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Daily electricity price forecasting plays an essential role in electrical power system operation and planning. The accuracy of
forecasting electricity price can ensure that consumers minimize their electricity costs and make producers maximize their profits
and avoid volatility. However, the fluctuation of electricity price depends on other commodities and there is a very complicated
randomization in its evolution process. Therefore, in recent years, although large number of forecasting methods have been
proposed and researched in this domain, it is very difficult to forecast electricity price with only one traditional model for different
behaviors of electricity price. In this paper, we propose an optimized combined forecasting model by ant colony optimization
algorithm (ACO) based on the generalized autoregressive conditional heteroskedasticity (GARCH) model and support vector
machine (SVM) to improve the forecasting accuracy. First, both GARCH model and SVM are developed to forecast short-term
electricity price of New South Wales in Australia. Then, ACO algorithm is applied to determine the weight coefficients. Finally,
the forecasting errors by three models are analyzed and compared. The experiment results demonstrate that the combined model
makes accuracy higher than the single models.

1. Introduction

It is a challenging task and significant role to forecast
electricity price in competitive electricity market. However,
electricity price has distinct characteristics from other com-
modities, which is due to its nonlinearity, nonstationarity,
time variance, and uncertain bidding strategy of the market
participants. All these characteristics can be attributed to the
following reasons, which distinguish electricity from other
commodities: (i) nonstorable nature of electrical energy, (ii)
the requirement of maintaining constant balance between
demand and supply, (iii) inelastic nature of demand over
short time period, and (iv) oligopolistic generation side
[1]. According to an accurate daily price forecasting in the
electricity market, the power suppliers can reduce the cost of
electricity production, optimize the allocation of resources,
reduce the uncertainty of production, maximize profits, and
ensure the dominant position in the market competition.
At the same time, the consumers can also make a plan to

maximize their utilities and minimize their costs using the
electricity purchased from the pool or using self-production
to protect themselves against high prices.

In the current power forecasting researches, the forecast-
ing of electricity demand and price has emerged as one of the
major research fields in electrical engineering [2]. A lot of
researchers and academicians are engaged in the activity of
developing tools and algorithms for load and price forecast-
ing [1]. Whereas load forecasting has reached advanced stage
of development and load forecasting algorithms with mean
absolute percentage error (MAPE) below 3% are available [3,
4], price-forecasting techniques, which are being applied, are
still in their early stages of maturity. Although a few attempts
have already been made in this direction, only qualitative
aspects of price forecasting have been addressed. So the
importance and complexity of electricity price forecasting
motivate many researches in this area, especially in the recent
years [5].
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The electricity price prediction can be classified into two
categories.One is the detailedmarket simulation that requires
plenty of market information. The most popular approach
is the artificial neural network (ANN) technique. ANN
technique which possesses excellent robustness and error
tolerance is an effective way to solve the complex nonlinear
mapping problem. But the ANN contains a great many
parameters. These parameters are always judged by experi-
ence, so themodel is hard to be established [6]. Besides, it has
been observed thatwhile the neural network (NN) gives small
error for training patterns, the error for testing patterns is
usually of larger order [7]; in other words, when this method
is applied to practical system, the accuracy is not good.

