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Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from
the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed
a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive
review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted.This
review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater
insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs
glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function
of cellular components comprising the innate immunity system. Innate immune systemdysfunction via hyperglycemia is associated
with a highermorbidity andmortality in critical illness. Alongwith others, we hypothesize that reduction inmorbidity andmortality
observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However,
there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine
the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment
regimen for these patients.

1. Stress Hyperglycemia in Critical Illness

The effects of severe trauma, infection, and surgery result in
remarkable metabolic stress on the human body. Stress asso-
ciated with critical illness is characterized by the activation
of inflammatory cellular mediators and the hypothalamic-
pituitary-adrenal (HPA) axis. The release of cortisol, cate-
cholamines, glucagon, and growth hormone is an essential
component of the general adaptation to illness and stress.The
acute response to critical illness (energy conservation toward
vital organs,modulation of the immune system, and a delay in
anabolism) is generally considered to be an appropriate and
adaptive response that occurs in the first few days after insult.
Mild-to-moderate stress hyperglycemia is protective because
it provides a source of fuel for the immune system and brain
at a time of stress [1].However,many of the chronic endocrine

responses result in persistent hyperglycemia and insulin
resistance, which can be potentially deleterious in the long
run [2]. In combination with inadequate systemic insulin
levels and insulin resistance due to the increased secretion
of counter-regulatory hormones, the negative manifestations
inflicted by hyperglycemia lead to life-threatening conditions
in these patients [3].

Incidences of stress-induced hyperglycemia, defined as
plasma glucose levels exceeding 200mg/mL in patients, have
been documented for more than 100 years in patients experi-
encing severe trauma or injury [4]. Although hyperglycemia
is believed to be an adaptive stress response, long-term stress-
induced hyperglycemia is linked to poor clinical outcomes
and increased risk of mortality [5]. The underlying causes
of hyperglycemia during critical illness are attributed to the
increased hepatic glucose production and impaired glucose
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consumption by peripheral tissues as well as insufficient
pancreatic insulin production. In addition, the production
and accumulation of counter regulatory hormones, such as
glucagon, cortisol, catecholamines, and growth hormone,
will increase lipolysis, protein breakdown, and impair glu-
cose usage by peripheral tissues [4]. At the cellular level,
increased blood glucose levels result in mitochondrial injury
and endothelial dysfunction by generating reactive oxygen
species and inhibiting nitric oxide production, respectively.
Recently, it has been found that the endoplasmic reticulum
(ER) stress response and its subsequent unfolded protein
response are activated in various tissues under conditions
related burn and severe trauma. ER stress has been identified
as one of the central intracellular signaling pathways that link
insulin resistance, hyperglycemia, and inflammation [6].

In this paper, we intend to review recent advances on
the regulating effects of hyperglycemia and insulin on innate
immunity, with a particular emphasis on severe burns. In
addition, we will explore the history of insulin treatment
on stress-induced hyperglycemia during critical illness and
update the present understanding in regard to the ongoing
moderate versus intensive insulin treatment debate. Although
cytokine products and reactive oxygen species produced by
innate immune cells may have profound effects on glucose
disposal and utilization in the periphery as well as on insulin
production by the pancreas, we only focus on the effects of
hyperglycemia and insulin on innate immune cells.

2. Hyperglycemia and Innate Immune Cells

2.1. Monocytes. Monocytes, macrophages, and dendritic cells
are antigen-presenting cells that possess phagocytic capabil-
ities that play a crucial role in maintaining immune home-
ostasis and mounting an immune response against infection.
In severely burned and septic patients, monocyte phenotype
and function are disrupted, resulting in a lowered expression
of HLA-DR on circulating monocytes as early as 2-3 days
after injury. This effect of decreased HLA-DR expression and
cytokine production has shown to persist for 28 days in burn
and septic patients [7].

The adverse effects of hyperglycemia on innate immu-
nity manifest through the regulation of monocyte cytokine
secretion. This notion is well supported by previous studies
using THP-1 monocyte cell line and human peripheral
blood monocytes, which when cultured under high glucose
conditions caused elevated expression of MCP-1, TNF-𝛼, IL-
1𝛽 [8, 9], COX2 [10], IP-10 [11], and IL-6 [12]. A study using
primary human monocytes shows that HG-induced TNF-𝛼
production is through the downregulation of CD33 [13].

