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In order to improve the tracking performance of gyro stabilized platformwith disturbances and uncertainties, an adaptive nonlinear
control based on neural networks and reduced-order disturbance observer for disturbance compensation is developed. First the
reduced-order disturbance observer estimates the disturbance directly.The error of the estimated disturbance caused by parameter
variation and measurement noise is then approximated by neural networks. The phase compensation is also introduced to the
proposed control law for the desired sinusoidal tracking.The stability of the proposed scheme is analyzed by the Lyapunov criterion.
Experimental results show the validity of the proposed control approach.

1. Introduction

In order to obtain high resolution and definition imaging
for many applications including surveillance, target tracking,
and missile guidance, gyro stabilized platform (GSP) is used
to stabilize and point the line-of-sight (LOS) of cameras,
sensors, or other payload [1–6]. So, the tracking and stabi-
lizing accuracy of GSP must be improved for high quality
imaging. However, in a practical GSP system, the motion
precision may seriously be degraded due to large quantities
of disturbances and uncertainties, for example, unmodeled
dynamics, parameter variation, friction force, imbalance,
cable and spring torques, coupling torques, gyro and sensor
noise, gear reactions, and load disturbances [1].

Therefore, to compensate for disturbances of GSP, dif-
ferent control strategies have been developed [7–11]. In [7],
a reduced-order observer was designed according to linear
control theory for an inertially stabilized line-of-sight control
system.Themethod can be simply completed but requires an
accurate system model to achieve satisfactory performance.
The disturbance observer based internal-loop compensator
was introduced in [8] to estimate the disturbance of GSP.
However, this method is also dependent on the accurate
system model. An extended-state-observer was used to
estimate disturbance for a floated inertial platform in [9].

Unmodeled dynamics, parameters uncertainty, and sensor
noise considered as the internal disturbance are estimated
together with the external disturbance and are compensated
to the control system as feed-forward control. However, due
to the extension of the dimension of the system and the need
of adjusting many parameters, the method is complicated
and it is hard to obtain optimal parameters tuning. In [10],
based on PI disturbance observer (DOB), an integral sliding
mode controller (SMC) was presented for three-axis inertial
platform. The method combines DOB with SMC to improve
the precision of system, but the parameters of control system
are without autotuning in the process of control. In order to
attenuate the platform disturbance, two-degree-of-freedom
internal model controller (IMC) was used in [11]. The IMC
method has robustness on parameter perturbation, but the
disturbance structure is needed to be known. Since neural
networks (NN) have distinct advantages of learning and
approximating nonlinear functions and are independent of
the systemmodel or disturbance structure, they have received
considerable attention in control systems for modeling and
compensation purposes [12–16].

An adaptive nonlinear control using NN and reduced-
order disturbance observer is proposed for disturbance com-
pensation in this paper. All disturbances including friction
force, imbalance, cable and spring torques, coupling torques,
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Figure 1: The single-axis GSP control system combined with a single-state observer block diagram.

load disturbances and equivalent disturbance caused by
unmodeled dynamics, parameter variation, gyro and sensor
noise, and gear reactions are considered a total distur-
bance, which is estimated by the reduced-order disturbance
observer first. The error of the estimated disturbance is then
approximated by NN. Phase compensation is introduced in
the proposed control law for the desired sinusoidal tracking.
The stability of the proposed scheme is analyzed by the Lya-
punov criterion. Experimental results show that the tracking
performance can be improved significantly with the use of
the NN + DOB as compared to the case only with DOB
compensation.

This paper is organized as follows. First, in Section 2,
the system of GSP is modeled with the introduction of basic
reduced-order DOB, and noise coupling characteristics and
sensitivity to parameters variation of the DOB are analyzed.
Then, Section 3 is devoted to designing adaptive nonlinear
controller for disturbance compensation. Experiments are
developed in Section 4. Finally, Section 5 concludes this
paper.

2. Statement of the Problem
In this section, some preliminaries are introduced first,
including GSP model and basic reduced-order DOB design,
and then noise coupling characteristics and sensitivity to
parameters variation of the DOB are analyzed by the simu-
lation results, to facilitate the proposal of the new methods.