The other forecasting technology refers to some mathe-
matical approaches without a thoroughmarketmodeling, but
which attempt to discover the relation between some known
inputs and the electricity price. Arciniegas and Arciniegas
Rueda [8] applied a Takagi-Sugeno-Kang (TSK) fuzzy infer-
ence system to forecast the one-day-ahead real-time peak
price of the Ontario Electricity Market. TSK’s improvements
in forecasting with respect to ANN and ARMAX are above
10%, and it has considerable value to forecast one-day-ahead
peak price. Fuzzy system does not need to establish a precise
mathematical model, but its adaptive capacity is limited, and
a steady-state error may cause oscillations. Lei and Feng [9]
proposed a novel greymodel to forecast short-term electricity
price for Nord Pool, California, and Ontario power markets.
The experiment results showed that the forecasting error
has decreased 1%∼6% compared with other grey models.
Although grey theory needs very little data, it is more suitable
to forecast linear data than nonlinear data. Wang et al. [10]
used a combined model based on seasonal adjustment and
chaotic theory to forecast electricity price of Austria power
market. A phase space was reconstructed from the time series
representing the data’s chaotic characteristics. Particle swarm
optimization (PSO) algorithm was also employed to deter-
mine the parameters of chaotic system. The forecasting per-
formance illustrated that the combined model is better than
single models. The most popular approach is the time series
algorithm; stationary time series models such as autoregres-
sive (AR) [11], dynamic regression and transfer function [12–
14], and autoregressive integrated moving average (ARIMA)
and nonstationary time seriesmodels like generalized autore-
gressive conditional heteroskedastic (GARCH) have been
proposed for this purpose. Specifically, Contreras et al. [15]
applied ARIMA model to predict the next-day electricity
price of the Spanish electricity market. However, when facing
a particularly big fluctuation time sequence, especially het-
eroscedastic time series prediction whose variance changes
over time, ARIMA model does not work well. Comparing
with the traditional ARIMA model, GARCH model can
commendably predict the condition heteroscedastic time
series, so it is widely applied in the field of finance. Garcia
et al. [16] presented GARCH model to forecast hourly prices
in the electricity markets of Spain and California.

Although time series models like ARIMA and GARCH
are nonlinear predictors that can meet the condition of
power price, behavior of price signal may not be completely
captured by the time series techniques. To solve this problem,

some other artificial methods can be proposed. Artificial
intelligence (AI) approaches such as neural network and
support vectormachine (SVM), which have been successfully
applied in load forecast, are also suitable for price forecast
[17]. Unlike most of the traditional neural network models
which implement the empirical risk minimization principle,
SVM adopts the structural riskminimization principle which
seeks tominimize an upper bound of the generalization error
rather thanminimize the training error [18]. SVMpossesses a
concisemathematical form and good generalization ability; it
can well solve the practical problems of the small sample size,
nonlinearity, high dimension, and local minimum point.

For the forecasting models, single model has its own
independent information of the electric power system, and
the proper selection of the individual model can lessen the
systemic information loss. Although traditional single time
series models like AR, MA, and ARMA are suitable to
forecast stable and linear sequences and ARIMA model can
be used to forecast nonstationary and nonlinear time series,
the forecasting performance is not satisfied. In addition, the
fluctuation of electricity price depends on many complicated
random factors in its evolution process, and the combined
forecasting model can make full use of the characteristic of
single models and reduce the sensitivity of the poorer pre-
dictionmethod.Therefore, an optimized combinedmodel by
ant colony optimization algorithm (ACO) based on GARCH
model and SVM model is proposed to predict electricity
price. Section 2 introduces the combined forecasting model
theory, GARCH model, SVM model, and an intelligent
optimization algorithm called ACO. In Section 3, a case study
about forecasting electricity price of New South Wales in
Australia is demonstrated. Correspondingly, GARCH model
and SVMmodel are utilized to forecast electricity price.Then,
ACO algorithm can determine the weight coefficients. The
results have shown that the optimized combined method
is more reliable than the individual forecasting models.
Section 4 concludes this study.

So, it is still an essential need to find more accurate and
robust approaches for daily electricity price prediction and an
overall assessment of the price-forecasting algorithms is still
required.