Importantly, hyperglycemia-induced abnormal cytokine
production in patients with severe sepsis exacerbates the
clinical outcomes of these patients experiencing stress hyper-
glycemia [14]. Accumulating evidence indicates that IL-6
is involved in glucose metabolism and insulin action. The
proinflammatory cytokine IL-6 is normally released upon
infection; however, it induces insulin resistance during con-
ditions of hyperglycemia [15]. Devaraj and Jialal found that
increased secretion of IP-10 from monocytes cultured with
high concentration glucose was via TLR2 and TLR4 pathway,

since blockade of TLR2 and/or TLR4 inhibited IP-10 release
[11]. Other studies further demonstrated that HG-induced
TLR-2 and -4 expressions are via protein kinase C (PKC)
activation and by the stimulation of NADPH oxidase [16].

However, other studies showed that cytokine secretion
was inhibited in the presence of higher concentration of
glucose or C-peptide using in vitro culture of U937 cell
line or ex vivo culture of freshly isolated leukocytes from
healthy volunteers. Inhibited cytokines include IL-6, IL-8,
macrophage inflammatory protein- (MIP-) 1𝛼, MIP-1𝛽 [17],
TNF-𝛼, and reactive oxygen species [18].

Furthermore, HG influences monocyte HLA-DR expres-
sion. Monocytes from healthy volunteers that were exposed
for 24 hours to high concentrations of glucose (400mg/dL)
presented a decreased HLA-DR [19]. It indicates that HG
may impair the antigen presenting activity of monocytes.
Hyperglycemia has also shown to regulate other functions of
monocytes, such as adhesion, migration, and transmigration.
Nandy et al. observed that high concentration of glucose
augmented monocyte adhesion to human umbilical vein
endothelial cell monolayer and increased migration [20]. In
contrast, another study showed that adhesion of monocytes
to human aortic endothelial cells was diminished in the
presence of 30mM/L glucose and C-peptide [17].The phago-
cytic ability of innate immune system has been found to be
marginally enhanced by hyperglycemia [18].

Taken together, numerous studies have investigated the
effects of hyperglycemia on monocyte functions including
cytokine secretion and migration. As a result of the inconsis-
tent findings, there is a lack of consensus on the relationship
between monocytes and high glucose conditions and further
investigation is required. The discrepancies may be resulted
from the different model system and exposure time among
investigators. We would like to emphasize that the effects of
hyperglycemia on monocytes are not necessarily equivalent
to the status of monocytes in severely injured patients,
such as burned and septic patients. There are many other
factors that contribute to monocyte phenotype in addition to
hyperglycemia.

2.2. Macrophages. Macrophages are an essential component
of the immune system, with three fundamental homeostatic
activities: host defense, wound healing, and immune regula-
tion. Due to the large number of macrophages in the tissues
and its role as a major source of cytokines during injury,
hyperactive macrophages are the leading contributors of sys-
temic inflammatory response syndrome (SIRS). Interestingly,
recent research has shown that macrophages are heavily
involved not only in proinflammatory signaling cascades but
are also pivotal in the phases of anti-inflammatory, wound
healing, and sepsis in critical illness.

To examine the effects of high glucose on macrophage
proliferation, Liu et al. cultured monocyte/macrophage cell
line WEHI-3 and splenic macrophages in hyperglycemic
media with various concentrations (5.6–30mM) of glucose.
They found that macrophage proliferation increased with
the greater concentrations of glucose [21]. The enhanced
macrophage proliferation may result from increased CSF-1
receptor (CSF-1R) under these conditions [22]. In addition,
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hyperlipidemia has combined effect with hyperglycemia to
stimulate the proliferation of macrophages since hyperme-
tabolisms including hyperglycemia and hyperlipidemia are
very common in critical illness [23]. In addition, hyper-
glycemia also enhances the immunological responses, as is
shown in that hyperglycemia augmented increased cytokine
production and phagocytosis in response to LPS [24]. This
effect may be associated with elevated TLR expression [16].