2.1. GSP Model. The assumptions made for the development
of GSP model are as follows: (1) motor inductance is ignored
and (2) the gimbal is considered rigid. Then, the one gimbal
model of GSP can be expressed as follows:

𝐽�̇� = 𝑁𝑇
𝑚
+ 𝑇
𝑑
,

𝑇
𝑚
= 𝐾
𝑡
𝑖
𝑚
,

𝑖
𝑚
=
(𝑢 − 𝐾

𝑒
𝑁𝜔)

𝑅
,

(1)

where 𝐽 is the moment of inertia of gimbal; 𝑢 is the motor
input voltage; 𝐾

𝑡
is the motor torque constant; 𝐾

𝑒
is the

back-EMF coefficient; 𝑅 is the motor resistance; 𝑖
𝑚

is the
motor current; 𝑇

𝑚
is the command torque from the gimbal

drive motor; 𝑁 is the gear ratio; 𝜔 is the gimbal rate relative
to the inertial coordinate; and 𝑇

𝑑
is the torque-equivalent

representation of all disturbance torques, which can disrupt
the behavior of the gimbal system.

2.2. Basic Reduced-Order DOB Design. Figure 1 shows the
block diagram of single-axis GSP control system combined
with a single-state observer [7]. The control system is config-
ured as a high bandwidth negative-feedback rate loop inside
a lower bandwidth negative-feedback pointing or tracking
position loop. The two loops, the track loop and the rate
loop, must be stable, responsive to command inputs, and
insensitive to disturbances, noise, and parameters variation.
Here, �̂�

𝑑
is estimated disturbance torque.𝐾

𝑜
is observer gain.

𝐾
𝑔
is gyro scale factor. 𝑛 is gyro measurement noise. 𝜔

𝑖

is rate command. 𝜃
𝑖
is angle command. 𝐺

𝑐
is the feedback

controller for rate loop. 𝐺
𝑝
is the feedback controller for

position loop. 𝐺
𝑔
is the transfer function for the gyroscope.

�̂� is the estimated angle velocity. 𝑠 is the Laplace variable. 𝐽,
�̃�
𝑡
, �̃�, �̃�, and �̃�

𝑔
denote the best known values available for

𝐽, 𝐾
𝑡
,𝑁, 𝑅, and𝐾

𝑔
, respectively.

(1) Disturbance Rejection Characteristics. The disturbance
rejection ratio 𝜃/(𝑇

𝑑
/𝐽), which is used to estimate the angular

motion 𝜃 due to the disturbance torque, can directly reflect
the disturbance rejection characteristics of control system.
The nature and quality of the disturbance rejection with
different observer gains are interesting, so the simulation
for the disturbance rejection characteristics is under the
assumption that there is no parameters variation and 𝑛 =
0. The parameters of single-axis GSP control system for
simulation are listed in Table 1; the feedback controllers𝐺

𝑝
=

𝐺
𝑐
= 𝐾
𝑝
= 10; the transfer function 𝐺

𝑔
= 1/𝐾

𝑔
; angle com-

mand 𝜃
𝑖
= sin 𝑡. The observer gain 𝐾

𝑜
is selected as 0, 100,

500, and 1000, respectively. The disturbance torque 𝑇
𝑑
=

20 sin(𝜔
𝑓
𝑡), with 𝜔

𝑓
selected as 0.5, 5, and 50, respectively.

Figure 2 shows the frequency response of disturbance rejec-
tion transfer function with different observer gains, at the
angle displacement, which is (𝜃

𝑖
− 𝜃)/(𝑇

𝑑
/𝐽). Figure 3 shows

the angle displacement and the estimated disturbance torque
�̂�
𝑑
with different observer gains under the condition of 𝑇

𝑑
=

20 sin(5𝑡). Figure 4 shows the angle displacement and the
estimated disturbance torque error (𝑇

𝑑
− �̂�
𝑑
) with different

disturbance torque under the condition of𝐾
𝑜
= 500.

Disturbance rejection ability is enhancedwith𝐾
𝑜
at lower

frequencies. The higher the value of 𝐾
𝑜
, the less the error



Mathematical Problems in Engineering 3

Table 1: Parameters of single-axis GSP system.