2. Materials and Methods

2.1. The Optimized Combined Forecasting Model by ACO
Algorithm. The combined forecasting theory states that if
there exist𝑀 kinds of models to solve a certain forecasting
problem, with properly selected weight coefficients, several
forecasting methods’ results can be added up. Assume that
𝑦

𝑡
(𝑡 = 1, 2, . . . , 𝐿) is the actual time series data, 𝐿 is

the number of sample points, and |𝜔
𝑖
(𝑖 = 1, 2, . . . ,𝑀)

is the weight coefficient for the 𝑖th forecasting model, the
mathematical model of the combined forecasting model can
be expressed as
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where 𝜔̂
𝑖
is the estimated value of 𝜔

𝑖
and 𝑦

𝑡
is the combined

forecasting value.
Determination of the weight coefficients for each indi-

vidual model is the key step in constructing of a combined
forecasting model. This can be achieved by solving an
optimization problem which minimizes the mean absolute
percentage error (MAPE) for the combined model. This
objective function using can be expressed as

𝑓 =

𝐿
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, (2)

st ∑𝑀
𝑖=1
𝜔

𝑖
= 1, 0 ≤ 𝜔

𝑖
≤ 1, 𝑖 = 1, 2, . . . ,𝑀.

The optimization process can employ ACO algorithm to
minimize objective function 𝑓.

2.2. GARCH Model. The ARCH model was initially intro-
duced by Engle [19], in order to account for the presence of
heteroscedasticity in economic and financial time series. In
an ARCH (q) process, the volatility at time 𝑡 is a function
of the observed data at 𝑡 − 1, 𝑡 − 2, . . . , 𝑡 − 𝑞. But in the
practical application, the ARCH model often needs a very
long condition variance equation, and in order to avoid
negative variance parameter estimation, it often needs to
forcibly demand a fixed hysteresis structure [20]. On this
occasion, in order to make ARCH model have long-term
memorizing ability andmore flexible lag structure, it is essen-
tial to extend ARCHmodel. Later, Bollerslev [20] introduced
the generalized ARCH (GARCH) process, where conditional
variance not only depends on the squared error term, but
also depends on the previous conditional variance [21]. A
GARCH process of orders 𝑝 and 𝑞, denoted as GARCH (p,
q), (GARCHmodel is used in EVIEWS soft) can be described
as follows [22]:
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where 𝑞 > 0, 𝛼
0
> 0, and 𝛼

𝑖
≥ 0 for 𝑖 = 1, 2, . . . 𝑞 and 𝛽

𝑗
≥ 0

for 𝑗 = 1, 2, . . . 𝑝. Again, the conditions 𝛼
0
> 0, 𝛼

𝑖
≥ 0, and

𝛽

𝑗
≥ 0 are needed to guarantee that the conditional variance

ℎ

𝑡
≥ 0. This study uses GARCH (1, 1) model and the (1, 1) in

parenthesis indicates that one length of ARCH log(𝛼
1
) and

one length of GARCH log(𝛽
1
) are used.

2.3. Support Vector Machine (SVM). According to the sta-
tistical learning theory and development, SVM is based on
structural risk minimization (SRM) principle to minimize
the generalization error; the general view is to minimize the
training error and at the same time minimize the model
complexity, which has become the cornerstone of modern
intelligent algorithm [23].The characteristics of SVMmake it
a good candidate model to apply in predicting defect-prone
modules as such conditions are typically encountered.

SVM principle is as follows: given the training sample
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recognition problem can be cast as the primal problem of
finding a hyperplane:𝑤T

𝑥+𝑏 = 1, where𝑤 is a d-dimensional
normal vector, such that these two classes can be separated by
two margins both parallel to the hyperplane; that is, for each
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where 𝜁
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁, are slack variables and 𝑏 is the

bias. This primal problem can easily be cast as the following
quadratic optimization problem [24]:
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where 𝜁 = (𝜁
1
, 𝜁

2
, . . . , 𝜁

𝑁
).

The objective of a SVM is to determine the optimalw and
optimal bias b such that the corresponding hyperplane sepa-
rates the positive and negative training data with maximum
margin and it produces the best generation performance.This
hyperplane is called an optimal separating hyperplane [25].