Extending the in vitro experiments using cell lines and
isolated splenic macrophages, there has been an ex vivo
study examining the effects of hyperglycemia on alveolar
macrophage function [25]. In contrast to studies using cell
lines, hyperglycemia significantly decreased the respiratory
burst of alveolar macrophages and impaired proinflamma-
tory cytokine secretion, such as TNF-𝛼 and IL-6. It also
demonstrated a reduced response to multiple TLR ligands
in alveolar macrophages. The impaired reactivity of alveolar
macrophage to TLR ligands might result from HG-induced
alteration of intracellular signaling and is unlikely due to the
modulation of TLR expression itself [25]. Hyperglycemia also
promotes the inflammatory response by activating the NF-
𝜅B pathway. Using a rat model of hyperglycemia and burn
injury, Kulp et al. investigated the effects of hyperglycemia on
inflammatory responses in the liver. Streptozotocin-induced
hyperglycemia in severely burned rats rapidly activated NF-
𝜅B pathways in the liver and markedly increased liver
acute-phase proteins and proinflammatory cytokines. On
the contrary, long-term exposure to hyperglycemia leads to
alternative activation of macrophage. F4/80(+) peritoneal
exudate macrophages (PEMs) from mice with diabetes for
4 months displayed significantly reduced proinflammatory
cytokines TNF-𝛼 and IL-6 production but enhanced nitric
oxide (NO) secretion when treated with IFN-𝛾 and LPS,
while the activity of arginase in PEMs from diabetic mice was
significantly higher than control mice when stimulating with
IL-4 [26].

In summary, hyperglycemia has established itself as
a regulator of macrophage proliferation and activity. The
detrimental effects of hyperglycemia on thermal injury out-
come may be mediated in part by augmenting macrophage
inflammation via the activation of hepatic NF-𝜅B pathway
[27].

2.3. Neutrophil. Neutrophils are typically the first leukocytes
to be recruited to the inflammatory site and are capable
of eliminating pathogens by multiple mechanisms. Follow-
ing infection, the localization of neutrophils to the site
of inflammation is crucial for the clearance of pathogens.
When considering burn shock, the inflammatory response-
related hyperactivation of neutrophil contributes to oxidative
cell/tissue damage and potentially initiates organ-system
dysfunction and failure. Severe burn and sepsis result in an
inhibition of neutrophil function including migration [28]
and neutrophil paralysis leads to increased rate of infec-
tious complications in short-term hyperglycemic critically ill
patients [29].

Hyperglycemia induces neutrophil dysfunction bymodu-
lating one of the neutrophil biochemical pathways,myeloper-
oxidase (MPO). MPO plays an important role in the killing

function of neutrophils. Hyperglycemia also reduces neu-
trophil degranulation and exaggerates coagulation in healthy
humans that accepted glucose infusion and injection with
endotoxin [30]. Since glucose and glutamine play a key role
in neutrophil function, changes inmetabolism of neutrophils
under the condition of hyperglycemia may play an important
role in the impaired neutrophil function observed in diabetes
[31]. Sustained decreases in neutrophil function associated
with hyperglycemia are associated with the extent of hyper-
glycemia [32].

2.4. 𝛾𝛿 T Cells. 𝛾𝛿 T cells, a T-cell subset expressing 𝛾𝛿 TCR,
account for approximately 3–5% of all lymphoid cells found
in the secondary lymphoid tissues and the blood. They are
relatively abundant in the skin epithelia, intestine, uterus, and
tongue where they can account for up to 50% of the total
intraepithelial lymphocyte population.