Moment of inertia N⋅m⋅s2/rad 3
Back-EMF coefficient V⋅s/rad 1.03
Motor torque constant N⋅m/A 1.03
Motor resistance Ω 9
Gear ratio 5.24
Gyro scale factor V/rad/s 0.63

Frequency (rad/s)
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Figure 2: The frequency response of disturbance rejection transfer
function with different observer gains, at the angle displacement.

of the estimated disturbance torque. However, at higher
frequencies, the reduced-order observer has less effect on
disturbance rejection characteristics. With the increment
of disturbance frequency, the estimated disturbance torque
error increases significantly. The disturbance rejection is
mainly dependent on the basic control structure.

(2) Noise Coupling. Fiber optic gyroscope noise, which always
exists in real GSP control system, is complicated and con-
sisted of angular random walk, bias instability, rate random
walk, rate ramp, quantization noise, exponential correlation
noise, sinusoidal noise, and so forth. The expression of gyro
noise is simplified in this paper as follows:

𝜔
𝑜
(𝑡) = 𝜔 (𝑡) + 𝑛 (𝑡) ,

𝑛 (𝑡) = 𝜀
𝐿
(𝑡) + 𝜀

𝐻
(𝑡) ,

𝜀
𝐻
(𝑡) = 𝐴

𝐻
sin (2𝜋𝑓

𝐻
𝑡 + 𝜃
0
) ,

(2)

where 𝜔
𝑜
is the measured gyro rate; 𝜀

𝐿
is low frequency

noise; 𝜀
𝐻

is high frequency noise; 𝐴
𝐻
, 𝑓
𝐻
, and 𝜃

0
are the

amplitude, frequency, and initial phase of high frequency
noise, respectively.

The following simulations are under the assumption that
there is no parameters variation and 𝑇

𝑑
= 0. Figure 5 shows

the frequency response of noise coupling transfer function
with different observer gains, at the angle displacement,
which is (𝜃

𝑖
− 𝜃)/𝑛. Figure 6 shows the angle displacement

with different observer gains under high frequency noise
𝑛(𝑡) = sin(50𝑡) and low frequency noise 𝑛(𝑡) = 1, respectively.

At higher frequencies measurement noise, with the incre-
ment of 𝐾

𝑜
, the measurement noise couples more deeply,

which leads to more angle displacement, while, at lower
frequencies measurement noise, the observer has less effect
on noise coupling, and a large angle error emerges because of
the lower frequencies measurement noise.

(3) Variation of Parameters. The reduced-order observer
shown in Figure 1 needs the most approximate parameter
values of the single-axis GSP system, such as 𝐽, �̃�

𝑡
, �̃�, �̃�, and

�̃�
𝑔
. In these parameters, �̃�

𝑡
and �̃� are the motor parameter,

�̃�
𝑔
is the gyro parameter, and �̃� is the gear parameter, which

have less parameter fluctuations than the gimbal inertia
𝐽, for the whole system includes many components, and
the gimbal inertia is difficult to confirm by measurement.
So, the effect of the variation of the gimbal inertia on
the disturbance rejection is mainly analyzed. The difference
between the estimated and the actual inertia isΔ𝐽, whichmay
be assumed to be known within about ±20%. Figure 7 shows
the estimated disturbance torquewith andwithout parameter
variation under the condition of𝐾

𝑜
= 100. Figure 8 shows the

error of estimated disturbance torque with different observer
gains, under the condition of Δ𝐽/𝐽 = 20%.

The parameter variations seriously reduce the accuracy
of the estimated disturbance torque, which has no obvious
change with different observer gains.

3. Nonlinear Control for the GSP System

In this section, in order to overcome the problem of low
frequency gyro noise and parameter variation, a method of
phase compensation is proposed first and, then, an adaptive
nonlinear control for disturbance compensations is derived.

3.1. Phase Compensation. The block diagram of the single-
axis GSP control system without disturbance is shown in
Figure 9.

