentials, and those of west China are the smallest.

For the sake of a detailed description, we will take
the relative data in 2010 as an example to analyze the
regional energy conservation potential and CO, emissions
reduction potential in China’s transportation sector. As is
shown in Table 7, there are eight regions whose theoretical
maximum energy conservation potentials are more than five
million TCEs in 2010. In these eight regions, Guangdong
has the largest energy conservation potential, followed by
Liaoning, Yunnan, Sichuan, Shaanxi, Zhejiang, Beijing, and
Guanggxi. Furthermore, another ten regions have zero energy
conservation potential because they are efficient regions such
as Tianjin, Hebei, Inner Mongolia, Heilongjiang, Shanghai,
Jiangsu, Fujian, Shandong, Hubei, and Hunan. We see that
most of these 10 regions are located in east China and they
are all energy specific efficient regions in China. Among
the inefficient regions, Guangdong has the largest energy
conservation potential, but its energy MEA efliciency was
not the lowest. On the contrary, Yunnan, Xinjiang, Shaanxi,
Qinghai, Sichuan, Liaoning, Guangxi, Gansu, and Chongqing
have lower energy MEA efficiency in 2010. Also we find that
these 8 regions are located in west China except Liaoning and
Guangxi. The above results point out that these inefficient
regions which have a great energy conservation potential
and a low energy MEA efficiency should pay more attention
to their energy consumption control policy and energy
efficiency promotion, so as to increase their energy saving and
promote their energy utilization performances and catch up
with the high efficiency benchmark regions.

Table 7 also illustrates similar assessment results on the
potentials of CO, emissions reduction for China’s regions
in transportation sector in 2010. From Table7, we see
that Guangdong, Shanghai, Liaoning, and Shandong whose
potentials of CO, emissions reduction are larger than 20

million TCEs rank highly in China in 2010 and Guangdong
has the largest potential of CO, emissions reduction. But its
CO, emissions MEA efficiency was not the lowest. On the
contrary, Yunnan, Hainan, Xinjiang, Shanghai, Qinghai, and
Shaanxi have lower energy MEA efficiency in 2010. Besides,
we find that these regions are located in west China except
Hainan and Shanghai. The regions with unit CO, emissions
MEA efficiency and zero CO, emissions reduction potentials
such as Hebei and Jiangsu are the same as the benchmark
regions under energy specific efficiency assessment. The
above results show that the regions of greater CO, emissions
reduction potentials should be given higher priority to CO,
emissions controls to improve their CO, emissions MEA
efficiency, reduce CO, emissions redundancies, and catch up
with the highly performed benchmark regions.

4. Conclusion

In recent years, an increasing number of studies have
applied DEA approach to evaluate energy or environmental
efficiency; however, there are rare studies which pay close
attention to China’s transportation sector. In this study, we
propose a combination model of nonradial DEA and MEA,
focusing on the measurement of regional energy and environ-
mental efficiency of China’s transportation sector during the
period 2006-2010. Not only the energy and environmental
efficiency levels and trend of China’s transportation sector
are investigated but also the efficiency patterns of China’s 30
regions and three major areas are investigated. In addition,
the energy saving potential and CO, emissions reduction
potential for each province and area in China are identified
in this study.

With all the models, we can draw the conclusions as
follows. (i) Most of regions whose average comprehensive
MEA efficiency is below 0.5 during 2006-2010 tell us that
many regions in China are not efficient in the transportation
sector. (ii) From an area perspective, the regions in east China
had the highest average comprehensive MEA efficiency,
followed by the regions in central China and then the regions
in west China. The comprehensive MEA efficiency of the
east area surpassing the other two areas is due to the higher
emission and energy specific efficiency except 2006-2008.
(iii) During the period from 2006 to 2010, the trend of the
comprehensive MEA slightly decreases from 2006 to 2009
and then begins to increase, and the average energy and
emission efficiency have the same trend as the comprehensive
MEA. (iv) Up to 2010, Chinas transportation sector still
has great energy conservation potential and CO, emissions
reduction potential; the central government should keep on
implementing strict policies for energy consumption and
CO, emissions to develop more ecofriendly transportation
industry.

Our empirical study also has some significant policy
implications. First of all, the regional imbalances are nar-
rowed in China’s transportation sector, so the government
should pay greater attention to the central and the west area
whose transportation facilities are relatively undeveloped.
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TABLE 7: Regional energy and CO, emissions reduction potential of China (2006-2010).