Resident intraepithelial 𝛾𝛿 T cells are responsible for
maintaining epithelial integrity, regulating homeostasis and
providing a first line of defense against pathogens and injury
in mice and humans. Schwacha and collaborators found that
𝛾𝛿 T cells play a role in neutrophil-mediated remote organ
(i.e., lung, small intestine) injury early after burn injury by
increasing chemokine levels in both the plasma and tissues
[33]. Another study from the same group showed a 6-fold
reduction in cellular infiltrate in burn wound and a marked
decrease of levels ofMCP-1, IL-6, and TNF-𝛼 in the wound in
𝛾𝛿 T cells receptor-deficient mice [34]. More recently, a study
showed that hyperglycemia negatively impacts homeostasis
and functionality of skin 𝛾𝛿 T cells. Hyperglycemia results
in impaired skin 𝛾𝛿 T cell proliferation, ultimately resulting
in half the normal amount residing in the epidermis. These
𝛾𝛿 T cells expressed decreased levels of NR4A1 and NR4A3,
two orphan nuclear receptors that have been shown to
sensitize muscle to insulin, suggesting their decreased insulin
sensitivity. The dysfunctional 𝛾𝛿 T cells can also result from
the effects of chronic inflammatory mediators, such as TNF-
𝛼, in the local environment [35].

Overall, skin 𝛾𝛿 T cells recognize epithelial damage and
release cytokines and growth factors that facilitate wound
repair. Their activities are compromised by hyperglycemia,
rendering host defense mechanisms vulnerable to further
injury and infection in patients with critical illness.

3. Insulin and Innate Immune Cells

Insulin exerts its effects on immune cells by binding to
the insulin receptor (IR), that is, extensively expressed on
immune cells, such as neutrophils and monocytes/macro-
phages. Upon insulin’s binding to the IR, insulin rapidly
increases tyrosine phosphorylation of its own receptor fol-
lowed by the phosphorylation of the insulin receptor sub-
strate proteins (IRS). The IRS is linked to the activation of
two main signaling pathways: the phosphatidylinositol 3-
kinase (PI3K)—AKT/protein kinase B (PKB) pathway and
the Ras/mitogen-activated protein kinase (MAPK) pathway.
It has been shown that mice deficient in insulin have an
exaggerated cytokine response to peritoneal inflammation
compared to controls, indicating that insulin treatment not
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Table 1: Effects of hyperglycemia and insulin on innate immune cells.

Hyperglycemia Insulin

Monocyte
(1) Generally enhances cytokine production [7–10, 13–15]
(2) Regulates adhesion, migration, and transmigration
[13, 14, 17]

(1) Enhances pathogen clearance [34, 35]
(2) Promotes IL-8/CXCL8 secretion [38]
(3) Increases superoxide production [40]
(4) Promotes TNF-𝛼 and IL-6 secretion in the presence of
palmitate [37]
(5) Regulates monocyte metabolism by increasing the
phagocytosis of oxidized low-density lipoprotein [36, 37]

Macrophage

(1) Promotes proliferation [18, 19]
(2) Enhances cytokine production and phagocytosis in
response to LPS in vitro [16, 20]
(3) Impairs proinflammatory cytokine secretion, such as
TNF-𝛼 and IL-6 ex vivo [21]

(1) Inhibits TNF-𝛼, IL-1, and IL-8 secretion [42, 44]
(2) Reduces macrophage accumulation in tissue [43]
(3) Promotes human macrophage foam cell formation
[47, 48]

Neutrophil (1) Inhibits neutrophil function such as degranulation [25–27]
(2) Downregulates production of myeloperoxidase (MPO) [25]

(1) Increases the total number of PMN and their surface
expression of CD11b, CD115, CD62L, and CD89 [50]
(2) Increases PMN function including chemotaxis,
phagocytosis, and bactericidal capacities [50, 51]

𝛾𝛿 T cells (1) Impairs skin T cell proliferation [30]
(2) Inhibits neutrophil tissue infiltration [28, 29] N/A

only decreases glucose levels but also inhibits the inflam-
mations [36]. Recent studies indicate that insulin levels vary
in patients but that higher insulin levels may be associ-
ated with increased mortality, perhaps suggesting insulin
resistance [37, 38]. In the following section, we will review
insulin’s effects on immune function and metabolism of
innate immune cells (summarized in Table 1). For more
detailed insulin signaling pathway, please refer to a decent
review paper [39].

3.1. Monocytes. Insulin is considered to be a regulator of
monocyte function, which includes chemotaxis, phagocyto-
sis, and oxidative burst capacity. In a rabbit model of burn
injury, researchers found that insulin improved the capacity
for phagocytosis and oxidative burst within 3 days after
burn, with no effect on chemotaxis [40]. A similar effect
was observed in trauma patients receiving intensive insulin
therapy, which showed enhanced monocyte phagocytosis
[41].