The transfer function of the system can be derived as
follows:

𝐺 (𝑠) =
𝜃 (𝑠)

𝜃
𝑖
(𝑠)

= (1) (
𝐽𝑅

𝐾
𝑡
𝑁𝐺
𝑝
𝐺
𝑐

𝑠
2

+ (
𝐾
𝑒
𝑁

𝐺
𝑝
𝐺
𝑐

+
1

𝐺
𝑝

) 𝑠 + 1)

−1

,

20 lg 𝐺 (𝑗𝜔)


= 20 lg

×((1) (((1 −
𝐽𝑅

𝐾
𝑡
𝑁𝐺
𝑝
𝐺
𝑐

𝜔
2

)

2

+(
𝐾
𝑒
𝑁

𝐺
𝑝
𝐺
𝑐

+
1

𝐺
𝑝

)

2

𝜔
2

)

1/2

)

−1

),

∠𝐺 (𝑗𝜔) = arctan(−
(𝐾
𝑡
𝐾
𝑒
𝑁
2

+ 𝐺
𝑐
𝐾
𝑡
𝑁)𝜔

𝐺
𝑐
𝐺
𝑝
𝐾
𝑡
𝑁 − 𝐽𝑅𝜔2

) .

(3)



4 Mathematical Problems in Engineering

0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

Time (s)

A
ng

le
 d

isp
la

ce
m

en
t (

ra
d)

Ko = 0

Ko = 100

Ko = 500

Ko = 1000

(a)

Time (s)
0 0.5 1 1.5 2

−20

−10

0

10

20

D
ist

ur
ba

nc
e t

or
qu

e (
N

m
)

Ko = 0

Ko = 100

Ko = 500

Ko = 1000
Td

(b)

Figure 3: The angle displacement and the estimated disturbance torque �̂�
𝑑
with different observer gains under the condition of 𝑇

𝑑
=

20 sin(5𝑡).
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Figure 5: The frequency response of noise coupling transfer func-
tion with different observer gains, at the angle displacement.

Let 𝐾
𝑡
= 𝐾
𝑒
= 1.03,𝑁 = 5.24, 𝑅 = 9, 𝐺

𝑝
= 3, 𝐺

𝑐
= 135.5,

and 𝐽 = 3. The frequency response figure of the transfer

function (𝜃/𝜃
𝑖
) is shown in Figure 10. As the frequency of

angle command is increasing, the phase delay is obvious, so
compensating the phase is necessary for tracking system.

Define the tracking error as 𝑒
1
= 𝜃
𝑖
− 𝜃 and the velocity

error as 𝑒
2
= 𝜔
𝑑
− 𝜔, and 𝜔

𝑑
= ̇𝜃
𝑖
+ 𝐺
𝑝
𝑒
1
. The following

control law for phase compensation is proposed, as shown in
Figure 11:

𝑢 =
𝑅

𝐾
𝑡
𝑁
(𝐽 ̈𝜃
𝑖
+ 𝐽𝐺
𝑝
( ̇𝜃
𝑖
− 𝜔) +

𝐾
𝑡
𝐾
𝑒
𝑁
2

𝑅
𝜔 + 𝐺

𝑐
𝑒
2
) . (4)

The transfer function of the system with the control law
(4) can be obtained as follows, and the system gets an ideal
result theoretically:

𝐺 (𝑠) =
𝜃 (𝑠)

𝜃
𝑖
(𝑠)
= 1. (5)



Mathematical Problems in Engineering 5

Ko = 0

Ko = 100

Ko = 500

Ko = 1000

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

Time (s)

A
ng

le
 d

isp
la

ce
m

en
t (

ra
d)

(a) 𝑛(𝑡) = sin(50𝑡)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Time (s)

A
ng

le
 d

isp
la

ce
m

en
t (

ra
d)

Ko = 0

Ko = 100

Ko = 500

Ko = 1000

(b) 𝑛(𝑡) = 1

Figure 6: The angle displacement with different observer gains under high frequency and low frequency noise, respectively.
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3.2. Disturbance Compensation. Differentiating the velocity
error 𝑒

2
and using (1) and (4), the single-axis GSP control

system dynamics can be expressed as

𝐽 ̇𝑒
2
= 𝐽 ̈𝜃
𝑖
+ 𝐽𝐺
𝑝

̇𝜃
𝑖
+ (
𝐾
𝑒
𝐾
𝑡
𝑁
2

𝑅
− 𝐽𝐺
𝑝
)𝜔 −

𝐾
𝑡
𝑁

𝑅
𝑢 − 𝑇
𝑑
.