2.4. Ant Colony Optimization Algorithm (ACO). The ant
colony optimization (ACO), developed by Dorigo et al. [26,
27], is a metaheuristic method that aims to find approxi-
mate solutions to optimization problems. The original idea
behind ant algorithms came from the observations of the
foraging behavior of ants and stigmergy. Stigmergy is a term
that refers to the indirect communication amongst a self-
organizing emergent system by individuals modifying their
local environment [28]. The detailed steps of ACO algorithm
[29] can be described as follows.

Step 1 (initializing some parameters). The algorithm starts by
initializing some specific variables such as the maximum of
allowed iterations NCHO and the number of ants ANT and
the initial point which is randomly selected.

Step 2 (dividing the definition domain and grouping the
ants). According to (6), the definition domain is divided into
subregions. Each subregion is defined as (7). For all 𝑖 (𝑖 =
1, 2, . . . , part), m ants are assigned in every subregion ran-
domly. Correspondingly, each ant is denoted by ant

𝑖𝑗
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𝑖
+ 𝑙

𝑖
⋅ 𝑗] , (7)

where 𝑖 ∈ [1, 𝑑], 𝑗 ∈ [1, part], and d is the dimension of the
independent variables.
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Step 3 (initializing the pheromone concentration). Each ant
has pheromone, and the initial pheromone concentration of
jth ant in ith subregion is defined as

𝜏

𝑖𝑗
= 𝑒

(−𝑓(𝑋𝑖𝑗))
𝑖 = 1, 2, . . . , part, 𝑗 = 1, 2, . . . , 𝑚, (8)

where 𝑋
𝑖𝑗
represents the location of the jth ant in ith subre-

gion and 𝑓(𝑋
𝑖𝑗
) is the objective function. If the pheromone is

greater, the function value is smaller.

Step 4 (determining the elite ant (the optimal ant)). The
pheromone of the elite ant in each group (the local optimal
ant) can be defined as follows:
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where 𝑖 = 1, 2, . . . , part and 𝑗 = 1, 2, . . . , 𝑚.
Then based on (10), the pheromone of the global elite ant

(the global optimal ant) can be got
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where 𝑖 = 1, 2, . . . , part, 𝑘 ∈ [1, part], and 𝑙 ∈ [1,𝑚]. So
kth ant in lth subregion is the global elite ant, and 𝑋

𝑘𝑙
is the

location of the global elite ant.

Step 5 (updating the ant’s location of each group). If |𝐷
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where in this generation𝐷
𝑗
(𝑗 ∈ [1,𝑚]) is the location of the

elite ant, 𝜏
𝑗
is the pheromone of the elite ant, 𝐷

𝑖
(𝑖 ∈ [1,𝑚])

is the location of the common ant, and 𝜏
𝑖
is the pheromone of

the common ant. 𝐷󸀠
𝑖
is the location of the common ant after

updating, 𝛼
1
∈ (−1, 1), 𝜌 ∈ (0, 1), 𝜌

0
∈ (0, 1), and 𝛿 ∈ 0.1 ×

rand(1).

Step 6 (get the current global optimal solution). Get the
current global optimal solution 𝑓opt(𝑋𝑖𝑗) (𝑖 = [1, part], 𝑗 ∈
[1,𝑚]) based on the new location of the ants and update the
pheromone of each ant in each subregion based on

𝜏

𝑖𝑗
= 𝜌𝜏

𝑖𝑗
+ 𝑒

−𝑓(𝑋𝑖𝑗)
. (13)

Step 7. 𝑛𝑐ℎ𝑜 = 𝑛𝑐ℎ𝑜 + 1, if 𝑛𝑐ℎ𝑜 > 𝑁𝐶𝐻𝑂, go to Step 9,
otherwise go to Step 8.

Step 8. If 𝑓opt(𝑋𝑖𝑗) (𝑖 ∈ [1, part], 𝑗 ∈ [1,𝑚]) is less than
the given solution error condition 10−2, then go to Step 9,
otherwise go to Step 4.