Another role that insulin has is influencing the metabo-
lism of monocyte. Insulin increased oxidized low-density
lipoprotein phagocytosis of monocytes isolated from healthy
obese participants [42]. The effects of insulin on the rates
of glucose transport in monocytes were measured with
the NBDG fluorescent d-glucose analog. Insulin caused an
increase in the uptake of glucose and the expression of
glucose transporter (GLUT) isoforms GLUT3 and GLUT4 in
the plasma membrane [43].

Insulin also regulates chemokine and cytokine secretion
of monocytes. The addition of insulin to human monocyte
cell culture promotes IL-8/CXCL8 secretion. IL-8/CXCL8 is
a potent chemoattractant for neutrophils and causes degran-
ulation of neutrophil-specific granules and azurophilic gran-
ules. These results suggest that insulin may regulate the
recruitment and activity of neutrophils by inducing IL-
8/CXCL8 secretion from monocytes [44]. THP-1 monocytes
incubatedwith insulin andpalmitate together producedmore

IL-6 and TNF-𝛼, compared to monocytes incubated with
palmitate alone. However, incubation of monocytes with
insulin alone did not affect the production of IL-6 or TNF-𝛼
[45]. Hyperinsulinemia also influences monocytic HLA-DR
expression. Monocytes from healthy volunteers were treated
with insulin (concentration from 10𝜇U to 200𝜇U) for 24
hours in vitro and monocytic HLA-DR was significantly
decreased in a dose-dependent manner [19].

Lastly, insulin also regulates other activities of monocytes
including superoxide production and the expression of tissue
factor (TF) and MMP-9. It stimulates superoxide (O

2

−)
production in monocytes and macrophages [46], which is
dependent on NADPH oxidases. NADPH oxidase plays a
pivotal role in insulin-induced activation of monocytes [46].
Insulin may influence the hypercoagulability in patients by
inhibiting tissue factor expression in monocyte, the principal
initiator of the extrinsic coagulation pathway [47].

3.2. Macrophages. Generally speaking, insulin attenuates the
immune response of macrophages. It inhibits TNF-𝛼 and IL-
8 secretion by macrophage in response to LPS. This effect is
via the release of activin A and the signaling by cytoplasmic
SH2-containing inositol 5-phosphatase (SHIP) [48]. It also
modulates tissue inflammation by reducing macrophage
accumulation in visceral adipose tissue inmice [49]. Another
study also showed that insulin inhibits cytokine secretion
(TNF-𝛼 and IL-1𝛼) by macrophage and improves its survival
[50]. Pretreatment of cells with specific covalent inhibitor
of phosphoinositide 3-kinases significantly inhibited insulin-
mediated cell survival and BclXL expression. In addition,
the enhancing effect of insulin on BclXL expression is dose-
dependent [51]. Furthermore, macrophages from mice with
streptozotocin- (STZ-) induced diabetes display a dysfunc-
tional phenotype, reduced CD86 expression, and proinflam-
matory cytokines such as TNF-𝛼 and IL-6 production but
enhanced nitric oxide (NO) secretion [26]. These functional
changes of macrophages could be efficiently reversed by
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insulin treatment and this effect is dependent on the activities
of AKT and ERK [26].

Insulin also regulates macrophage metabolism. Recent
study shows that insulin promotes human macrophage foam
cell formation by increasing type II scavenger receptor CD36
and decreasing the expression of the ATP-binding cassette
transporter ABCA1. As a result, it leads to 2-3-folds more
cholesterol accumulation within a short period by increasing
oxidized LDL uptake and decreasing cholesterol efflux to
apolipoprotein A1 (apoA1) [52]. Insulin also promotes foam
cell formation by accelerating endocytic uptake of advanced
glycation end products (AGE) proteins [53]. In addition,
insulin specifically promotes the protein degradation of LRP1
and therefore decreases LRP1 expression on macrophages.
The decreased expression of LRP1 impairs the cellular inter-
nalization of alpha-2-macroglobulin, which may modulate
cytokine secretion by macrophage [54].