(6)

The effect of all disturbance torques 𝑇
𝑑
is too complicated

to be modeled, so the common compensation based on
disturbance model is hardly complemented in this system.
The reduced-order disturbance observer and neural networks
compensator will be used to design a nonlinear controller
for disturbance compensation. The disturbance is estimated
by the reduced-order disturbance observer, and the neural
networks compensator based on radial basis function (RBF)
approximates the error of estimated disturbance caused by
parameter variations, lower frequencies measurement noise,
and so forth.
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Figure 8: The error of estimated disturbance torque with different
observer gains, under the condition of Δ𝐽/𝐽 = 20%.

As shown in Figure 1, the estimated disturbance �̂�
𝑑
can be

expressed as

�̂�
𝑑
= 𝐾
𝑜
(𝜔 + 𝑛 − �̂�) ,

𝐽 ̇̂𝜔 = 𝑖
𝑚
�̃�
𝑡
�̃� + �̂�

𝑑
.

(7)

Define the disturbance estimated error as 𝑒
𝑑
= 𝑇
𝑑
− �̂�
𝑑
.

NN compensator based on RBF is used to approximate it as

𝑒
∗

𝑑
= 𝑒
𝑑
= 𝑊
∗𝑇

𝜙 (𝑥) − 𝜀, (8)

where 𝑒∗
𝑑
denotes the optimal estimate value of 𝑒

𝑑
;𝑊∗ ∈ 𝑅𝑚

is the optimal weight vector with the node number 𝑚 > 1;
Φ(𝑥) ∈ 𝑅

𝑚 is chosen as the commonly used Gaussian radial
basis functions; 𝑥 = 𝜔 is the network input vector; and −𝜀 is
the NN approximation error satisfying | 𝜀 |≤ 𝜀

𝑀
with 𝜀

𝑀
> 0.

Since the ideal weights 𝑊∗ are unknown, let �̂� be the
estimates of𝑊∗; thus, the NN compensator is designed as

𝑒
𝑑
= �̂�
𝑇

𝜙 (𝑥) , (9)

where 𝑒
𝑑
is the estimated value of 𝑒

𝑑
.
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The following adaptive nonlinear control law is proposed
shown in Figure 12:

𝑢 =
𝑅

𝐾
𝑡
𝑁
(𝐽 ̈𝜃
𝑖
+ 𝐽𝐺
𝑝

̇𝜃
𝑖
+ (
𝐾
𝑒
𝐾
𝑡
𝑁
2

𝑅
− 𝐽𝐺
𝑝
)𝜔

+ 𝐺
𝑐
𝑒
2
− �̂�
𝑑
− �̂�
𝑇

𝜙 (𝑥) + 𝜇 sgn (𝑒
2
)) ,

(10)

where 𝜇 is the estimated value of 𝜀
𝑀
.

Substituting (10) and (8) into (6),

𝐽 ̇𝑒
2
= 𝐽 ̈𝜃
𝑖
+ 𝐽𝐺
𝑝

̇𝜃
𝑖
+ (
𝐾
𝑒
𝐾
𝑡
𝑁
2

𝑅
− 𝐽𝐺
𝑝
)𝜔 −

𝐾
𝑡
𝑁

𝑅
𝑢 − 𝑇
𝑑

= − (𝐺
𝑐
𝑒
2
− �̂�
𝑑
− �̂�
𝑇

𝜙 (𝑥) + 𝜇 sgn (𝑒
2
)) − 𝑇

𝑑

= − (𝐺
𝑐
𝑒
2
− �̂�
𝑑
− �̂�
𝑇

𝜙 (𝑥) + 𝜇 sgn (𝑒
2
)) − 𝑇

𝑑

= − (𝐺
𝑐
𝑒
2
− �̂�
𝑇

𝜙 (𝑥) + 𝜇 sgn (𝑒
2
)) − (𝑇

𝑑
− �̂�
𝑑
)

= − (𝐺
𝑐
𝑒
2
− �̂�
𝑇

𝜙 (𝑥) + 𝜇 sgn (𝑒
2
)) − 𝑊

∗𝑇

𝜙 (𝑥) + 𝜀

= −𝐺
𝑐
𝑒
2
− (𝑊

∗𝑇

𝜙 (𝑥) − �̂�
𝑇

𝜙 (𝑥)) + 𝜀 − 𝜇 sgn (𝑒
2
)

= −𝐺
𝑐
𝑒
2
− �̃�
𝑇

𝜙 (𝑥) + 𝜀 − 𝜇 sgn (𝑒
2
) ,

(11)

where

�̃� = 𝑊
∗

− �̂� (12)

is the weight-estimation errors.