Step 9. Output 𝑛𝑐ℎ𝑜 and𝑓opt(𝑋𝑖𝑗) (𝑖 ∈ [1, part], 𝑗 ∈ [1,𝑚]).

3. A Case Study

3.1. Evaluation Criterion of Forecasting Performance. Two
loss functions can be served as the criteria to evaluate the
prediction performance relative to electricity price value,
including mean absolute error (MAE) and mean absolute
percentage error (MAPE); the forecasting effect is better
when the loss function value is smaller.The two loss functions
are expressed as follows:

MAE = 1
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(14)

where 𝑦
𝑡
and 𝑦

𝑡
represent actual and forecasting electricity

price at time and the value of 𝐿 in our study is 48.

3.2. Simulation and Analysis of Results. The proposed opti-
mized combined method is tested using a case study about
forecasting electric price of New South Wales, Australia. The
detailed forecasting procedure can be seen in Figure 1. The
electricity price data were collected on a half-hourly basis (48
data points per day, starting from 0:00 AM to 23:30 PM) for
5 Mondays of electricity price values from February 12, 2012,
to March 11, 2012, to predict 1 Monday of electricity price in
March 18, 2012. The actual electricity price data can be seen
in Figure 2.

GARCH model is operated in EVIEWS soft to forecast
electricity price series of New South Wales. Before doing
work, this paper judges whether we can apply GARCH (1,
1) model by ARCH Lagrangian Multipliers Test (ARCH LM
Test). At the beginning, the least square method is used to
estimate electricity price data; then, ARCH test is performed
over the residuals by observing the values of the F-statistics,
which is not strong. Figure 1 illustrates these procedures. Let
the confidence level 𝛼 be set to 0.05. If probability P is less
than 0.05, the residual sequences will have ARCH effect. In
other words, it is suitable to use GARCH model. Specifically,
the results of the ARCH test are presented in Table 1 and it
is found that GARCH (1, 1) model can be applied to forecast
electricity price.

The SVM model, which is skilled in dealing with small
simple and nonlinear data, will be used in the next step. The
number of actual data is 240 (5 Mondays), so the number of
𝑤 is 240 and the detailed values of𝑤 are seen in Figure 3.The
value of the bias 𝑏 = −0.2874. After simulation, the forecasted
values can be presented in Table 2.

However, single traditional model has some limitations
which cannot present the characteristics of data well. There-
fore, many combined models usually are used to forecast
electricity price in power system. In this study, an opti-
mized combined model based on GARCH and SVM can
be proposed. Correspondingly, ACO algorithm is presented
to optimize and determine the weight coefficients. In ACO
algorithm, the experiment uses some parameters as follows:
𝑑 = 1, 𝐴𝑁𝑇 = 36, 𝑁𝐶𝐻𝑂 = 100, 𝜑 = 0.5, and 𝜌 =

0.5. In fact, we are not only interested in simulation of ant
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Figure 1: Flow chart of the optimized combined model.

Table 1: ARCH test.

ARCH test
𝐹-statistic 1127.448 Probability 0.000000
Obs∗ 𝑅-squared 229.0899 Probability 0.000000
𝑅-squared 0.798223 Mean dependent variance 25.75343
Adjusted 𝑅-squared 0.797517 S.D. dependent variance 45.27648
S.E. of regression 20.37368 Akaike info criterion 8.873309
Log likelihood −1271.320 Schwarz criterion 8.898811
Durbin Watson stat 2.178122 Probability (𝐹-statistic) 0.000000
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Figure 2: The actual electricity price data of six Mondays in New
South Wales of Australia in 2012.

colonies, but also in the use of artificial ant colonies as a
one-dimensional optimization tool. The objective function is
𝑓 = ∑

𝐿

𝑡=1
(|𝑦

𝑡
− 𝑦

𝑡
|/𝑦

𝑡
) in (2) and 𝑦

𝑡
= ∑

𝑀

𝑖=1
𝜔̂

𝑖
𝑦. Its aim

is to optimize 𝜔̂
𝑖
so as to minimize the objective function𝑓.