Region Energy conservation potential CO, emissions reduction potential
2006 2007 2008 2009 2010 2006 2007 2008 2009 2010
Beijing 294.0 415.2 550.3 600.6 586.8 6.1 8.4 11.0 11.9 11.9
Tianjin 155.4 148.0 188.8 171.9 0.0 3.4 3.2 4.0 3.7 3.5
Hebei 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shanxi 114.4 116.1 505.6 526.9 490.0 1.9 1.9 10.3 10.8 9.6
Inner Mongolia 0.0 0.0 0.0 0.0 0.0 9.1 11.0 12.8 15.4 17.4
Liaoning 821.4 957.2 943.6 1035.3 1019.1 17.5 20.4 20.2 221 21.8
Jilin 110.2 200.6 288.5 306.1 3071 2.5 4.5 6.2 6.6 6.7
Heilongjiang 0.0 289.5 233.3 303.5 0.0 6.3 6.4 5.0 6.8 6.4
Shanghai 1080.3 1304.9 1377.3 0.0 0.0 23.4 28.2 29.6 32.5 30.7
Jiangsu 279.4 369.7 469.1 0.0 0.0 6.4 8.3 10.3 11.3 0.0
Zhejiang 398.7 469.0 537.4 603.7 599.6 8.7 10.2 11.6 13.0 12.9
Anhui 0.0 0.0 0.0 211.0 238.3 1.2 2.4 2.6 4.6 52
Fujian 0.0 0.0 0.0 299.4 0.0 0.9 1.8 4.5 6.7 7.2
Jiangxi 121.2 135.6 129.7 168.0 221.0 2.8 31 2.9 3.7 4.8
Shandong 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.4
Henan 68.4 146.6 72.4 362.9 434.8 1.2 3.0 1.5 7.4 8.9
Hubei 683.5 770.6 0.0 830.4 0.0 14.6 16.6 19.2 18.0 17.9
Hunan 339.4 404.2 298.6 412.7 436.0 7.0 8.4 6.2 8.8 9.2
Guangdong 1081.6 1270.5 1423.2 1541.2 1681.4 23.2 272 30.4 32.9 35.7
Guangxi 344.0 384.8 392.9 490.0 503.4 7.5 8.4 8.6 10.6 10.9
Hainan 100.8 112.5 186.3 229.8 0.0 2.2 2.4 4.0 5.0 52
Chonggqing 163.4 259.0 307.3 289.8 368.3 3.6 5.7 6.7 6.2 7.9
Sichuan 349.9 481.8 585.8 809.1 730.0 73 9.9 12.3 17.0 14.9
Guizhou 175.6 227.0 314.2 232.4 259.7 34 45 6.4 4.7 5.4
Yunnan 470.1 518.0 532.7 588.6 751.1 10.0 11.0 11.2 12.4 15.9
Shaanxi 244.0 315.5 4376 591.6 642.0 4.8 6.2 9.0 11.9 12.9
Gansu 143.0 135.8 164.0 198.8 222.7 2.8 2.5 3.1 3.8 4.2
Qinghai 15.5 45.9 65.4 74.4 80.8 0.3 1.0 1.3 1.6 1.7
Ningxia 89.8 98.1 96.5 84.7 72.9 1.9 2.0 2.0 17 1.5
Xinjiang 3274 3511 361.6 351.9 378.1 6.9 7.3 7.7 7.4 8.0
Energy CO, emissions
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FIGURE 2: Average relative variable specific efficiencies of China and its three areas (2006-2010).
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FIGURE 3: MEA relative energy conservation and CO, emissions reduction potentials of China’s three areas (2006-2010).

Secondly, the related policies to encourage public transporta-
tion and control individual transportation guide huge energy
conservation potential and CO, emissions reduction poten-
tial in some big cities in east China. Furthermore, we should
give impetus to transportation technological innovation and
promote vehicle emission standards and explore alternative
transport energy which has a great advantage to reduce
energy consumption and CO, emissions reduction.

This study only compares energy and environmental
efficiency of the transportation sector among the Chinese
provinces. If the data includes other advanced countries,
for instance, OECD countries, it may provide more infor-
mation on the level of Chinas transportation sector. Also
this research can be combined with Malmquist Productivity
Index to investigate the technical efficiency change of China’s
transportation sectors. All these remain avenues for future
research.
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