The adaptation laws for the parameters �̂�and 𝜇 are

̇̂
𝑊 = −𝛿𝑒

2
𝜙 (𝑥)

̇̂𝜇 = 𝛾𝑒
2
sgn (𝑒

2
) ,

(13)

where 𝛿 > 0 is a dimensionally compatible constant matrix,
and 𝛾 > 0.

Then, the stability of the proposed scheme can be ana-
lyzed by Lyapunov criterion as follows.

Theorem 1. Assuming that the angle commands 𝜃
𝑖
, ̇𝜃
𝑖
, and ̈𝜃

𝑖

are bounded, the control laws (10), together with the parameter
update laws (13), guarantee the tracking errors 𝑒

1
and 𝑒
2
to be

uniformly ultimately bounded.

Proof. Consider the following Lyapunov function:

𝑉 =
1

2
𝐽𝑒
2

2
+
1

2𝛿
�̃�
𝑇

�̃� +
1

2𝛾
𝜇
2

, (14)

where 𝜇 = 𝜀
𝑀
− 𝜇.

By applying (11)–(14), the time derivative of 𝑉 is given by

�̇� = 𝑒
2
𝐽 ̇𝑒
2
+
1

𝛿
�̃�
𝑇 ̇̃
𝑊 +

1

𝛾
𝜇 ̇̃𝜇

= −𝐺
𝑐
𝑒
2

2
− �̃�
𝑇

𝜙 (𝑥) 𝑒
2
+ 𝜀𝑒
2
− 𝜇𝑒
2
sgn (𝑒

2
)

+
1

𝛿
�̃�
𝑇 ̇̃
𝑊 +

1

𝛾
𝜇 ̇̃𝜇

= −𝐺
𝑐
𝑒
2

2
+ �̃�
𝑇

(
1

𝛿

̇̃
𝑊 − 𝜙 (𝑥) 𝑒

2
) + 𝜀𝑒

2

− 𝜇𝑒
2
sgn (𝑒

2
) +
1

𝛾
𝜇 ̇̃𝜇

≤ −𝐺
𝑐
𝑒
2

2
+ 𝜀
𝑀
𝑒
2
sgn (𝑒

2
) − 𝜇𝑒

2
sgn (𝑒

2
) − 𝜇𝑒

2
sgn (𝑒

2
)

≤ −𝐺
𝑐
𝑒
2

2

≤ 0.

(15)

FromLyapunov stability theory, the Lyapunov function𝑉
is an energy function of errors 𝑒

2
, �̃�, and 𝜇, and �̇� ⩽ 0, which

is derived from expression (15).Therefore, the errors can then
asymptotically converge to zero as time goes to infinity. So, for
GSP system in this paper, the designed control system is stable
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and the variables 𝑒
2
will converge to a neighborhood of zero

in a finite time. Because 𝑒
2
= ̇𝑒
1
+ 𝐺
𝑝
𝑒
1
is a stable system, the

tracking error will also converge to a neighborhood of zero
by adjusting some control design parameters.

4. Experiments

4.1. Experimental Setup. To demonstrate the effectiveness
of the proposed method, real-time experiments are carried
out on the outer gimbal of GSP shown in Figure 13. The
gimbal position is measured by accelerometer, dc current
is measured by high bandwidth Hall effect current sensor,
and the angle velocity of the gimbal is measured by fiber
optic gyroscope and fed to a controller through analog-to-
digital converter. The controller, which is programmed using
a DSP TMS320F28335 with 30MHz oscillator, is employed to
generate necessary control input signals for high tracking and
stabilized precision in the condition of unknown disturbance
torque. The sampling period for our test is chosen as 0.01 s.
The parameters of the single-axis GSP control system are
listed in Table 1.