3.3. Neutrophils. In vitro study indicated that insulin reg-
ulated isolated neutrophil cytokine secretion. Activin A, a
transforming growth factor-𝛽 family cytokine, plays a crucial
role in regulating the onset and severity of many inflamma-
tory conditions. Bonemarrow-derived neutrophil precursors
contained 7-fold higher concentrations of activinA than bone
marrow mononuclear cells. These isolated neutrophils could
release activin A in response to TNF-𝛼. However, production
of activinAwould be blocked upon pretreatmentwith insulin
[55].

The in vivo effects of insulin on neutrophils were con-
ducted in healthy subjects under strict euglycemia and
physiological insulinemia. They found that insulin increased
the total number of neutrophils and the number of these
expressing CD11b, CD15, CD62L, and CD89, whereas the
density of these molecules was downregulated. In addi-
tion, insulin increased PMN function including chemotaxis,
phagocytosis, and bactericidal capacities [56]. Interestingly,
although insulin stimulated phagocytosis and bactericidal
activity in young-adult subjects, these effects were compro-
mised in the elderly subjects [57]. Studies of patients who
underwent major surgery showed that insulin treatment not
only significantly decreased the level of blood glucose, but it
also increased the number of neutrophils in the circulation as
well as their ability to ingest foreign particles [58].

4. Intensive versus Moderate
Insulin Treatment

Stress hyperglycemia leads to an increased incidence of
infection and higher morbidity and mortality in severely
traumatic patients [59]. Tomanage hyperglycemia in patients
with severe trauma and illness, van den Berghe and col-
leagues conducted the first clinical study of IIT over 10
years ago [2]. The study showed that maintaining blood
glucose at or below 110mg/dL by IIT reduces morbidity
and mortality among critically ill patients in the surgical
intensive care unit. With a total of 1548 patients enrolled,
IIT reduced mortality rate from 8% with conventional treat-
ment to 4.6% [2]. Intensive insulin protocols in thermally

injured patients have shown improved wound healing by
6.9% in the early stages in comparison to burn controls
[60]. Severely burned pediatric patients had reduced urinary
tract infections and sepsis in the IIT group with a positive
association with survival [61]. Early control of hyperglycemia
is essential since a lack of early glycemic control (mean daily
blood glucose < 150mg/dL in at least two consecutive days
by postburn day 3) was associated with higher mortality
[62].

Despite the vast benefits of tight glycemic control with
IIT, it is accompanied by a mandate for critically monitoring
and awareness of sudden fluctuations in blood glucose.There
was no overall impact on hospital or ICU length of stay in
severely burned paediatric patients who received IIT [60].
In addition, there was a significant concern regarding the
use of IIT in managing elevated blood glucose in traumatic
brain injury patients. IIT did not result in reduced cerebral
metabolic rate, but it did increasemarkers of neuralmetabolic
distress and showed no improvement in mortality [63].
More recently, IIT in both critically ill neurological and
stroke patients showed more episodes of hypoglycemia and
little to worsening effect of patient outcomes compared to
nonaggressive approaches [64].

There has been an ongoing debate regarding the effec-
tiveness of IIT versus modest insulin treatment [65]. In
fact, hyperglycemia can be safely avoided using a moderate
glycemic control protocol without inducing hypoglycemia
[66]. Using a retrospective approach, Kutcher and colleagues
concluded that the two treatments had no significant impact
on multiorgan failure and mortality. However, the moder-
ate regime had scarce hyperglycemia episodes, low glucose
variability, and intermediate blood glucose ranges of hypo-
glycemia [66].

Along with the numerous investigations of insulin ther-
apy to manage stress hyperglycemia, there are numerous
other treatment options that have been studied. The use
of metformin in treating hyperglycemia decreases endoge-
nous glucose production and increases glucose clearance
and oxidation [67]. The use of other agents in combina-
tion with insulin, such as glucagon-like peptide-1 (GLP-
1) analogue exenatide, has shown to reduce the amount
of insulin required to achieve euglycemia [4]. Lastly, the
lipolysis agonist Fenofibrate treatment can reduce insulin
resistance [68] and, when used in combination with insulin,
reduces hypoglycemic episodes with clear improvements in
skeletal muscle insulin signaling, glucose oxidation, and
mitochondrial function [69].