The algorithmwould stop when the number of themaximum
iteration is 100. Through simulation and calculation, we can
get 𝜔̂
1
= 0.8058, 𝜔̂

2
= 0.1942. So the estimated values of the

combined model are written as 𝑦 = 0.8058×𝑦
1
+0.1942×𝑦

2
.

The concrete values can be seen in Table 2.
In addition, we produce whisker plot with three boxes

which have lines at the lower quartile, median, and upper
quartile values of prediction electricity price value by
GARCH (1, 1), SVM model, and the optimized combined
model in Figure 4. It is easy to find that each of the boxes
includes a notch in the position of the median value. The
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mean values of GARCHmodel and the optimized combined
model are closer to the actual values.

In order to further illustrate the validity of the combined
model, two kinds of errors including MAE and MAPE of
GARCH model and SVM model have been listed in Table 2.
It is clear that MAE andMAPE using GARCH (1, 1) model or
SVM model are higher than the combined model. Although
the forecasted values of SVM model are close to the actual
values before 7:00, the differences are great large after 7:00.
Also, it has been observed that the proposed optimized com-
binedmodel leads to 0.18 $AU reductions in total meanMAE
and 0.67% reductions in total mean MAPE, respectively, in
comparison with traditional individual GARCH (1, 1) model
and results in 1.8 $AU reductions in total mean MAE and
approximately 7% reductions in total mean MAPE, respec-
tively, compared to the single SVMmodel. Consequently, the
results obtained from the optimized combined model agree
with the actual electricity price exceptionally well. In other
words, the forecasting model using optimized combined
model can yield better results than using GARCH (1, 1) and
SVMmodel.

4. Conclusions

The development of industries, agriculture, and infrastruc-
ture depends on the electric power system; electricity con-
sumption is relative to modern life; consumers want to

minimize their electricity costs and producers expect to
maximize their profits and avoid volatility; therefore, it is
important for accurate electricity price prediction.

There are four advantages of the optimized combined
method. At first, the optimized combined model by ACO
algorithm based on GARCH (1, 1) model and SVM method
for forecasting half-hourly real-time electricity prices of
New South Wales creates commendable improvements that
are relatively satisfactorily for current research. Second, the
individual model has its own independent characteristic
in the power system. The proper selection of traditional
single model can lessen the systemic information loss. The
optimized combined forecasting model can make full use
of single models and it is less sensitive to the poorer
forecasting approach. On the basis there is no doubt that the
improved combined forecasting model performs better than
conventional single model. Third, an intelligent optimization
algorithm called ant colony optimization is used to determine
the weight coefficients. Finally, the optimized combined
model is essentially automatic and does not require to make
complicated decision about the explicit form of models for
each particular case. The combined forecasting procedure
gives the minimumMAE and MAPE.

The final result is that the optimized model has high
prediction accuracy and good prediction ability. With proper
characteristic selection, redundant information is overlooked
or even eliminated; a more efficient and straightforward
model is got. To sum up, it is clear that the improved
combinedmodel ismore effective than the existing individual
models for the electricity price forecasting.
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[27] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press,
Cambridge, Mass, USA, 2004.

[28] M. J. Meena, K. R. Chandran, A. Karthik, and A. V. Samuel, “An
enhanced ACO algorithm to select features for text categoriza-
tion and its parallelization,” Expert Systems with Applications,
vol. 39, no. 5, pp. 5861–5871, 2012.

[29] Q. Y. Li, Q. B. Zhu, and W. Ma, “Grouped ant colony algorithm
for solving continuous optimization problems,”Computer Engi-
neering and Applications, vol. 46, no. 30, pp. 46–49, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