4.2. Adaptive Nonlinear Controller. In order to avoid the
well-known chattering phenomenon in actual experiment,

Figure 13: Experimental setup.

saturation function shown in (16) is used to replace the sign
function in the control law (10):

sat (𝑒
2
) =

{{{

{{{

{

1, (𝑒
2
> 𝜂) ,

1

𝜂
𝑒
2
, (
𝑒2
 ≤ 𝜂) ,

−1, (𝑒
2
< 𝜂) ,

(16)

where 𝜂 is a small positive content.
The radial basis function (RBF) NN is selected as the NN

learning model as follows:

𝜑
𝑖
(𝑥) = exp(−

𝑥 − 𝑐𝑖

2

𝜎2
𝑖

) , 𝑖 = 1, 2, . . . , 𝑁. (17)
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Figure 14:The tracking error of the single-axis GSP system for 0.125
Hz sinusoidal references of amplitude 1 degree with two methods.

The RBF NN contains 5 nodes with centers 𝑐
𝑖
(𝑖 =

1, 2, . . . 𝑁) evenly spaced in [−0.015, 0.015] and widths 𝜎
𝑖
=

0.5 (𝑖 = 1, 2, . . . 𝑁). The NN weights �̂� are simply initialized
at zero, and the initial value of 𝜇 is selected as 0.01. The
adaptation laws for adjusting the controller are given by (13)
with the adaptation rates 𝛿 = 15 and 𝛾 = 0.05. During the
experimental test, the parameters 𝐺

𝑝
and 𝐺

𝑐
in the control

law (10) are chosen as 3 and 5.5, respectively. The gain of
reduced-order disturbance observer 𝐾

𝑜
= 20; the parameter

of saturation function 𝜂 = 0.05.

Remark 2. The parameters have effects on the system per-
formance. Theoretically, the larger the 𝐾

𝑜
, the smaller the

tracking error; however, 𝐾
𝑜
is limited by the rigidity of the

mechanism, since large 𝐾
𝑜
may lead to the system vibration.

If 𝛿 is too small, the convergence of the neural weights is
slow, which will degrade the system precision. However, if
it is large, the convergence may be too fast and leads to
undesirable transient response because of large overshoot. So,
these parameter values should be chosen by trial-and-error
until good performance is obtained.

(1) Tracking Experiment. The efficacy of the proposed con-
troller in reducing the tracking error is first analyzed. The
control objective is to follow a sine wave signal 𝜃

𝑖
=

𝜋 sin(2𝜋𝑡/8)/180 rad. From Figure 14 it is found that the
tracking error using DOB + NN decreases by 60% compared
with the controller only with DOB. Figure 15 shows the
estimated disturbance torque with the two methods.

(2) Stabilizing Experiment. Next, the efficacy of the proposed
controller in improving the stabilizing accuracy is analyzed.
The desired position 𝜃

𝑖
is zero. A constant disturbance is

added at 𝑡 = 84 s and is cancelled after 100 s. Figure 16 shows
the tracking error of the single-axis GSP system with two
methods. The method with DOB has obvious error when
adding a constant disturbance, while themethodwithDOB+
NN has more disturbance suppression ability since the
tracking error stays almost unchanged. Figure 17 shows the
estimated disturbance torque with two methods.
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Figure 15: The estimated disturbance torque with two methods.
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Figure 16:The tracking error of the single-axis GSP systemwith two
methods.
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Figure 17: The estimated disturbance torque with two methods.

It is thus readily concluded that the proposed controller
can reduce the effect of external disturbance and significantly
improve the tracking and stabilizing accuracy, for more
accurate estimate of the disturbance of the GSP system is
compensated with the proposed controller.
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5. Conclusion

The reduced-order disturbance observer and neural net-
works compensator are used to design an adaptive nonlinear
controller for disturbance compensation. The disturbance is
estimated by the reduced-order disturbance observer, and the
neural networks compensator based on radial basis function
approximates the error of estimated disturbance. It is found
that the tracking error using the proposed method has been
reduced by 60% compared with the conventional DOB, and
the method with DOB + NN also has more disturbance
suppression ability compared with DOB.
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