There is compelling evidence for the multifaceted
effect of hyperglycemia treatment and the respective out-
comes in critically injured and burn patients. Patients
will benefit most from the use of moderate insulin treat-
ment regimens with rigorous attention being given in the
first few days of injury to obtain blood glucose levels
within the well-established target ranges (summarized in
Table 2). Future prospective randomized trials need to
place emphasis on the frequency of hypoglycemic and
hyperglycemic episodes and the extreme changes in glu-
cose variability to determine the detrimental impact on
survival.
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Table 2: Comparison of intensive and moderate insulin treatment.

Intensive Moderate
Target Blood glucose: 110mg/dL [1] Blood glucose: 120–150mg/dL [33, 59]

Advantages
(1) Improves wound healing in burned patients [54]
(2) Reduces urinary tract infections and sepsis in burned
pediatric patients [55]
(3) Reduces morbidity and mortality [1]

(1) Does not induce hypoglycemia [60]
(2) Scarce hyperglycemia episodes [60]
(3) Low glucose variability [60]

Disadvantages
(1) Requires continual and critical monitoring [54]
(2) No overall impact on hospital or ICU length of stay [54]
(3) More episodes of hypoglycemia [58]

No significant impact on mortality and multiorgan
failure [60]

Stress

Cortisol Catecholamines Glucagon Growth hormones

Insulin

Cytokines

Neutrophils

Monocytes

Tissue

Hyperglycemia

↓ Peripheral usage ↑ Glucose production

↓ Inflammatory mediators

↑ Cellular function

↓ Morbidity/mortality ↓

↑ Inflammatory mediators

↓ Cellular function

↑ Morbidity/mortality ↑

Figure 1: Schematic summary of hyperglycemia and insulin treatment regulation of innate immune cells. Overwhelming stress resulted from
critical illness, such as severe burn, major surgery, or sepsis stimulates the release of cortisol, catecholamines, glucagon, and growth hormone,
which increase hepatic glucose production and impair glucose consumption by peripheral tissues. Long-term stress-induced hyperglycemia
induces hyperproinflammatory responses and depressed cell functions, which is linked to increased risk of mortality and morbidity. Insulin
plays a different role in regulating innate immune cells including monocytes, macrophages, and neutrophils. It generally improves their
cellular activities and attenuates their inflammatory responses.
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5. Summary

Stresses-induced insulin resistance and hyperglycemia rep-
resent adverse sequelae resulting from trauma and critical
care injuries. Long-term exposure to stress-induced hyper-
glycemia is linked to an increased incidence of infections
and sepsis, multiorgan failure, and mortality. Both hyper-
glycemia and insulin have profound effects on the function
of innate immune cells. Hyperglycemia tends to favor the
proinflammatory immune response. Insulin has not only
anabolic, but also anti-inflammatory and immune regulatory
properties as shown in Figure 1.The interaction or integration
of hyperglycemia and insulin on the innate immune cells
should be investigated desirably in the future. Animalmodels
of stress-induced hyperglycemia are challenging. A recent
study indicates that genomic responses in mouse models
poorly mimic human inflammatory diseases including burn
and sepsis. In this regard, it is the priority for translational
research to take advantage of the clinical samples rather
than relying on mouse models to study human inflammatory
diseases [70]. Furthermore, to increase the study depth we
suggest that future studies should examine the effects of the
combined effects of hyperglycemia and hyperlipidemia on
innate immune cells since hyperlipidemia is also the hallmark
of critical illness.

Glycemic control established early (2-3 days after trauma
or burn) in critically ill hyperglycemia patients leads to reduce
mortality. Modest glycemic control has much fewer hyper-
glycemic episodes and a lower frequency of hypoglycemia.
The combination of insulin treatment with other agents will
reduce the insulin dose and hypoglycemic episodes. A better
understanding of the roles played by hyperglycemia and
insulin in the regulation of innate immunity will guarantee
a more rational and an effective insulin treatment for these
patients.
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